Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Lagrangian submanifolds). Showing records 1 – 11 of 11 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Keddari, Nassima. Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds.

Degree: Docteur es, Mathématiques, 2018, Université de Strasbourg

Dans la première partie de cette thèse, on donne, sous certaines hypothèses, une minoration du nombre de points d’intersections d’une sous-variété Lagrangienne monotone L avec… (more)

Subjects/Keywords: Dynamique Hamiltonienne; Homologie de Floer; Variétés symplectiques; Monotone Lagrangian submanifolds; Floer homology; Symplectic manifolds; 516.36

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Keddari, N. (2018). Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2018STRAD030

Chicago Manual of Style (16th Edition):

Keddari, Nassima. “Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds.” 2018. Doctoral Dissertation, Université de Strasbourg. Accessed March 08, 2021. http://www.theses.fr/2018STRAD030.

MLA Handbook (7th Edition):

Keddari, Nassima. “Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds.” 2018. Web. 08 Mar 2021.

Vancouver:

Keddari N. Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2018. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2018STRAD030.

Council of Science Editors:

Keddari N. Intersections lagrangiennes pour les sous-variétés monotones et presque monotones : Lagrangian intersections for monotone and almost monotone submanifolds. [Doctoral Dissertation]. Université de Strasbourg; 2018. Available from: http://www.theses.fr/2018STRAD030


Universidade Estadual de Campinas

2. Garcia Rojas, Ada Carolina, 1993-. Fibrações de Lefschetz simpléticas sobre órbitas adjuntas e subvariedades lagrangeanas: Symplectic Lefschetz fibrations on adjoint orbits and Lagrangian submanifolds.

Degree: 2018, Universidade Estadual de Campinas

 Abstract: In this work we propose to construct Symplectic Lefschetz Fibrations on adjoint orbits of semi-simple Lie algebras. We continue exploring results about realizations of… (more)

Subjects/Keywords: Lefschetz, Fibrações de; Órbitas adjuntas (Matemática); Subvariedades lagrangeanas; Variedades bandeira; Lefschetz fibrations; Adjoint orbits (Mathematics); Lagrangian submanifolds; Flag manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garcia Rojas, Ada Carolina, 1. (2018). Fibrações de Lefschetz simpléticas sobre órbitas adjuntas e subvariedades lagrangeanas: Symplectic Lefschetz fibrations on adjoint orbits and Lagrangian submanifolds. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/331689

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Garcia Rojas, Ada Carolina, 1993-. “Fibrações de Lefschetz simpléticas sobre órbitas adjuntas e subvariedades lagrangeanas: Symplectic Lefschetz fibrations on adjoint orbits and Lagrangian submanifolds.” 2018. Thesis, Universidade Estadual de Campinas. Accessed March 08, 2021. http://repositorio.unicamp.br/jspui/handle/REPOSIP/331689.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Garcia Rojas, Ada Carolina, 1993-. “Fibrações de Lefschetz simpléticas sobre órbitas adjuntas e subvariedades lagrangeanas: Symplectic Lefschetz fibrations on adjoint orbits and Lagrangian submanifolds.” 2018. Web. 08 Mar 2021.

Vancouver:

Garcia Rojas, Ada Carolina 1. Fibrações de Lefschetz simpléticas sobre órbitas adjuntas e subvariedades lagrangeanas: Symplectic Lefschetz fibrations on adjoint orbits and Lagrangian submanifolds. [Internet] [Thesis]. Universidade Estadual de Campinas; 2018. [cited 2021 Mar 08]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/331689.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Garcia Rojas, Ada Carolina 1. Fibrações de Lefschetz simpléticas sobre órbitas adjuntas e subvariedades lagrangeanas: Symplectic Lefschetz fibrations on adjoint orbits and Lagrangian submanifolds. [Thesis]. Universidade Estadual de Campinas; 2018. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/331689

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Western Ontario

3. Rosario-Ortega, Josue. Moduli space and deformations of special Lagrangian submanifolds with edge singularities.

Degree: 2016, University of Western Ontario

 Special Lagrangian submanifolds are submanifolds of a Calabi-Yau manifold calibrated by the real part of the holomorphic volume form. In this thesis we use elliptic… (more)

Subjects/Keywords: singular manifolds; special Lagrangian submanifolds; edge-degenerate differential operators; boundary value problems; moduli spaces; Analysis; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosario-Ortega, J. (2016). Moduli space and deformations of special Lagrangian submanifolds with edge singularities. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/3924

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rosario-Ortega, Josue. “Moduli space and deformations of special Lagrangian submanifolds with edge singularities.” 2016. Thesis, University of Western Ontario. Accessed March 08, 2021. https://ir.lib.uwo.ca/etd/3924.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rosario-Ortega, Josue. “Moduli space and deformations of special Lagrangian submanifolds with edge singularities.” 2016. Web. 08 Mar 2021.

Vancouver:

Rosario-Ortega J. Moduli space and deformations of special Lagrangian submanifolds with edge singularities. [Internet] [Thesis]. University of Western Ontario; 2016. [cited 2021 Mar 08]. Available from: https://ir.lib.uwo.ca/etd/3924.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rosario-Ortega J. Moduli space and deformations of special Lagrangian submanifolds with edge singularities. [Thesis]. University of Western Ontario; 2016. Available from: https://ir.lib.uwo.ca/etd/3924

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kyoto University / 京都大学

4. Imagi, Yohsuke. Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry : スペシャルラグランジュ幾何における安定T2錐に対する張り合わせの全射性.

Degree: 博士(理学), 2014, Kyoto University / 京都大学

新制・課程博士

甲第18444号

理博第4004号

Subjects/Keywords: special Lagrangian submanifolds; geometric measure theory; isolated conical singularities; surjectivity of gluing; stable T2-cones

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Imagi, Y. (2014). Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry : スペシャルラグランジュ幾何における安定T2錐に対する張り合わせの全射性. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/189337 ; http://dx.doi.org/10.14989/doctor.k18444

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Imagi, Yohsuke. “Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry : スペシャルラグランジュ幾何における安定T2錐に対する張り合わせの全射性.” 2014. Thesis, Kyoto University / 京都大学. Accessed March 08, 2021. http://hdl.handle.net/2433/189337 ; http://dx.doi.org/10.14989/doctor.k18444.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Imagi, Yohsuke. “Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry : スペシャルラグランジュ幾何における安定T2錐に対する張り合わせの全射性.” 2014. Web. 08 Mar 2021.

Vancouver:

Imagi Y. Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry : スペシャルラグランジュ幾何における安定T2錐に対する張り合わせの全射性. [Internet] [Thesis]. Kyoto University / 京都大学; 2014. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2433/189337 ; http://dx.doi.org/10.14989/doctor.k18444.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Imagi Y. Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry : スペシャルラグランジュ幾何における安定T2錐に対する張り合わせの全射性. [Thesis]. Kyoto University / 京都大学; 2014. Available from: http://hdl.handle.net/2433/189337 ; http://dx.doi.org/10.14989/doctor.k18444

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Bisgaard, Mads R. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.

Degree: 2018, ETH Zürich

Subjects/Keywords: Symplectic topology;

…0. Such submanifolds are called Lagrangian. There are many good reasons why one should… …care about Lagrangian submanifolds. From the point of view of this thesis we point out the… …Lagrangian submanifolds encode information about Hamiltonian dynamics. Generalizing Example A leads… …indicates how important Lagrangian submanifolds are for the dynamics of H and how, if one wants to… …detect invariant sets for Hamiltonian systems, one should study Lagrangian submanifolds. The… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bisgaard, M. R. (2018). Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/315031

Chicago Manual of Style (16th Edition):

Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Doctoral Dissertation, ETH Zürich. Accessed March 08, 2021. http://hdl.handle.net/20.500.11850/315031.

MLA Handbook (7th Edition):

Bisgaard, Mads R. “Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory.” 2018. Web. 08 Mar 2021.

Vancouver:

Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2018. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/20.500.11850/315031.

Council of Science Editors:

Bisgaard MR. Quantitative Aspects of Lagrangian Cobordism Theory and Mather-Floer Theory. [Doctoral Dissertation]. ETH Zürich; 2018. Available from: http://hdl.handle.net/20.500.11850/315031


Kyoto University

6. Imagi, Yohsuke. Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry .

Degree: 2014, Kyoto University

Subjects/Keywords: special Lagrangian submanifolds; geometric measure theory; isolated conical singularities; surjectivity of gluing; stable T2-cones

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Imagi, Y. (2014). Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/189337

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Imagi, Yohsuke. “Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry .” 2014. Thesis, Kyoto University. Accessed March 08, 2021. http://hdl.handle.net/2433/189337.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Imagi, Yohsuke. “Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry .” 2014. Web. 08 Mar 2021.

Vancouver:

Imagi Y. Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry . [Internet] [Thesis]. Kyoto University; 2014. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2433/189337.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Imagi Y. Surjectivity of a Gluing for Stable T2-cones in Special Lagrangian Geometry . [Thesis]. Kyoto University; 2014. Available from: http://hdl.handle.net/2433/189337

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

7. Campling, Emily. Fukaya categories of Lagrangian cobordisms and duality.

Degree: 2019, Université de Montréal

Subjects/Keywords: symplectic topology; Lagrangian submanifolds; Floer homology; Fukaya categories; derived Fukaya categories; Lagrangian cobordisms; Lagrangian surgery; weak Calabi- Yau structures; Topologie symplectique; Sous-variétés lagrangiennes; Homologie de Floer; Catégories de Fukaya; Catégories de Fukaya dérivées; Cobordismes lagrangiens; Chirurgie lagrangienne; Structures de Calabi-Yau faibles; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Campling, E. (2019). Fukaya categories of Lagrangian cobordisms and duality. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/21746

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Campling, Emily. “Fukaya categories of Lagrangian cobordisms and duality.” 2019. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/21746.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Campling, Emily. “Fukaya categories of Lagrangian cobordisms and duality.” 2019. Web. 08 Mar 2021.

Vancouver:

Campling E. Fukaya categories of Lagrangian cobordisms and duality. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/21746.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Campling E. Fukaya categories of Lagrangian cobordisms and duality. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/21746

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Perrier, Alexandre. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.

Degree: 2019, Université de Montréal

Subjects/Keywords: Immersions lagrangiennes; Polygones holomorphes; Cobordismes Lagrangiens; Groupes de cobordisme; Homologie de Floer; Catégories de Fukaya; Sous-variétés lagrangiennes; Lagrangian submanifolds; Lagrangian immersions; Holomorphic polygons; Lagrangian cobordisms; Cobordism groups; Floer homology; Fukaya categories; Mathematics / Mathématiques (UMI : 0405)

…120 2.4. Immersed Lagrangian cobordisms and iterated cones… …122 2.5. Computation of the unobstructed Lagrangian Cobordism Group . . . . . . . . . . 123… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perrier, A. (2019). Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/21747

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perrier, Alexandre. “Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.” 2019. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/21747.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perrier, Alexandre. “Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes.” 2019. Web. 08 Mar 2021.

Vancouver:

Perrier A. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. [Internet] [Thesis]. Université de Montréal; 2019. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/21747.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perrier A. Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphes. [Thesis]. Université de Montréal; 2019. Available from: http://hdl.handle.net/1866/21747

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

9. Charette, François. Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de Seidel.

Degree: 2012, Université de Montréal

Subjects/Keywords: Sous-variétés lagrangiennes; Lagrangian submanifolds; Rayon de Gromov; Gromov radius; Distance de Hofer; Hofer distance; Morphisme de Seidel; Seidel morphism; Cobordisme lagrangien; Lagrangian cobordism; Rigidité symplectique; Symplectic rigidity; Twist de Dehn; Dehn twist; Chirurgie lagrangienne; Lagrangian surgery; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Charette, F. (2012). Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de Seidel. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/8686

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Charette, François. “Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de Seidel.” 2012. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/8686.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Charette, François. “Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de Seidel.” 2012. Web. 08 Mar 2021.

Vancouver:

Charette F. Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de Seidel. [Internet] [Thesis]. Université de Montréal; 2012. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/8686.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Charette F. Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de Seidel. [Thesis]. Université de Montréal; 2012. Available from: http://hdl.handle.net/1866/8686

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université de Montréal

10. Charest, François. Source spaces and perturbations for cluster complexes.

Degree: 2012, Université de Montréal

Subjects/Keywords: Topologie symplectique; Catégories de Fukaya; Sous-variétés lagrangiennes; Homologie de Floer; Homologie de Morse; Homologie des clusters; Clusters; Courbes pseudoholomorphes; Transversalité; Voisinage collier; Symplectic topology; Fukaya categories; Lagrangian submanifolds; Floer homology; Morse homology; Cluster homology; Clusters; Pseudoholomorphic curves; Regularity; Collar neighborhood; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Charest, F. (2012). Source spaces and perturbations for cluster complexes. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/8998

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Charest, François. “Source spaces and perturbations for cluster complexes.” 2012. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/8998.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Charest, François. “Source spaces and perturbations for cluster complexes.” 2012. Web. 08 Mar 2021.

Vancouver:

Charest F. Source spaces and perturbations for cluster complexes. [Internet] [Thesis]. Université de Montréal; 2012. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/8998.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Charest F. Source spaces and perturbations for cluster complexes. [Thesis]. Université de Montréal; 2012. Available from: http://hdl.handle.net/1866/8998

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Létourneau, Vincent. Cobordismes lagrangiens et uniréglage.

Degree: 2015, Université de Montréal

Subjects/Keywords: Courbes pseudoholomorphes; espaces de module; compacité de Gromov; invariants de Gromov-Witten; uniréglage; homologie quantique; complexe de perles; produit quantique; cobordismes lagrangiens; sous-variétés lagrangiennes; Pseudoholomorphic curves; moduli space; Gromov compacity; Gromov-Witten invariants; uniruling; quantum homology; pearl complex; quantum product; Lagrangian cobordism; Lagrangian submanifolds; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Létourneau, V. (2015). Cobordismes lagrangiens et uniréglage. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/11680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Létourneau, Vincent. “Cobordismes lagrangiens et uniréglage.” 2015. Thesis, Université de Montréal. Accessed March 08, 2021. http://hdl.handle.net/1866/11680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Létourneau, Vincent. “Cobordismes lagrangiens et uniréglage.” 2015. Web. 08 Mar 2021.

Vancouver:

Létourneau V. Cobordismes lagrangiens et uniréglage. [Internet] [Thesis]. Université de Montréal; 2015. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1866/11680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Létourneau V. Cobordismes lagrangiens et uniréglage. [Thesis]. Université de Montréal; 2015. Available from: http://hdl.handle.net/1866/11680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.