Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(LU factorization). Showing records 1 – 20 of 20 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Texas A&M University

1. Belsare, Aditya Sanjay. Sparse LU Factorization for Large Circuit Matrices on Heterogenous Parallel Computing Platforms.

Degree: MS, Computer Engineering, 2014, Texas A&M University

 Direct sparse solvers are traditionally known to be robust, yet difficult to parallelize. In the context of circuit simulators, they present an important bottleneck where… (more)

Subjects/Keywords: Sparse matrix solver; LU Factorization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Belsare, A. S. (2014). Sparse LU Factorization for Large Circuit Matrices on Heterogenous Parallel Computing Platforms. (Masters Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/153210

Chicago Manual of Style (16th Edition):

Belsare, Aditya Sanjay. “Sparse LU Factorization for Large Circuit Matrices on Heterogenous Parallel Computing Platforms.” 2014. Masters Thesis, Texas A&M University. Accessed March 01, 2021. http://hdl.handle.net/1969.1/153210.

MLA Handbook (7th Edition):

Belsare, Aditya Sanjay. “Sparse LU Factorization for Large Circuit Matrices on Heterogenous Parallel Computing Platforms.” 2014. Web. 01 Mar 2021.

Vancouver:

Belsare AS. Sparse LU Factorization for Large Circuit Matrices on Heterogenous Parallel Computing Platforms. [Internet] [Masters thesis]. Texas A&M University; 2014. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/1969.1/153210.

Council of Science Editors:

Belsare AS. Sparse LU Factorization for Large Circuit Matrices on Heterogenous Parallel Computing Platforms. [Masters Thesis]. Texas A&M University; 2014. Available from: http://hdl.handle.net/1969.1/153210


University of Cincinnati

2. THIYAGARAJAN, SANJEEV. REDUCING MEMORY SPACE FOR COMPLETELY UNROLLED LU FACTORIZATION OF SPARSE MATRICES.

Degree: MS, Engineering : Computer Engineering, 2001, University of Cincinnati

 Complete Loop Unrolling (CLU) is a possible approach for improving the execution time of Sparse Lower/Upper (LU) factorization. The amount of memory space occupied by… (more)

Subjects/Keywords: compression; LU factorization; loop unrolling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

THIYAGARAJAN, S. (2001). REDUCING MEMORY SPACE FOR COMPLETELY UNROLLED LU FACTORIZATION OF SPARSE MATRICES. (Masters Thesis). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin990556295

Chicago Manual of Style (16th Edition):

THIYAGARAJAN, SANJEEV. “REDUCING MEMORY SPACE FOR COMPLETELY UNROLLED LU FACTORIZATION OF SPARSE MATRICES.” 2001. Masters Thesis, University of Cincinnati. Accessed March 01, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin990556295.

MLA Handbook (7th Edition):

THIYAGARAJAN, SANJEEV. “REDUCING MEMORY SPACE FOR COMPLETELY UNROLLED LU FACTORIZATION OF SPARSE MATRICES.” 2001. Web. 01 Mar 2021.

Vancouver:

THIYAGARAJAN S. REDUCING MEMORY SPACE FOR COMPLETELY UNROLLED LU FACTORIZATION OF SPARSE MATRICES. [Internet] [Masters thesis]. University of Cincinnati; 2001. [cited 2021 Mar 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin990556295.

Council of Science Editors:

THIYAGARAJAN S. REDUCING MEMORY SPACE FOR COMPLETELY UNROLLED LU FACTORIZATION OF SPARSE MATRICES. [Masters Thesis]. University of Cincinnati; 2001. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin990556295


University of California – Riverside

3. Davies, Teresa. Checksum-Based Fault Tolerance for LU Factorization.

Degree: Computer Science, 2014, University of California – Riverside

 In high-performance systems, the probability of failure is higher for larger systems. The probability that a failure will occur before the end of the computation… (more)

Subjects/Keywords: Computer science; algorithm-based recovery; fault tolerance; high performance computing; LU factorization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Davies, T. (2014). Checksum-Based Fault Tolerance for LU Factorization. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/7tk439n9

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Davies, Teresa. “Checksum-Based Fault Tolerance for LU Factorization.” 2014. Thesis, University of California – Riverside. Accessed March 01, 2021. http://www.escholarship.org/uc/item/7tk439n9.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Davies, Teresa. “Checksum-Based Fault Tolerance for LU Factorization.” 2014. Web. 01 Mar 2021.

Vancouver:

Davies T. Checksum-Based Fault Tolerance for LU Factorization. [Internet] [Thesis]. University of California – Riverside; 2014. [cited 2021 Mar 01]. Available from: http://www.escholarship.org/uc/item/7tk439n9.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Davies T. Checksum-Based Fault Tolerance for LU Factorization. [Thesis]. University of California – Riverside; 2014. Available from: http://www.escholarship.org/uc/item/7tk439n9

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Herrmann, Julien. Memory-aware Algorithms and Scheduling Techniques for Matrix Computattions : Algorithmes orientés mémoire et techniques d'ordonnancement pour le calcul matriciel.

Degree: Docteur es, Informatique, 2015, Lyon, École normale supérieure

Dans cette thèse, nous nous sommes penchés d’un point de vue à la foisthéorique et pratique sur la conception d’algorithmes et detechniques d’ordonnancement adaptées aux… (more)

Subjects/Keywords: Ordonnancement multi-critère; Algorithmes numériques; Factorisation LU; Factorisation QR; Factorisation Cholesky; Calcul haute performance; Systèmes linéaires; Différentiation automatique; Scheduling; Numerical algorithms; LU factorization; QR factorization; Cholesky factorization; High performance computing; Linear systems; Automatic differentiation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Herrmann, J. (2015). Memory-aware Algorithms and Scheduling Techniques for Matrix Computattions : Algorithmes orientés mémoire et techniques d'ordonnancement pour le calcul matriciel. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2015ENSL1043

Chicago Manual of Style (16th Edition):

Herrmann, Julien. “Memory-aware Algorithms and Scheduling Techniques for Matrix Computattions : Algorithmes orientés mémoire et techniques d'ordonnancement pour le calcul matriciel.” 2015. Doctoral Dissertation, Lyon, École normale supérieure. Accessed March 01, 2021. http://www.theses.fr/2015ENSL1043.

MLA Handbook (7th Edition):

Herrmann, Julien. “Memory-aware Algorithms and Scheduling Techniques for Matrix Computattions : Algorithmes orientés mémoire et techniques d'ordonnancement pour le calcul matriciel.” 2015. Web. 01 Mar 2021.

Vancouver:

Herrmann J. Memory-aware Algorithms and Scheduling Techniques for Matrix Computattions : Algorithmes orientés mémoire et techniques d'ordonnancement pour le calcul matriciel. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2015. [cited 2021 Mar 01]. Available from: http://www.theses.fr/2015ENSL1043.

Council of Science Editors:

Herrmann J. Memory-aware Algorithms and Scheduling Techniques for Matrix Computattions : Algorithmes orientés mémoire et techniques d'ordonnancement pour le calcul matriciel. [Doctoral Dissertation]. Lyon, École normale supérieure; 2015. Available from: http://www.theses.fr/2015ENSL1043


Université Paris-Sud – Paris XI

5. Donfack, Simplice. Methods and algorithms for solving linear systems of equations on massively parallel computers : Méthodes et algorithmes pour la résolution des systèmes d'équations linéaires sur les ordinateurs massivement parallèles.

Degree: Docteur es, Informatique, 2012, Université Paris-Sud – Paris XI

Les processeurs multi-cœurs sont considérés de nos jours comme l'avenir des calculateurs et auront un impact important dans le calcul scientifique. Cette thèse présente une… (more)

Subjects/Keywords: Factorisation LU; QR; Réduction des communications; Méthode de renumérotations; Techniques d'ordonnancement; Optimisations; Multi-coeurs; LU factorization; QR; Communication avoiding; Ordering; Scheduling technic; Optimization; Multicore

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Donfack, S. (2012). Methods and algorithms for solving linear systems of equations on massively parallel computers : Méthodes et algorithmes pour la résolution des systèmes d'équations linéaires sur les ordinateurs massivement parallèles. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2012PA112042

Chicago Manual of Style (16th Edition):

Donfack, Simplice. “Methods and algorithms for solving linear systems of equations on massively parallel computers : Méthodes et algorithmes pour la résolution des systèmes d'équations linéaires sur les ordinateurs massivement parallèles.” 2012. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 01, 2021. http://www.theses.fr/2012PA112042.

MLA Handbook (7th Edition):

Donfack, Simplice. “Methods and algorithms for solving linear systems of equations on massively parallel computers : Méthodes et algorithmes pour la résolution des systèmes d'équations linéaires sur les ordinateurs massivement parallèles.” 2012. Web. 01 Mar 2021.

Vancouver:

Donfack S. Methods and algorithms for solving linear systems of equations on massively parallel computers : Méthodes et algorithmes pour la résolution des systèmes d'équations linéaires sur les ordinateurs massivement parallèles. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2012. [cited 2021 Mar 01]. Available from: http://www.theses.fr/2012PA112042.

Council of Science Editors:

Donfack S. Methods and algorithms for solving linear systems of equations on massively parallel computers : Méthodes et algorithmes pour la résolution des systèmes d'équations linéaires sur les ordinateurs massivement parallèles. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2012. Available from: http://www.theses.fr/2012PA112042


Universidade Estadual de Campinas

6. Cantane, Daniela Renata. Contribuição da atualização da decomposição LU no metodo Simplex: Contribution of the LU factorization update in the Simplex method.

Degree: 2009, Universidade Estadual de Campinas

 Abstract: Finding efficient solution of linear systems is fundamental in the linear programming problems and the first method to obtain success for this class of… (more)

Subjects/Keywords: Programação linear; Simplex (Matemática); Decomposição LU; Linear Programming; Simplex Method; LU Factorization Update

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cantane, D. R. (2009). Contribuição da atualização da decomposição LU no metodo Simplex: Contribution of the LU factorization update in the Simplex method. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/260212

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cantane, Daniela Renata. “Contribuição da atualização da decomposição LU no metodo Simplex: Contribution of the LU factorization update in the Simplex method.” 2009. Thesis, Universidade Estadual de Campinas. Accessed March 01, 2021. http://repositorio.unicamp.br/jspui/handle/REPOSIP/260212.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cantane, Daniela Renata. “Contribuição da atualização da decomposição LU no metodo Simplex: Contribution of the LU factorization update in the Simplex method.” 2009. Web. 01 Mar 2021.

Vancouver:

Cantane DR. Contribuição da atualização da decomposição LU no metodo Simplex: Contribution of the LU factorization update in the Simplex method. [Internet] [Thesis]. Universidade Estadual de Campinas; 2009. [cited 2021 Mar 01]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/260212.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cantane DR. Contribuição da atualização da decomposição LU no metodo Simplex: Contribution of the LU factorization update in the Simplex method. [Thesis]. Universidade Estadual de Campinas; 2009. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/260212

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Somers, Gregory W. Acceleration of Block-Aware Matrix Factorization on Heterogeneous Platforms .

Degree: 2016, University of Ottawa

 Block-structured matrices arise in several contexts in circuit simulation problems. These matrices typically inherit the pattern of sparsity from the circuit connectivity. However, they are… (more)

Subjects/Keywords: multi-GPU; Parallel LU Factorization; Circuit Simulation

…29 3.1 Gilbert-Peierls Column Level LU factorization… …handling the parallel execution and managing the memory resources of block LU factorization. 1.4… …method [10]. The core computational part of the Newton method is LU factorization of… …8 Challenges of Small Block Factorization 97 8.1 Introduction… …82 7.3 Hamrle1 matrix factorization details for GPU… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Somers, G. W. (2016). Acceleration of Block-Aware Matrix Factorization on Heterogeneous Platforms . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/35128

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Somers, Gregory W. “Acceleration of Block-Aware Matrix Factorization on Heterogeneous Platforms .” 2016. Thesis, University of Ottawa. Accessed March 01, 2021. http://hdl.handle.net/10393/35128.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Somers, Gregory W. “Acceleration of Block-Aware Matrix Factorization on Heterogeneous Platforms .” 2016. Web. 01 Mar 2021.

Vancouver:

Somers GW. Acceleration of Block-Aware Matrix Factorization on Heterogeneous Platforms . [Internet] [Thesis]. University of Ottawa; 2016. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/10393/35128.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Somers GW. Acceleration of Block-Aware Matrix Factorization on Heterogeneous Platforms . [Thesis]. University of Ottawa; 2016. Available from: http://hdl.handle.net/10393/35128

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


KTH

8. Netzer, Gilbert. Efficient LU Factorization for Texas Instruments Keystone Architecture Digital Signal Processors.

Degree: Computer Science and Communication (CSC), 2015, KTH

The energy consumption of large-scale high-performance computer (HPC) systems has become one of the foremost concerns of both data-center operators and computer manufacturers. This… (more)

Subjects/Keywords: LU factorization; digital signal processors; Texas Instruments; Keystone architecture; high-performance LINPACK; benchmark; performance; energy efficiency; software-pipelined loops; direct memory access; optimization; Computer Sciences; Datavetenskap (datalogi)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Netzer, G. (2015). Efficient LU Factorization for Texas Instruments Keystone Architecture Digital Signal Processors. (Thesis). KTH. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170445

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Netzer, Gilbert. “Efficient LU Factorization for Texas Instruments Keystone Architecture Digital Signal Processors.” 2015. Thesis, KTH. Accessed March 01, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170445.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Netzer, Gilbert. “Efficient LU Factorization for Texas Instruments Keystone Architecture Digital Signal Processors.” 2015. Web. 01 Mar 2021.

Vancouver:

Netzer G. Efficient LU Factorization for Texas Instruments Keystone Architecture Digital Signal Processors. [Internet] [Thesis]. KTH; 2015. [cited 2021 Mar 01]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170445.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Netzer G. Efficient LU Factorization for Texas Instruments Keystone Architecture Digital Signal Processors. [Thesis]. KTH; 2015. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170445

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

9. Sheng, Z. (author). Hierarchically semi-separable representation and its applications.

Degree: Electrical Engineering, Mathematics and Computer Science, Information and Communication Technology (ICT), 2006, Delft University of Technology

In this thesis, we study a important class of structured matrices: "Hierarchically Semi-Separable" matrices, for which an efficient hierarchically state based representation called Hierarchically Semi-… (more)

Subjects/Keywords: hierarchically semi-separable matrix; linear solver; preconditioner; lu; urv factorization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sheng, Z. (. (2006). Hierarchically semi-separable representation and its applications. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:e7a452de-6859-42bc-97b6-3eb28815dc8b

Chicago Manual of Style (16th Edition):

Sheng, Z (author). “Hierarchically semi-separable representation and its applications.” 2006. Masters Thesis, Delft University of Technology. Accessed March 01, 2021. http://resolver.tudelft.nl/uuid:e7a452de-6859-42bc-97b6-3eb28815dc8b.

MLA Handbook (7th Edition):

Sheng, Z (author). “Hierarchically semi-separable representation and its applications.” 2006. Web. 01 Mar 2021.

Vancouver:

Sheng Z(. Hierarchically semi-separable representation and its applications. [Internet] [Masters thesis]. Delft University of Technology; 2006. [cited 2021 Mar 01]. Available from: http://resolver.tudelft.nl/uuid:e7a452de-6859-42bc-97b6-3eb28815dc8b.

Council of Science Editors:

Sheng Z(. Hierarchically semi-separable representation and its applications. [Masters Thesis]. Delft University of Technology; 2006. Available from: http://resolver.tudelft.nl/uuid:e7a452de-6859-42bc-97b6-3eb28815dc8b

10. Li, Nan. Improving the Execution Time of Large System Simulations.

Degree: MS, Electrical Engineering, 2012, Arizona State University

 Today, the electric power system faces new challenges from rapid developing technology and the growing concern about environmental problems. The future of the power system… (more)

Subjects/Keywords: Electrical engineering; LU factorization; Multifrontal Method; Network Reduction

…retained line i GHG Greenhouse gas GPLU A LU factorization algorithm developed by Gilbert and… …multifrontal method on different types of matrices is compared to the traditional LU factorization… …of the multifrontal method is compared against traditional LU factorization on different… …consensus that the so-called traditional sparse matrix methods for LU factorization are the… …method [31] and traditional LU factorization. The results showed that the combined… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, N. (2012). Improving the Execution Time of Large System Simulations. (Masters Thesis). Arizona State University. Retrieved from http://repository.asu.edu/items/15851

Chicago Manual of Style (16th Edition):

Li, Nan. “Improving the Execution Time of Large System Simulations.” 2012. Masters Thesis, Arizona State University. Accessed March 01, 2021. http://repository.asu.edu/items/15851.

MLA Handbook (7th Edition):

Li, Nan. “Improving the Execution Time of Large System Simulations.” 2012. Web. 01 Mar 2021.

Vancouver:

Li N. Improving the Execution Time of Large System Simulations. [Internet] [Masters thesis]. Arizona State University; 2012. [cited 2021 Mar 01]. Available from: http://repository.asu.edu/items/15851.

Council of Science Editors:

Li N. Improving the Execution Time of Large System Simulations. [Masters Thesis]. Arizona State University; 2012. Available from: http://repository.asu.edu/items/15851


University of Texas – Austin

11. Ellis, Apollo Isaac Orion. Jack Rabbit : an effective Cell BE programming system for high performance parallelism.

Degree: MSin Computer Sciences, Computer Science, 2011, University of Texas – Austin

 The Cell processor is an example of the trade-offs made when designing a mass market power efficient multi-core machine, but the machine-exposing architecture and raw… (more)

Subjects/Keywords: Cell processor; Parallel processing (Electronic computers); Multi-core systems; High performance computing; Runtime; Barnes Hut; LU factorization; Mandelbrot; Double buffering; Thread pool; Work queue; Load balance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ellis, A. I. O. (2011). Jack Rabbit : an effective Cell BE programming system for high performance parallelism. (Masters Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2011-05-3624

Chicago Manual of Style (16th Edition):

Ellis, Apollo Isaac Orion. “Jack Rabbit : an effective Cell BE programming system for high performance parallelism.” 2011. Masters Thesis, University of Texas – Austin. Accessed March 01, 2021. http://hdl.handle.net/2152/ETD-UT-2011-05-3624.

MLA Handbook (7th Edition):

Ellis, Apollo Isaac Orion. “Jack Rabbit : an effective Cell BE programming system for high performance parallelism.” 2011. Web. 01 Mar 2021.

Vancouver:

Ellis AIO. Jack Rabbit : an effective Cell BE programming system for high performance parallelism. [Internet] [Masters thesis]. University of Texas – Austin; 2011. [cited 2021 Mar 01]. Available from: http://hdl.handle.net/2152/ETD-UT-2011-05-3624.

Council of Science Editors:

Ellis AIO. Jack Rabbit : an effective Cell BE programming system for high performance parallelism. [Masters Thesis]. University of Texas – Austin; 2011. Available from: http://hdl.handle.net/2152/ETD-UT-2011-05-3624


University of Cincinnati

12. Pathanjali, Nandini. Pipelined IEEE-754 Double Precision Floating Point Arithmetic Operators on Virtex FPGA’s.

Degree: MS, Engineering : Computer Engineering, 2002, University of Cincinnati

 Analog and mixed-signal circuit simulation often employs the use of the so-called LU decomposition method to solve a set of linear algebraic equations represented as… (more)

Subjects/Keywords: Computer Science; pipelined; floating point unit; TEEE-754 format; lu factorization; virtex FPGA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pathanjali, N. (2002). Pipelined IEEE-754 Double Precision Floating Point Arithmetic Operators on Virtex FPGA’s. (Masters Thesis). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1017085297

Chicago Manual of Style (16th Edition):

Pathanjali, Nandini. “Pipelined IEEE-754 Double Precision Floating Point Arithmetic Operators on Virtex FPGA’s.” 2002. Masters Thesis, University of Cincinnati. Accessed March 01, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1017085297.

MLA Handbook (7th Edition):

Pathanjali, Nandini. “Pipelined IEEE-754 Double Precision Floating Point Arithmetic Operators on Virtex FPGA’s.” 2002. Web. 01 Mar 2021.

Vancouver:

Pathanjali N. Pipelined IEEE-754 Double Precision Floating Point Arithmetic Operators on Virtex FPGA’s. [Internet] [Masters thesis]. University of Cincinnati; 2002. [cited 2021 Mar 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1017085297.

Council of Science Editors:

Pathanjali N. Pipelined IEEE-754 Double Precision Floating Point Arithmetic Operators on Virtex FPGA’s. [Masters Thesis]. University of Cincinnati; 2002. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1017085297


University of Cincinnati

13. Syed, Akber. A Hardware Interpreter for Sparse Matrix LU Factorization.

Degree: MS, Engineering : Computer Engineering, 2002, University of Cincinnati

  This thesis investigated a hardware interpreter for sparse matrix LU factorization. LU factorization is one of the most commonly used methods for solving a… (more)

Subjects/Keywords: LU factorization; sparse matrices; hardware interpreter; hardware accelerator; loop unrolling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Syed, A. (2002). A Hardware Interpreter for Sparse Matrix LU Factorization. (Masters Thesis). University of Cincinnati. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ucin1024934521

Chicago Manual of Style (16th Edition):

Syed, Akber. “A Hardware Interpreter for Sparse Matrix LU Factorization.” 2002. Masters Thesis, University of Cincinnati. Accessed March 01, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1024934521.

MLA Handbook (7th Edition):

Syed, Akber. “A Hardware Interpreter for Sparse Matrix LU Factorization.” 2002. Web. 01 Mar 2021.

Vancouver:

Syed A. A Hardware Interpreter for Sparse Matrix LU Factorization. [Internet] [Masters thesis]. University of Cincinnati; 2002. [cited 2021 Mar 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1024934521.

Council of Science Editors:

Syed A. A Hardware Interpreter for Sparse Matrix LU Factorization. [Masters Thesis]. University of Cincinnati; 2002. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1024934521


INP Toulouse

14. Maurin, Julien. Résolution des équations intégrales de surface par une méthode de décomposition de domaine et compression hiérarchique ACA : Application à la simulation électromagnétique des larges plateformes : Resolution of surface integral equations by a domain decomposition method and adaptive cross approximation : Application to the electromagnetic simulation of large platforms.

Degree: Docteur es, Electromagnétisme et Systèmes Haute Fréquence, 2015, INP Toulouse

Cette étude s’inscrit dans le domaine de la simulation électromagnétique des problèmes de grande taille tels que la diffraction d’ondes planes par de larges plateformes… (more)

Subjects/Keywords: Equations intégrales de surface; Décomposition en sous-domaines; Matrices hiérarchiques; Adaptive cross approximation; Factorisation LU approchée; Solveur itératif; Simulation électromagnétique; Larges plateformes; Surface integral equations; Domain decomposition; Hierarchical matrices; Adaptive cross approximation; Approximate LU factorization; Iterative solver; Computational electromagnetics; Large scale problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maurin, J. (2015). Résolution des équations intégrales de surface par une méthode de décomposition de domaine et compression hiérarchique ACA : Application à la simulation électromagnétique des larges plateformes : Resolution of surface integral equations by a domain decomposition method and adaptive cross approximation : Application to the electromagnetic simulation of large platforms. (Doctoral Dissertation). INP Toulouse. Retrieved from http://www.theses.fr/2015INPT0079

Chicago Manual of Style (16th Edition):

Maurin, Julien. “Résolution des équations intégrales de surface par une méthode de décomposition de domaine et compression hiérarchique ACA : Application à la simulation électromagnétique des larges plateformes : Resolution of surface integral equations by a domain decomposition method and adaptive cross approximation : Application to the electromagnetic simulation of large platforms.” 2015. Doctoral Dissertation, INP Toulouse. Accessed March 01, 2021. http://www.theses.fr/2015INPT0079.

MLA Handbook (7th Edition):

Maurin, Julien. “Résolution des équations intégrales de surface par une méthode de décomposition de domaine et compression hiérarchique ACA : Application à la simulation électromagnétique des larges plateformes : Resolution of surface integral equations by a domain decomposition method and adaptive cross approximation : Application to the electromagnetic simulation of large platforms.” 2015. Web. 01 Mar 2021.

Vancouver:

Maurin J. Résolution des équations intégrales de surface par une méthode de décomposition de domaine et compression hiérarchique ACA : Application à la simulation électromagnétique des larges plateformes : Resolution of surface integral equations by a domain decomposition method and adaptive cross approximation : Application to the electromagnetic simulation of large platforms. [Internet] [Doctoral dissertation]. INP Toulouse; 2015. [cited 2021 Mar 01]. Available from: http://www.theses.fr/2015INPT0079.

Council of Science Editors:

Maurin J. Résolution des équations intégrales de surface par une méthode de décomposition de domaine et compression hiérarchique ACA : Application à la simulation électromagnétique des larges plateformes : Resolution of surface integral equations by a domain decomposition method and adaptive cross approximation : Application to the electromagnetic simulation of large platforms. [Doctoral Dissertation]. INP Toulouse; 2015. Available from: http://www.theses.fr/2015INPT0079


Université Paris-Sud – Paris XI

15. Rémy, Adrien. Solving dense linear systems on accelerated multicore architectures : Résoudre des systèmes linéaires denses sur des architectures composées de processeurs multicœurs et d’accélerateurs.

Degree: Docteur es, Informatique, 2015, Université Paris-Sud – Paris XI

Dans cette thèse de doctorat, nous étudions des algorithmes et des implémentations pour accélérer la résolution de systèmes linéaires denses en utilisant des architectures composées… (more)

Subjects/Keywords: Systèmes linéaires denses; Factorisation LU; Bibliothèques logicielles pour l’algèbre linéaire dense; Bibliothèque MAGMA; Calcul hybride multicœur/GPU; Processeurs graphiques; Intel Xeon Phi; . ccNUMA; Communication-avoiding; Randomisation; Placement des processus légers; Dense linear systems; LU factorization; Dense linear algebra libraries; MAGMA library; Hybrid multicore/GPU computing; Graphics process units; Intel Xeon Phi; . ccNUMA; Communication-avoiding algorithms; Randomization; Thread placement

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rémy, A. (2015). Solving dense linear systems on accelerated multicore architectures : Résoudre des systèmes linéaires denses sur des architectures composées de processeurs multicœurs et d’accélerateurs. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2015PA112138

Chicago Manual of Style (16th Edition):

Rémy, Adrien. “Solving dense linear systems on accelerated multicore architectures : Résoudre des systèmes linéaires denses sur des architectures composées de processeurs multicœurs et d’accélerateurs.” 2015. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 01, 2021. http://www.theses.fr/2015PA112138.

MLA Handbook (7th Edition):

Rémy, Adrien. “Solving dense linear systems on accelerated multicore architectures : Résoudre des systèmes linéaires denses sur des architectures composées de processeurs multicœurs et d’accélerateurs.” 2015. Web. 01 Mar 2021.

Vancouver:

Rémy A. Solving dense linear systems on accelerated multicore architectures : Résoudre des systèmes linéaires denses sur des architectures composées de processeurs multicœurs et d’accélerateurs. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2015. [cited 2021 Mar 01]. Available from: http://www.theses.fr/2015PA112138.

Council of Science Editors:

Rémy A. Solving dense linear systems on accelerated multicore architectures : Résoudre des systèmes linéaires denses sur des architectures composées de processeurs multicœurs et d’accélerateurs. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2015. Available from: http://www.theses.fr/2015PA112138


University of Kentucky

16. Lee, Eun-Joo. Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear Systems.

Degree: 2008, University of Kentucky

Please download this dissertation to see the abstract.

Subjects/Keywords: Linear System; Preconditioning; Incomplete LU (ILU); Factorization; Indefinite Matrices; Sparse Approximate Inverse (SAI) Preconditioner; Computer Sciences

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, E. (2008). Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear Systems. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/gradschool_diss/650

Chicago Manual of Style (16th Edition):

Lee, Eun-Joo. “Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear Systems.” 2008. Doctoral Dissertation, University of Kentucky. Accessed March 01, 2021. https://uknowledge.uky.edu/gradschool_diss/650.

MLA Handbook (7th Edition):

Lee, Eun-Joo. “Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear Systems.” 2008. Web. 01 Mar 2021.

Vancouver:

Lee E. Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear Systems. [Internet] [Doctoral dissertation]. University of Kentucky; 2008. [cited 2021 Mar 01]. Available from: https://uknowledge.uky.edu/gradschool_diss/650.

Council of Science Editors:

Lee E. Accurate and Robust Preconditioning Techniques for Solving General Sparse Linear Systems. [Doctoral Dissertation]. University of Kentucky; 2008. Available from: https://uknowledge.uky.edu/gradschool_diss/650

17. Estecahandy, Elodie. Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem.

Degree: Docteur es, Mathématiques appliquées, 2013, Pau

La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un… (more)

Subjects/Keywords: Interaction fluide-solide; Problème de diffraction; Fréquence de Jones; Inégalité de Gärding; Alternative de Fredholm; Espace de Sobolev à poids; Méthode de Galerkin discontinue; Méthode élément fini; Raffinement hp; Effet de pollution; Arêtes de frontière courbes; Factorisation LU; Différentiabilité au sens de Fréchet; Dérivée de domaine; Frontière Lipschitzienne; Théorème des fonctions implicites; Méthode de Newton; Régularisation de Tikhonov; Domaine étoilé; B-splines quadratiques; Fluid-solid interaction; Scattering problem; Jones frequency; Gärding's inequality; Fredholm alternative; Weighted Sobolev space; Discontinuous Galerkin method; Finite element method; Hp-refinement,; Pollution effect; Curved boundary edges; LU factorization; Fréchet differentiability; Domain derivative; Lipschitz boundary; Implicit function theorem; Newton method; Tikhonov regularization; Star domain; Quadratic B-splines.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Estecahandy, E. (2013). Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem. (Doctoral Dissertation). Pau. Retrieved from http://www.theses.fr/2013PAUU3022

Chicago Manual of Style (16th Edition):

Estecahandy, Elodie. “Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem.” 2013. Doctoral Dissertation, Pau. Accessed March 01, 2021. http://www.theses.fr/2013PAUU3022.

MLA Handbook (7th Edition):

Estecahandy, Elodie. “Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem.” 2013. Web. 01 Mar 2021.

Vancouver:

Estecahandy E. Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem. [Internet] [Doctoral dissertation]. Pau; 2013. [cited 2021 Mar 01]. Available from: http://www.theses.fr/2013PAUU3022.

Council of Science Editors:

Estecahandy E. Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique : Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problem. [Doctoral Dissertation]. Pau; 2013. Available from: http://www.theses.fr/2013PAUU3022

18. Bomhof, C.W. Iterative and parallel methods for linear systems, with applications in circuit simulation.

Degree: 2001, University Utrecht

 Bij het ontwerp van elektronische schakelingen, ie gebruikt wor en in bijvoorbeeld CD-spelers en mobiele telefoons, maakt e ontwerper veelvul ig gebruik van circuitsimulatie Bij… (more)

Subjects/Keywords: Parallel methods; mixed direct/iterative method; sparse LU factorization; circuit simulation; iterative solution methods; Schur complement; preconditioned iterative method; p-cyclic matrix; periodic steady state; Krylov subspace methods; GMRES and MINRES methods; matrix polynomial; rational matrix function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bomhof, C. W. (2001). Iterative and parallel methods for linear systems, with applications in circuit simulation. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/860 ; URN:NBN:NL:UI:10-1874-860 ; 1874/860 ; URN:NBN:NL:UI:10-1874-860 ; https://dspace.library.uu.nl/handle/1874/860

Chicago Manual of Style (16th Edition):

Bomhof, C W. “Iterative and parallel methods for linear systems, with applications in circuit simulation.” 2001. Doctoral Dissertation, University Utrecht. Accessed March 01, 2021. https://dspace.library.uu.nl/handle/1874/860 ; URN:NBN:NL:UI:10-1874-860 ; 1874/860 ; URN:NBN:NL:UI:10-1874-860 ; https://dspace.library.uu.nl/handle/1874/860.

MLA Handbook (7th Edition):

Bomhof, C W. “Iterative and parallel methods for linear systems, with applications in circuit simulation.” 2001. Web. 01 Mar 2021.

Vancouver:

Bomhof CW. Iterative and parallel methods for linear systems, with applications in circuit simulation. [Internet] [Doctoral dissertation]. University Utrecht; 2001. [cited 2021 Mar 01]. Available from: https://dspace.library.uu.nl/handle/1874/860 ; URN:NBN:NL:UI:10-1874-860 ; 1874/860 ; URN:NBN:NL:UI:10-1874-860 ; https://dspace.library.uu.nl/handle/1874/860.

Council of Science Editors:

Bomhof CW. Iterative and parallel methods for linear systems, with applications in circuit simulation. [Doctoral Dissertation]. University Utrecht; 2001. Available from: https://dspace.library.uu.nl/handle/1874/860 ; URN:NBN:NL:UI:10-1874-860 ; 1874/860 ; URN:NBN:NL:UI:10-1874-860 ; https://dspace.library.uu.nl/handle/1874/860


Universiteit Utrecht

19. Bomhof, C.W. Iterative and parallel methods for linear systems, with applications in circuit simulation.

Degree: 2001, Universiteit Utrecht

 Bij het ontwerp van elektronische schakelingen, ie gebruikt wor en in bijvoorbeeld CD-spelers en mobiele telefoons, maakt e ontwerper veelvul ig gebruik van circuitsimulatie Bij… (more)

Subjects/Keywords: Wiskunde en Informatica; Parallel methods; mixed direct/iterative method; sparse LU factorization; circuit simulation; iterative solution methods; Schur complement; preconditioned iterative method; p-cyclic matrix; periodic steady state; Krylov subspace methods; GMRES and MINRES methods; matrix polynomial; rational matrix function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bomhof, C. W. (2001). Iterative and parallel methods for linear systems, with applications in circuit simulation. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/860

Chicago Manual of Style (16th Edition):

Bomhof, C W. “Iterative and parallel methods for linear systems, with applications in circuit simulation.” 2001. Doctoral Dissertation, Universiteit Utrecht. Accessed March 01, 2021. http://dspace.library.uu.nl:8080/handle/1874/860.

MLA Handbook (7th Edition):

Bomhof, C W. “Iterative and parallel methods for linear systems, with applications in circuit simulation.” 2001. Web. 01 Mar 2021.

Vancouver:

Bomhof CW. Iterative and parallel methods for linear systems, with applications in circuit simulation. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2001. [cited 2021 Mar 01]. Available from: http://dspace.library.uu.nl:8080/handle/1874/860.

Council of Science Editors:

Bomhof CW. Iterative and parallel methods for linear systems, with applications in circuit simulation. [Doctoral Dissertation]. Universiteit Utrecht; 2001. Available from: http://dspace.library.uu.nl:8080/handle/1874/860

20. Khabou, Amal. Dense matrix computations : communication cost and numerical stability : Calculs pour les matrices denses : coût de communication et stabilité numérique.

Degree: Docteur es, Informatique, 2013, Université Paris-Sud – Paris XI

Cette thèse traite d’une routine d’algèbre linéaire largement utilisée pour la résolution des systèmes li- néaires, il s’agit de la factorisation LU. Habituellement, pour calculer… (more)

Subjects/Keywords: Factorisation LU; Élimination de Gauss avec pivotage partiel; Acteur de croissance, facto- risation QR avec forte révélation de rang; Minimisation de la communication; Algorithmes parallèles; Systèmes hiérarchiques; Modèles de performance; Stratégies de pivotage; LU factorization; Gaussian elimination with partial pivoting; Growth factor; Minimizing the communication cost; Parallel algorithms; Hierarchical systems; Performance models; Pivoting strategies

…avoiding LU factorization. . . . . 12 2.1 Upper bounds of the growth factor gW obtained from… …of these algorithms, a communication avoiding LU factorization referred to as CALU was… …The first part introduces a new LU factorization using a new pivoting strategy based on… …communication, this algorithm is more stable than the original communication avoiding LU factorization… …solving linear systems of equations, that is the LU factorization and the QR factorization. In… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khabou, A. (2013). Dense matrix computations : communication cost and numerical stability : Calculs pour les matrices denses : coût de communication et stabilité numérique. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2013PA112011

Chicago Manual of Style (16th Edition):

Khabou, Amal. “Dense matrix computations : communication cost and numerical stability : Calculs pour les matrices denses : coût de communication et stabilité numérique.” 2013. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed March 01, 2021. http://www.theses.fr/2013PA112011.

MLA Handbook (7th Edition):

Khabou, Amal. “Dense matrix computations : communication cost and numerical stability : Calculs pour les matrices denses : coût de communication et stabilité numérique.” 2013. Web. 01 Mar 2021.

Vancouver:

Khabou A. Dense matrix computations : communication cost and numerical stability : Calculs pour les matrices denses : coût de communication et stabilité numérique. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2013. [cited 2021 Mar 01]. Available from: http://www.theses.fr/2013PA112011.

Council of Science Editors:

Khabou A. Dense matrix computations : communication cost and numerical stability : Calculs pour les matrices denses : coût de communication et stabilité numérique. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2013. Available from: http://www.theses.fr/2013PA112011

.