Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Krylov). Showing records 1 – 30 of 153 total matches.

[1] [2] [3] [4] [5] [6]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Country

▼ Search Limiters


Anna University

1. Babu T. Heuristic algorithm based Controller design and stability Analysis using model order Reduction of interval system;.

Degree: Heuristic algorithm based Controller design and stability Analysis using model order Reduction of interval system, 2015, Anna University

In this work a controller is designed for a reduced order interval newlinesystem model using heuristic algorithm newlineIndustrial processes with large number of state variables… (more)

Subjects/Keywords: Kharitonov theorem; Krylov subspace

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

T, B. (2015). Heuristic algorithm based Controller design and stability Analysis using model order Reduction of interval system;. (Thesis). Anna University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/38623

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

T, Babu. “Heuristic algorithm based Controller design and stability Analysis using model order Reduction of interval system;.” 2015. Thesis, Anna University. Accessed March 08, 2021. http://shodhganga.inflibnet.ac.in/handle/10603/38623.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

T, Babu. “Heuristic algorithm based Controller design and stability Analysis using model order Reduction of interval system;.” 2015. Web. 08 Mar 2021.

Vancouver:

T B. Heuristic algorithm based Controller design and stability Analysis using model order Reduction of interval system;. [Internet] [Thesis]. Anna University; 2015. [cited 2021 Mar 08]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/38623.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

T B. Heuristic algorithm based Controller design and stability Analysis using model order Reduction of interval system;. [Thesis]. Anna University; 2015. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/38623

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

2. Renardy, Marissa. Analysis of the BiCG Method.

Degree: MS, Mathematics, 2013, Virginia Tech

 The Biconjugate Gradient (BiCG) method is an iterative Krylov subspace method that utilizes a 3-term recurrence.  BiCG is the basis of several very popular methods,… (more)

Subjects/Keywords: Krylov methods; BiCG; GMRES; FOM

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Renardy, M. (2013). Analysis of the BiCG Method. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/50922

Chicago Manual of Style (16th Edition):

Renardy, Marissa. “Analysis of the BiCG Method.” 2013. Masters Thesis, Virginia Tech. Accessed March 08, 2021. http://hdl.handle.net/10919/50922.

MLA Handbook (7th Edition):

Renardy, Marissa. “Analysis of the BiCG Method.” 2013. Web. 08 Mar 2021.

Vancouver:

Renardy M. Analysis of the BiCG Method. [Internet] [Masters thesis]. Virginia Tech; 2013. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10919/50922.

Council of Science Editors:

Renardy M. Analysis of the BiCG Method. [Masters Thesis]. Virginia Tech; 2013. Available from: http://hdl.handle.net/10919/50922

3. Silva, Tiago Filipe Leitão. Métodos numéricos para resolução de equações de Lyapunov.

Degree: 2010, Universidade da Beira Interior

 O objectivo desta dissertação é descrever, analisar e aplicar alguns métodos numéricos para resolver a equação clássica de Lyapunov. Estudamos condições que garantem a solubilidade… (more)

Subjects/Keywords: Métodos numéricos; Equações matriciais; Kronecker; Krylov

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silva, T. F. L. (2010). Métodos numéricos para resolução de equações de Lyapunov. (Thesis). Universidade da Beira Interior. Retrieved from http://www.rcaap.pt/detail.jsp?id=oai:ubibliorum.ubi.pt:10400.6/1851

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Silva, Tiago Filipe Leitão. “Métodos numéricos para resolução de equações de Lyapunov.” 2010. Thesis, Universidade da Beira Interior. Accessed March 08, 2021. http://www.rcaap.pt/detail.jsp?id=oai:ubibliorum.ubi.pt:10400.6/1851.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Silva, Tiago Filipe Leitão. “Métodos numéricos para resolução de equações de Lyapunov.” 2010. Web. 08 Mar 2021.

Vancouver:

Silva TFL. Métodos numéricos para resolução de equações de Lyapunov. [Internet] [Thesis]. Universidade da Beira Interior; 2010. [cited 2021 Mar 08]. Available from: http://www.rcaap.pt/detail.jsp?id=oai:ubibliorum.ubi.pt:10400.6/1851.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Silva TFL. Métodos numéricos para resolução de equações de Lyapunov. [Thesis]. Universidade da Beira Interior; 2010. Available from: http://www.rcaap.pt/detail.jsp?id=oai:ubibliorum.ubi.pt:10400.6/1851

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

4. Zimmerling, J.T. (author). Modeling of wave propagation in open domains: A Krylov subspace approach.

Degree: 2014, Delft University of Technology

Simulating electromagnetic or acoustic wave propagation in complex open structures is extremely important in many areas of science and engineering. In a wide range of… (more)

Subjects/Keywords: Computational Electromagnetics; Krylov subspace; model order reduction

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zimmerling, J. T. (. (2014). Modeling of wave propagation in open domains: A Krylov subspace approach. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:aea44c4e-2658-474d-b9ea-c046066ac881

Chicago Manual of Style (16th Edition):

Zimmerling, J T (author). “Modeling of wave propagation in open domains: A Krylov subspace approach.” 2014. Masters Thesis, Delft University of Technology. Accessed March 08, 2021. http://resolver.tudelft.nl/uuid:aea44c4e-2658-474d-b9ea-c046066ac881.

MLA Handbook (7th Edition):

Zimmerling, J T (author). “Modeling of wave propagation in open domains: A Krylov subspace approach.” 2014. Web. 08 Mar 2021.

Vancouver:

Zimmerling JT(. Modeling of wave propagation in open domains: A Krylov subspace approach. [Internet] [Masters thesis]. Delft University of Technology; 2014. [cited 2021 Mar 08]. Available from: http://resolver.tudelft.nl/uuid:aea44c4e-2658-474d-b9ea-c046066ac881.

Council of Science Editors:

Zimmerling JT(. Modeling of wave propagation in open domains: A Krylov subspace approach. [Masters Thesis]. Delft University of Technology; 2014. Available from: http://resolver.tudelft.nl/uuid:aea44c4e-2658-474d-b9ea-c046066ac881


Delft University of Technology

5. de Bruycker, Deborah (author). Efficiency improvement of viscous ship flow computations through use of the Graphics Processing Unit: A performance analysis on different hardware.

Degree: 2017, Delft University of Technology

 Maritime hydrodynamics involves strong inertia-driven flows, including free-surface waves, and with Reynolds numbers as high as 109. Numerical modelling of these flows is therefore a… (more)

Subjects/Keywords: GPU computing; Preconditioning; CFD; Krylov solvers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

de Bruycker, D. (. (2017). Efficiency improvement of viscous ship flow computations through use of the Graphics Processing Unit: A performance analysis on different hardware. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:87ad4bb3-61b5-4a55-a956-1db361f133c1

Chicago Manual of Style (16th Edition):

de Bruycker, Deborah (author). “Efficiency improvement of viscous ship flow computations through use of the Graphics Processing Unit: A performance analysis on different hardware.” 2017. Masters Thesis, Delft University of Technology. Accessed March 08, 2021. http://resolver.tudelft.nl/uuid:87ad4bb3-61b5-4a55-a956-1db361f133c1.

MLA Handbook (7th Edition):

de Bruycker, Deborah (author). “Efficiency improvement of viscous ship flow computations through use of the Graphics Processing Unit: A performance analysis on different hardware.” 2017. Web. 08 Mar 2021.

Vancouver:

de Bruycker D(. Efficiency improvement of viscous ship flow computations through use of the Graphics Processing Unit: A performance analysis on different hardware. [Internet] [Masters thesis]. Delft University of Technology; 2017. [cited 2021 Mar 08]. Available from: http://resolver.tudelft.nl/uuid:87ad4bb3-61b5-4a55-a956-1db361f133c1.

Council of Science Editors:

de Bruycker D(. Efficiency improvement of viscous ship flow computations through use of the Graphics Processing Unit: A performance analysis on different hardware. [Masters Thesis]. Delft University of Technology; 2017. Available from: http://resolver.tudelft.nl/uuid:87ad4bb3-61b5-4a55-a956-1db361f133c1

6. Kaouane, Yassine. Méthodes tangentielles pour les réductions de modèles et applications : Tangential methods for model reductions and applications.

Degree: Docteur es, Mathématiques. Systèmes dynamiques, 2018, Littoral; Université Cadi Ayyad (Marrakech, Maroc)

Les simulations à grande dimension jouent un rôle crucial dans l'étude d'une grande variété de phénomènes physiques complexes, entraînant souvent des demandes écrasantes sur les… (more)

Subjects/Keywords: Réduction de modèle; Interpolation; Sous-espace de Krylov; Model reduction; Interpolation; Krylov subspace

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kaouane, Y. (2018). Méthodes tangentielles pour les réductions de modèles et applications : Tangential methods for model reductions and applications. (Doctoral Dissertation). Littoral; Université Cadi Ayyad (Marrakech, Maroc). Retrieved from http://www.theses.fr/2018DUNK0501

Chicago Manual of Style (16th Edition):

Kaouane, Yassine. “Méthodes tangentielles pour les réductions de modèles et applications : Tangential methods for model reductions and applications.” 2018. Doctoral Dissertation, Littoral; Université Cadi Ayyad (Marrakech, Maroc). Accessed March 08, 2021. http://www.theses.fr/2018DUNK0501.

MLA Handbook (7th Edition):

Kaouane, Yassine. “Méthodes tangentielles pour les réductions de modèles et applications : Tangential methods for model reductions and applications.” 2018. Web. 08 Mar 2021.

Vancouver:

Kaouane Y. Méthodes tangentielles pour les réductions de modèles et applications : Tangential methods for model reductions and applications. [Internet] [Doctoral dissertation]. Littoral; Université Cadi Ayyad (Marrakech, Maroc); 2018. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2018DUNK0501.

Council of Science Editors:

Kaouane Y. Méthodes tangentielles pour les réductions de modèles et applications : Tangential methods for model reductions and applications. [Doctoral Dissertation]. Littoral; Université Cadi Ayyad (Marrakech, Maroc); 2018. Available from: http://www.theses.fr/2018DUNK0501

7. Abidi, Oussama. Méthodes de sous-espaces de Krylov rationnelles pour le contrôle et la réduction de modèles : Rational Krylov subspace methods for the control and model reductions.

Degree: Docteur es, Mathématiques appliquées, 2016, Littoral

Beaucoup de phénomènes physiques sont modélisés par des équations aux dérivées partielles, la discrétisation de ces équations conduit souvent à des systèmes dynamiques (continus ou… (more)

Subjects/Keywords: Sous-espaces de Krylov; Arnoldi rationnel; Systèmes dynamiques; Réduction de modèles; Contrôle; Krylov subspaces; Rational Arnoldi; Dynamical systems; Model reductions; Control

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Abidi, O. (2016). Méthodes de sous-espaces de Krylov rationnelles pour le contrôle et la réduction de modèles : Rational Krylov subspace methods for the control and model reductions. (Doctoral Dissertation). Littoral. Retrieved from http://www.theses.fr/2016DUNK0419

Chicago Manual of Style (16th Edition):

Abidi, Oussama. “Méthodes de sous-espaces de Krylov rationnelles pour le contrôle et la réduction de modèles : Rational Krylov subspace methods for the control and model reductions.” 2016. Doctoral Dissertation, Littoral. Accessed March 08, 2021. http://www.theses.fr/2016DUNK0419.

MLA Handbook (7th Edition):

Abidi, Oussama. “Méthodes de sous-espaces de Krylov rationnelles pour le contrôle et la réduction de modèles : Rational Krylov subspace methods for the control and model reductions.” 2016. Web. 08 Mar 2021.

Vancouver:

Abidi O. Méthodes de sous-espaces de Krylov rationnelles pour le contrôle et la réduction de modèles : Rational Krylov subspace methods for the control and model reductions. [Internet] [Doctoral dissertation]. Littoral; 2016. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2016DUNK0419.

Council of Science Editors:

Abidi O. Méthodes de sous-espaces de Krylov rationnelles pour le contrôle et la réduction de modèles : Rational Krylov subspace methods for the control and model reductions. [Doctoral Dissertation]. Littoral; 2016. Available from: http://www.theses.fr/2016DUNK0419


Delft University of Technology

8. Diao, H. (author). Fourier Analysis of Iterative Methods for the Helmholtz Problem.

Degree: 2012, Delft University of Technology

This thesis attempts to explain the convergence behaviour of solving Helmholtz problem by investigating its spectral properties. Fourier analysis is employ to solve the eigenvalues… (more)

Subjects/Keywords: Helmholtz problem; Krylov subspace methods; multigrid method; multilevel Krylov multigrid method; shifted Laplacian preconditioner; deflation operator; Fourier analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Diao, H. (. (2012). Fourier Analysis of Iterative Methods for the Helmholtz Problem. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8

Chicago Manual of Style (16th Edition):

Diao, H (author). “Fourier Analysis of Iterative Methods for the Helmholtz Problem.” 2012. Masters Thesis, Delft University of Technology. Accessed March 08, 2021. http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8.

MLA Handbook (7th Edition):

Diao, H (author). “Fourier Analysis of Iterative Methods for the Helmholtz Problem.” 2012. Web. 08 Mar 2021.

Vancouver:

Diao H(. Fourier Analysis of Iterative Methods for the Helmholtz Problem. [Internet] [Masters thesis]. Delft University of Technology; 2012. [cited 2021 Mar 08]. Available from: http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8.

Council of Science Editors:

Diao H(. Fourier Analysis of Iterative Methods for the Helmholtz Problem. [Masters Thesis]. Delft University of Technology; 2012. Available from: http://resolver.tudelft.nl/uuid:d82de64b-b446-4df6-b335-36a3e058c8f8

9. Badahmane, Achraf. Méthodes de sous espaces de Krylov préconditionnées pour les problèmes de point-selle avec plusieurs seconds membres : Preconditioned global Krylov subspace methods for solving saddle point problems with multiple right-hand sides.

Degree: Docteur es, Mathématiques. Mathématiques appliquées, 2019, Littoral; Université Cadi Ayyad (Marrakech, Maroc)

La résolution numérique des problèmes de point-selle a eu une attention particulière ces dernières années. À titre d'exemple, la mécanique des fluides et solides conduit… (more)

Subjects/Keywords: Point-selle; Préconditionnement; Krylov; Produit de Kronecker; Produit de diamant; Saddle point; Preconditioner; Global Krylov subspace method; Kronecker product; Diamond product

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Badahmane, A. (2019). Méthodes de sous espaces de Krylov préconditionnées pour les problèmes de point-selle avec plusieurs seconds membres : Preconditioned global Krylov subspace methods for solving saddle point problems with multiple right-hand sides. (Doctoral Dissertation). Littoral; Université Cadi Ayyad (Marrakech, Maroc). Retrieved from http://www.theses.fr/2019DUNK0543

Chicago Manual of Style (16th Edition):

Badahmane, Achraf. “Méthodes de sous espaces de Krylov préconditionnées pour les problèmes de point-selle avec plusieurs seconds membres : Preconditioned global Krylov subspace methods for solving saddle point problems with multiple right-hand sides.” 2019. Doctoral Dissertation, Littoral; Université Cadi Ayyad (Marrakech, Maroc). Accessed March 08, 2021. http://www.theses.fr/2019DUNK0543.

MLA Handbook (7th Edition):

Badahmane, Achraf. “Méthodes de sous espaces de Krylov préconditionnées pour les problèmes de point-selle avec plusieurs seconds membres : Preconditioned global Krylov subspace methods for solving saddle point problems with multiple right-hand sides.” 2019. Web. 08 Mar 2021.

Vancouver:

Badahmane A. Méthodes de sous espaces de Krylov préconditionnées pour les problèmes de point-selle avec plusieurs seconds membres : Preconditioned global Krylov subspace methods for solving saddle point problems with multiple right-hand sides. [Internet] [Doctoral dissertation]. Littoral; Université Cadi Ayyad (Marrakech, Maroc); 2019. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2019DUNK0543.

Council of Science Editors:

Badahmane A. Méthodes de sous espaces de Krylov préconditionnées pour les problèmes de point-selle avec plusieurs seconds membres : Preconditioned global Krylov subspace methods for solving saddle point problems with multiple right-hand sides. [Doctoral Dissertation]. Littoral; Université Cadi Ayyad (Marrakech, Maroc); 2019. Available from: http://www.theses.fr/2019DUNK0543


University of California – Merced

10. Loffeld, John. Design, Implementation and Performance of Exponential Integrators for High Performance Computing Applications.

Degree: Applied Mathematics, 2013, University of California – Merced

 Exponential integrators have received renewed interest in recent years as a means to approximate stiff systems of ODEs, but are not currently widely used in… (more)

Subjects/Keywords: Mathematics; EPIRK methods; exponential integrators; Krylov; Stiff systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Loffeld, J. (2013). Design, Implementation and Performance of Exponential Integrators for High Performance Computing Applications. (Thesis). University of California – Merced. Retrieved from http://www.escholarship.org/uc/item/559821rq

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Loffeld, John. “Design, Implementation and Performance of Exponential Integrators for High Performance Computing Applications.” 2013. Thesis, University of California – Merced. Accessed March 08, 2021. http://www.escholarship.org/uc/item/559821rq.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Loffeld, John. “Design, Implementation and Performance of Exponential Integrators for High Performance Computing Applications.” 2013. Web. 08 Mar 2021.

Vancouver:

Loffeld J. Design, Implementation and Performance of Exponential Integrators for High Performance Computing Applications. [Internet] [Thesis]. University of California – Merced; 2013. [cited 2021 Mar 08]. Available from: http://www.escholarship.org/uc/item/559821rq.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Loffeld J. Design, Implementation and Performance of Exponential Integrators for High Performance Computing Applications. [Thesis]. University of California – Merced; 2013. Available from: http://www.escholarship.org/uc/item/559821rq

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Temple University

11. Shank, Stephen David. Low-rank solution methods for large-scale linear matrix equations.

Degree: PhD, 2014, Temple University

Mathematics

We consider low-rank solution methods for certain classes of large-scale linear matrix equations. Our aim is to adapt existing low-rank solution methods based on… (more)

Subjects/Keywords: Applied mathematics;

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shank, S. D. (2014). Low-rank solution methods for large-scale linear matrix equations. (Doctoral Dissertation). Temple University. Retrieved from http://digital.library.temple.edu/u?/p245801coll10,273331

Chicago Manual of Style (16th Edition):

Shank, Stephen David. “Low-rank solution methods for large-scale linear matrix equations.” 2014. Doctoral Dissertation, Temple University. Accessed March 08, 2021. http://digital.library.temple.edu/u?/p245801coll10,273331.

MLA Handbook (7th Edition):

Shank, Stephen David. “Low-rank solution methods for large-scale linear matrix equations.” 2014. Web. 08 Mar 2021.

Vancouver:

Shank SD. Low-rank solution methods for large-scale linear matrix equations. [Internet] [Doctoral dissertation]. Temple University; 2014. [cited 2021 Mar 08]. Available from: http://digital.library.temple.edu/u?/p245801coll10,273331.

Council of Science Editors:

Shank SD. Low-rank solution methods for large-scale linear matrix equations. [Doctoral Dissertation]. Temple University; 2014. Available from: http://digital.library.temple.edu/u?/p245801coll10,273331


Universidade do Rio Grande do Norte

12. Silva, Josimara Tatiane da. Precondicionamento do método GMRES para Z-matrizes .

Degree: 2016, Universidade do Rio Grande do Norte

 This study aims to investigate the convergence behavior of the GMRES (Generalized Minimal Residual) method and its version GMRES(m), without and with preconditioner ILU(0) applied… (more)

Subjects/Keywords: Z-matrizes; Métodos de Krylov; GMRES; GMRES(m); Precondicionador ILU (0)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silva, J. T. d. (2016). Precondicionamento do método GMRES para Z-matrizes . (Masters Thesis). Universidade do Rio Grande do Norte. Retrieved from http://repositorio.ufrn.br/handle/123456789/22016

Chicago Manual of Style (16th Edition):

Silva, Josimara Tatiane da. “Precondicionamento do método GMRES para Z-matrizes .” 2016. Masters Thesis, Universidade do Rio Grande do Norte. Accessed March 08, 2021. http://repositorio.ufrn.br/handle/123456789/22016.

MLA Handbook (7th Edition):

Silva, Josimara Tatiane da. “Precondicionamento do método GMRES para Z-matrizes .” 2016. Web. 08 Mar 2021.

Vancouver:

Silva JTd. Precondicionamento do método GMRES para Z-matrizes . [Internet] [Masters thesis]. Universidade do Rio Grande do Norte; 2016. [cited 2021 Mar 08]. Available from: http://repositorio.ufrn.br/handle/123456789/22016.

Council of Science Editors:

Silva JTd. Precondicionamento do método GMRES para Z-matrizes . [Masters Thesis]. Universidade do Rio Grande do Norte; 2016. Available from: http://repositorio.ufrn.br/handle/123456789/22016


Universidade do Estado do Rio de Janeiro

13. Marcelo Xavier Guterres. Avaliação dos algoritmos de Picard-Krylov e Newton-Krylov na solução da equação de Richards.

Degree: PhD, 2013, Universidade do Estado do Rio de Janeiro

A engenharia geotécnica é uma das grandes áreas da engenharia civil que estuda a interação entre as construções realizadas pelo homem ou de fenômenos naturais… (more)

Subjects/Keywords: Dinâmica dos fluidos Modelos matemáticos; Método dos volumes finitos; Equações diferenciais parciais; Permeabilidade Modelos matemáticos; Newton-Krylov, Método; Picard-Krylov, Método; Fluidodinâmica computacional; Richards, Equação de; PETSc; Richards equation; Picard-Krylov; Newton-Krylov; PETSc; AREAS CLASSICAS DE FENOMENOLOGIA E SUAS APLICACOES

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guterres, M. X. (2013). Avaliação dos algoritmos de Picard-Krylov e Newton-Krylov na solução da equação de Richards. (Doctoral Dissertation). Universidade do Estado do Rio de Janeiro. Retrieved from http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=6749 ;

Chicago Manual of Style (16th Edition):

Guterres, Marcelo Xavier. “Avaliação dos algoritmos de Picard-Krylov e Newton-Krylov na solução da equação de Richards.” 2013. Doctoral Dissertation, Universidade do Estado do Rio de Janeiro. Accessed March 08, 2021. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=6749 ;.

MLA Handbook (7th Edition):

Guterres, Marcelo Xavier. “Avaliação dos algoritmos de Picard-Krylov e Newton-Krylov na solução da equação de Richards.” 2013. Web. 08 Mar 2021.

Vancouver:

Guterres MX. Avaliação dos algoritmos de Picard-Krylov e Newton-Krylov na solução da equação de Richards. [Internet] [Doctoral dissertation]. Universidade do Estado do Rio de Janeiro; 2013. [cited 2021 Mar 08]. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=6749 ;.

Council of Science Editors:

Guterres MX. Avaliação dos algoritmos de Picard-Krylov e Newton-Krylov na solução da equação de Richards. [Doctoral Dissertation]. Universidade do Estado do Rio de Janeiro; 2013. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=6749 ;


Baylor University

14. Nguyen, Huy V., 1986-. Krylov methods for solving a sequence of large systems of linear equations.

Degree: PhD, Baylor University. Dept. of Mathematics., 2015, Baylor University

 Consider solving a sequence of linear systems A(i)x(i)=b(i), i=1, 2, ... where A₍ᵢ₎ ϵℂⁿᵡⁿ and b⁽ⁱ⁾ϵℂⁿ using some variations of Krylov subspace methods, like GMRES.… (more)

Subjects/Keywords: GMRES. Krylov subspace. Deflation. GMRES-DR. GMRES-E. Subspace recycling.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen, Huy V., 1. (2015). Krylov methods for solving a sequence of large systems of linear equations. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/9511

Chicago Manual of Style (16th Edition):

Nguyen, Huy V., 1986-. “Krylov methods for solving a sequence of large systems of linear equations.” 2015. Doctoral Dissertation, Baylor University. Accessed March 08, 2021. http://hdl.handle.net/2104/9511.

MLA Handbook (7th Edition):

Nguyen, Huy V., 1986-. “Krylov methods for solving a sequence of large systems of linear equations.” 2015. Web. 08 Mar 2021.

Vancouver:

Nguyen, Huy V. 1. Krylov methods for solving a sequence of large systems of linear equations. [Internet] [Doctoral dissertation]. Baylor University; 2015. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/2104/9511.

Council of Science Editors:

Nguyen, Huy V. 1. Krylov methods for solving a sequence of large systems of linear equations. [Doctoral Dissertation]. Baylor University; 2015. Available from: http://hdl.handle.net/2104/9511


Delft University of Technology

15. Brahma, Sherine (author). Signal Modelling and Imaging of Low Field MRI.

Degree: 2019, Delft University of Technology

MRI machines are devices that are used to non-invasively obtain images of the internal anatomy and physiological processes of the human body. It is safe… (more)

Subjects/Keywords: MRI; Signal Processing; Krylov solvers; portable; low field; imaging

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brahma, S. (. (2019). Signal Modelling and Imaging of Low Field MRI. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:9c7ebf36-9bc6-41e1-b2c7-55d61c2c6c19

Chicago Manual of Style (16th Edition):

Brahma, Sherine (author). “Signal Modelling and Imaging of Low Field MRI.” 2019. Masters Thesis, Delft University of Technology. Accessed March 08, 2021. http://resolver.tudelft.nl/uuid:9c7ebf36-9bc6-41e1-b2c7-55d61c2c6c19.

MLA Handbook (7th Edition):

Brahma, Sherine (author). “Signal Modelling and Imaging of Low Field MRI.” 2019. Web. 08 Mar 2021.

Vancouver:

Brahma S(. Signal Modelling and Imaging of Low Field MRI. [Internet] [Masters thesis]. Delft University of Technology; 2019. [cited 2021 Mar 08]. Available from: http://resolver.tudelft.nl/uuid:9c7ebf36-9bc6-41e1-b2c7-55d61c2c6c19.

Council of Science Editors:

Brahma S(. Signal Modelling and Imaging of Low Field MRI. [Masters Thesis]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:9c7ebf36-9bc6-41e1-b2c7-55d61c2c6c19


Universitat Politècnica de València

16. Campos González, María Carmen. Implementación paralela de métodos iterativos para la resolución de problemas polinómicos de valores propios .

Degree: 2017, Universitat Politècnica de València

 The polynomial eigenvalue problem appears in many areas of scientific and technical computing. It can be seen as a generalization of the linear eigenvalue problem… (more)

Subjects/Keywords: computación paralela; valores propios; SLEPc; polinomios de matrices; métodos de Krylov

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Campos González, M. C. (2017). Implementación paralela de métodos iterativos para la resolución de problemas polinómicos de valores propios . (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/86134

Chicago Manual of Style (16th Edition):

Campos González, María Carmen. “Implementación paralela de métodos iterativos para la resolución de problemas polinómicos de valores propios .” 2017. Doctoral Dissertation, Universitat Politècnica de València. Accessed March 08, 2021. http://hdl.handle.net/10251/86134.

MLA Handbook (7th Edition):

Campos González, María Carmen. “Implementación paralela de métodos iterativos para la resolución de problemas polinómicos de valores propios .” 2017. Web. 08 Mar 2021.

Vancouver:

Campos González MC. Implementación paralela de métodos iterativos para la resolución de problemas polinómicos de valores propios . [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2017. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10251/86134.

Council of Science Editors:

Campos González MC. Implementación paralela de métodos iterativos para la resolución de problemas polinómicos de valores propios . [Doctoral Dissertation]. Universitat Politècnica de València; 2017. Available from: http://hdl.handle.net/10251/86134


University of New Mexico

17. Hobbs, Edward L. Asymptotic Neutronic Solutions for Fast Burst Reactor Design.

Degree: Nuclear Engineering, 2017, University of New Mexico

  Deterministic numerical methodologies for solving time-eigenvalue problems are valuable in characterizing the inherent rapid transient neutron behavior of a Fast Burst Reactor (FBR). New… (more)

Subjects/Keywords: burst reactor; Newton Krylov; Jacobian; time-eigenvalue; Nuclear Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hobbs, E. L. (2017). Asymptotic Neutronic Solutions for Fast Burst Reactor Design. (Doctoral Dissertation). University of New Mexico. Retrieved from https://digitalrepository.unm.edu/ne_etds/72

Chicago Manual of Style (16th Edition):

Hobbs, Edward L. “Asymptotic Neutronic Solutions for Fast Burst Reactor Design.” 2017. Doctoral Dissertation, University of New Mexico. Accessed March 08, 2021. https://digitalrepository.unm.edu/ne_etds/72.

MLA Handbook (7th Edition):

Hobbs, Edward L. “Asymptotic Neutronic Solutions for Fast Burst Reactor Design.” 2017. Web. 08 Mar 2021.

Vancouver:

Hobbs EL. Asymptotic Neutronic Solutions for Fast Burst Reactor Design. [Internet] [Doctoral dissertation]. University of New Mexico; 2017. [cited 2021 Mar 08]. Available from: https://digitalrepository.unm.edu/ne_etds/72.

Council of Science Editors:

Hobbs EL. Asymptotic Neutronic Solutions for Fast Burst Reactor Design. [Doctoral Dissertation]. University of New Mexico; 2017. Available from: https://digitalrepository.unm.edu/ne_etds/72


University of Maryland

18. Forstall, Virginia Hardy. Iterative Solution Methods for Reduced-Order Models of Parameterized Partial Differential Equations.

Degree: Applied Mathematics and Scientific Computation, 2015, University of Maryland

 This dissertation considers efficient computational algorithms for solving parameterized discrete partial differential equations (PDEs) using techniques of reduced-order modeling. Parameterized equations of this type arise… (more)

Subjects/Keywords: Applied mathematics; iterative solvers; Krylov subspace recycling; reduced-order modeling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Forstall, V. H. (2015). Iterative Solution Methods for Reduced-Order Models of Parameterized Partial Differential Equations. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/17232

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Forstall, Virginia Hardy. “Iterative Solution Methods for Reduced-Order Models of Parameterized Partial Differential Equations.” 2015. Thesis, University of Maryland. Accessed March 08, 2021. http://hdl.handle.net/1903/17232.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Forstall, Virginia Hardy. “Iterative Solution Methods for Reduced-Order Models of Parameterized Partial Differential Equations.” 2015. Web. 08 Mar 2021.

Vancouver:

Forstall VH. Iterative Solution Methods for Reduced-Order Models of Parameterized Partial Differential Equations. [Internet] [Thesis]. University of Maryland; 2015. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/1903/17232.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Forstall VH. Iterative Solution Methods for Reduced-Order Models of Parameterized Partial Differential Equations. [Thesis]. University of Maryland; 2015. Available from: http://hdl.handle.net/1903/17232

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

19. Flagg, Garret Michael. Interpolation Methods for the Model Reduction of Bilinear Systems.

Degree: PhD, Mathematics, 2012, Virginia Tech

 Bilinear systems are a class of nonlinear dynamical systems that arise in a variety of applications. In order to obtain a sufficiently accurate representation of… (more)

Subjects/Keywords: Optimization; Model Reduction; Nonlinear systems; Interpolation theory; Rational Krylov subspace methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Flagg, G. M. (2012). Interpolation Methods for the Model Reduction of Bilinear Systems. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/27521

Chicago Manual of Style (16th Edition):

Flagg, Garret Michael. “Interpolation Methods for the Model Reduction of Bilinear Systems.” 2012. Doctoral Dissertation, Virginia Tech. Accessed March 08, 2021. http://hdl.handle.net/10919/27521.

MLA Handbook (7th Edition):

Flagg, Garret Michael. “Interpolation Methods for the Model Reduction of Bilinear Systems.” 2012. Web. 08 Mar 2021.

Vancouver:

Flagg GM. Interpolation Methods for the Model Reduction of Bilinear Systems. [Internet] [Doctoral dissertation]. Virginia Tech; 2012. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10919/27521.

Council of Science Editors:

Flagg GM. Interpolation Methods for the Model Reduction of Bilinear Systems. [Doctoral Dissertation]. Virginia Tech; 2012. Available from: http://hdl.handle.net/10919/27521


Virginia Tech

20. Brown, Matthew Allen. On the Use of Arnoldi and Golub-Kahan Bases to Solve Nonsymmetric Ill-Posed Inverse Problems.

Degree: MS, Mathematics, 2015, Virginia Tech

 Iterative Krylov subspace methods have proven to be efficient tools for solving linear systems of equations. In the context of ill-posed inverse problems, they tend… (more)

Subjects/Keywords: Ill-posed inverse problems; Krylov subspace; Arnoldi process; Golub-Kahan bidiagonalization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brown, M. A. (2015). On the Use of Arnoldi and Golub-Kahan Bases to Solve Nonsymmetric Ill-Posed Inverse Problems. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/51546

Chicago Manual of Style (16th Edition):

Brown, Matthew Allen. “On the Use of Arnoldi and Golub-Kahan Bases to Solve Nonsymmetric Ill-Posed Inverse Problems.” 2015. Masters Thesis, Virginia Tech. Accessed March 08, 2021. http://hdl.handle.net/10919/51546.

MLA Handbook (7th Edition):

Brown, Matthew Allen. “On the Use of Arnoldi and Golub-Kahan Bases to Solve Nonsymmetric Ill-Posed Inverse Problems.” 2015. Web. 08 Mar 2021.

Vancouver:

Brown MA. On the Use of Arnoldi and Golub-Kahan Bases to Solve Nonsymmetric Ill-Posed Inverse Problems. [Internet] [Masters thesis]. Virginia Tech; 2015. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10919/51546.

Council of Science Editors:

Brown MA. On the Use of Arnoldi and Golub-Kahan Bases to Solve Nonsymmetric Ill-Posed Inverse Problems. [Masters Thesis]. Virginia Tech; 2015. Available from: http://hdl.handle.net/10919/51546


Virginia Tech

21. Wyatt, Sarah Alice. Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs.

Degree: PhD, Mathematics, 2012, Virginia Tech

 Dynamical systems are mathematical models characterized by a set of differential or difference equations. Model reduction aims to replace the original system with a reduced… (more)

Subjects/Keywords: Second-order Systems; Inexact Solves; Krylov reduction; DAEs

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wyatt, S. A. (2012). Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/27668

Chicago Manual of Style (16th Edition):

Wyatt, Sarah Alice. “Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs.” 2012. Doctoral Dissertation, Virginia Tech. Accessed March 08, 2021. http://hdl.handle.net/10919/27668.

MLA Handbook (7th Edition):

Wyatt, Sarah Alice. “Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs.” 2012. Web. 08 Mar 2021.

Vancouver:

Wyatt SA. Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs. [Internet] [Doctoral dissertation]. Virginia Tech; 2012. [cited 2021 Mar 08]. Available from: http://hdl.handle.net/10919/27668.

Council of Science Editors:

Wyatt SA. Issues in Interpolatory Model Reduction: Inexact Solves, Second-order Systems and DAEs. [Doctoral Dissertation]. Virginia Tech; 2012. Available from: http://hdl.handle.net/10919/27668


Delft University of Technology

22. Belier, Joris (author). Wave Dynamics in Inverse Krylov Subspaces.

Degree: 2019, Delft University of Technology

 Recent studies have shown an increased interest in modal solutions of wave problems with resonating structures. These studies demonstrate that resonating structures with physical dimensions… (more)

Subjects/Keywords: Wave simulation; Reduced order model; Krylov; Modes; Periodic boundary condition; PML

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Belier, J. (. (2019). Wave Dynamics in Inverse Krylov Subspaces. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:e12eb0e2-67a2-4640-8598-3f639f12cea4

Chicago Manual of Style (16th Edition):

Belier, Joris (author). “Wave Dynamics in Inverse Krylov Subspaces.” 2019. Masters Thesis, Delft University of Technology. Accessed March 08, 2021. http://resolver.tudelft.nl/uuid:e12eb0e2-67a2-4640-8598-3f639f12cea4.

MLA Handbook (7th Edition):

Belier, Joris (author). “Wave Dynamics in Inverse Krylov Subspaces.” 2019. Web. 08 Mar 2021.

Vancouver:

Belier J(. Wave Dynamics in Inverse Krylov Subspaces. [Internet] [Masters thesis]. Delft University of Technology; 2019. [cited 2021 Mar 08]. Available from: http://resolver.tudelft.nl/uuid:e12eb0e2-67a2-4640-8598-3f639f12cea4.

Council of Science Editors:

Belier J(. Wave Dynamics in Inverse Krylov Subspaces. [Masters Thesis]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:e12eb0e2-67a2-4640-8598-3f639f12cea4

23. Hijazi, Abdallah. Implementation of harmonic balance reduce model order equation : Techniques de réduction d’ordre des modèles pour la mise en œuvre de la méthode de l'équilibrage harmonique.

Degree: Docteur es, Electronique des Hautes Fréquences et Optoélectronique, 2015, Limoges

MOR (Model Order Reduction) est devenu un domaine très répondu dans la recherche grâce à l'intérêt qu'il peut apporter dans la réduction des systèmes, ce… (more)

Subjects/Keywords: Réduction de circuit; Equilibrage harmonique; Projection de Krylov; Circuit non-linéaires; MOR; Circuit reduction; Harmonic balance; Krylov-projection; Nonlinear circuits; MOR; 519.7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hijazi, A. (2015). Implementation of harmonic balance reduce model order equation : Techniques de réduction d’ordre des modèles pour la mise en œuvre de la méthode de l'équilibrage harmonique. (Doctoral Dissertation). Limoges. Retrieved from http://www.theses.fr/2015LIMO0139

Chicago Manual of Style (16th Edition):

Hijazi, Abdallah. “Implementation of harmonic balance reduce model order equation : Techniques de réduction d’ordre des modèles pour la mise en œuvre de la méthode de l'équilibrage harmonique.” 2015. Doctoral Dissertation, Limoges. Accessed March 08, 2021. http://www.theses.fr/2015LIMO0139.

MLA Handbook (7th Edition):

Hijazi, Abdallah. “Implementation of harmonic balance reduce model order equation : Techniques de réduction d’ordre des modèles pour la mise en œuvre de la méthode de l'équilibrage harmonique.” 2015. Web. 08 Mar 2021.

Vancouver:

Hijazi A. Implementation of harmonic balance reduce model order equation : Techniques de réduction d’ordre des modèles pour la mise en œuvre de la méthode de l'équilibrage harmonique. [Internet] [Doctoral dissertation]. Limoges; 2015. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2015LIMO0139.

Council of Science Editors:

Hijazi A. Implementation of harmonic balance reduce model order equation : Techniques de réduction d’ordre des modèles pour la mise en œuvre de la méthode de l'équilibrage harmonique. [Doctoral Dissertation]. Limoges; 2015. Available from: http://www.theses.fr/2015LIMO0139


INP Toulouse

24. Ferreira Lago, Rafael. A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics : Étude de méthodes itératives par bloc avec application à l’imagerie sismique en géophysique.

Degree: Docteur es, Sûreté de logiciel et calcul de haute performance, 2013, INP Toulouse

Les travaux de ce doctorat concernent le développement de méthodes itératives pour la résolution de systèmes linéaires creux de grande taille comportant de nombreux seconds… (more)

Subjects/Keywords: Sous-espaces de Krylov; Méthodes itératives; Calcul de haute performance; Equation de Helmholtz; Imagerie sismique; Krylov subspace methods; Iterative methods; High performance computing; Helmholtz equation; Earth imaging

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferreira Lago, R. (2013). A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics : Étude de méthodes itératives par bloc avec application à l’imagerie sismique en géophysique. (Doctoral Dissertation). INP Toulouse. Retrieved from http://www.theses.fr/2013INPT0041

Chicago Manual of Style (16th Edition):

Ferreira Lago, Rafael. “A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics : Étude de méthodes itératives par bloc avec application à l’imagerie sismique en géophysique.” 2013. Doctoral Dissertation, INP Toulouse. Accessed March 08, 2021. http://www.theses.fr/2013INPT0041.

MLA Handbook (7th Edition):

Ferreira Lago, Rafael. “A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics : Étude de méthodes itératives par bloc avec application à l’imagerie sismique en géophysique.” 2013. Web. 08 Mar 2021.

Vancouver:

Ferreira Lago R. A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics : Étude de méthodes itératives par bloc avec application à l’imagerie sismique en géophysique. [Internet] [Doctoral dissertation]. INP Toulouse; 2013. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2013INPT0041.

Council of Science Editors:

Ferreira Lago R. A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics : Étude de méthodes itératives par bloc avec application à l’imagerie sismique en géophysique. [Doctoral Dissertation]. INP Toulouse; 2013. Available from: http://www.theses.fr/2013INPT0041

25. Barkouki, Houda. Rational Lanczos-type methods for model order reduction : Méthodes de type Lanczos rationnel pour la réduction de modèles.

Degree: Docteur es, Mathématiques, 2016, Littoral; Université Cadi Ayyad (Marrakech, Maroc). Faculté des sciences et techniques Guéliz

La solution numérique des systèmes dynamiques est un moyen efficace pour étudier des phénomènes physiques complexes. Cependant, dans un cadre à grande échelle, la dimension… (more)

Subjects/Keywords: Algorithme de Lanczos; Fonction de transfert; Moment correspondant; Réduction de modèle; Sous-espace de Krylov rationnel; Lanczos algorithm; Transfer function; Moment matching; Model reduction; Rational Krylov subspace

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barkouki, H. (2016). Rational Lanczos-type methods for model order reduction : Méthodes de type Lanczos rationnel pour la réduction de modèles. (Doctoral Dissertation). Littoral; Université Cadi Ayyad (Marrakech, Maroc). Faculté des sciences et techniques Guéliz. Retrieved from http://www.theses.fr/2016DUNK0440

Chicago Manual of Style (16th Edition):

Barkouki, Houda. “Rational Lanczos-type methods for model order reduction : Méthodes de type Lanczos rationnel pour la réduction de modèles.” 2016. Doctoral Dissertation, Littoral; Université Cadi Ayyad (Marrakech, Maroc). Faculté des sciences et techniques Guéliz. Accessed March 08, 2021. http://www.theses.fr/2016DUNK0440.

MLA Handbook (7th Edition):

Barkouki, Houda. “Rational Lanczos-type methods for model order reduction : Méthodes de type Lanczos rationnel pour la réduction de modèles.” 2016. Web. 08 Mar 2021.

Vancouver:

Barkouki H. Rational Lanczos-type methods for model order reduction : Méthodes de type Lanczos rationnel pour la réduction de modèles. [Internet] [Doctoral dissertation]. Littoral; Université Cadi Ayyad (Marrakech, Maroc). Faculté des sciences et techniques Guéliz; 2016. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2016DUNK0440.

Council of Science Editors:

Barkouki H. Rational Lanczos-type methods for model order reduction : Méthodes de type Lanczos rationnel pour la réduction de modèles. [Doctoral Dissertation]. Littoral; Université Cadi Ayyad (Marrakech, Maroc). Faculté des sciences et techniques Guéliz; 2016. Available from: http://www.theses.fr/2016DUNK0440

26. Hached, Mustapha. Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations.

Degree: Docteur es, Mathématiques appliquées, 2012, Littoral

Cette thèse porte sur des méthode de résolution d'équations matricielles appliquées à la résolution numérique d'équations aux dérivées partielles ou des problèmes de contrôle linéaire.… (more)

Subjects/Keywords: Approximation; Arnoldi; Burgers; Chaleur; Equations aux dérivées partielles; GMRES; Krylov; Lyapunov; Meshless; Newton; RBF; Riccati; Sylvester; Approximation; Arnoldi; Burgers; Heat; PDE; GMRES; Krylov; Lyapunov; Meshless; Newton; RBF; Riccati; Sylvester

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hached, M. (2012). Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations. (Doctoral Dissertation). Littoral. Retrieved from http://www.theses.fr/2012DUNK0315

Chicago Manual of Style (16th Edition):

Hached, Mustapha. “Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations.” 2012. Doctoral Dissertation, Littoral. Accessed March 08, 2021. http://www.theses.fr/2012DUNK0315.

MLA Handbook (7th Edition):

Hached, Mustapha. “Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations.” 2012. Web. 08 Mar 2021.

Vancouver:

Hached M. Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations. [Internet] [Doctoral dissertation]. Littoral; 2012. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2012DUNK0315.

Council of Science Editors:

Hached M. Méthodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles : Matrix Krylov methods applied to partial differential equations. [Doctoral Dissertation]. Littoral; 2012. Available from: http://www.theses.fr/2012DUNK0315


INP Toulouse

27. Pinel, Xavier. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique.

Degree: Docteur es, Mathématiques, Informatiques et Télécommunication, 2010, INP Toulouse

Le sujet de cette thèse est le développement de méthodes itératives permettant la résolution degrands systèmes linéaires creux d'équations présentant plusieurs seconds membres simultanément. Ces… (more)

Subjects/Keywords: Equation d'Helmholtz; Méthodes de Krylov; Multigrille; Analyse de Fourier; Programmation parrallèle; Seconds membres multiples; Krylov methods; Multigrid; Helmholtz problems; Fourier analysis; Super computers; Geophysics; Multiple right-hand sides problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pinel, X. (2010). A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique. (Doctoral Dissertation). INP Toulouse. Retrieved from http://www.theses.fr/2010INPT0033

Chicago Manual of Style (16th Edition):

Pinel, Xavier. “A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique.” 2010. Doctoral Dissertation, INP Toulouse. Accessed March 08, 2021. http://www.theses.fr/2010INPT0033.

MLA Handbook (7th Edition):

Pinel, Xavier. “A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique.” 2010. Web. 08 Mar 2021.

Vancouver:

Pinel X. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique. [Internet] [Doctoral dissertation]. INP Toulouse; 2010. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2010INPT0033.

Council of Science Editors:

Pinel X. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics : Un preconditionnement perturbé à deux niveaux pour la résolution de problèmes d'Helmholtz hétérogènes dans le cadre d'une application en géophysique. [Doctoral Dissertation]. INP Toulouse; 2010. Available from: http://www.theses.fr/2010INPT0033

28. Al Daas, Hussam. Résolution de systèmes linéaires issus de la modélisation des réservoirs : Solving linear systems arising from reservoirs modelling.

Degree: Docteur es, Mathématiques appliquées, 2018, Sorbonne université

Cette thèse présente un travail sur les méthodes itératives pour résoudre des systèmes linéaires en réduisant les communications pendant les calculs parallèles. Principalement, on est… (more)

Subjects/Keywords: Krylov; Méthodes par bloc; Breakdown inexacte; Déflation; Recyclage; Décomposition de domaine; Krylov; Block methods; Inexact breakdown; Deflation; Recycling; Domain decomposition; 003.74; 518.26

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Al Daas, H. (2018). Résolution de systèmes linéaires issus de la modélisation des réservoirs : Solving linear systems arising from reservoirs modelling. (Doctoral Dissertation). Sorbonne université. Retrieved from http://www.theses.fr/2018SORUS329

Chicago Manual of Style (16th Edition):

Al Daas, Hussam. “Résolution de systèmes linéaires issus de la modélisation des réservoirs : Solving linear systems arising from reservoirs modelling.” 2018. Doctoral Dissertation, Sorbonne université. Accessed March 08, 2021. http://www.theses.fr/2018SORUS329.

MLA Handbook (7th Edition):

Al Daas, Hussam. “Résolution de systèmes linéaires issus de la modélisation des réservoirs : Solving linear systems arising from reservoirs modelling.” 2018. Web. 08 Mar 2021.

Vancouver:

Al Daas H. Résolution de systèmes linéaires issus de la modélisation des réservoirs : Solving linear systems arising from reservoirs modelling. [Internet] [Doctoral dissertation]. Sorbonne université; 2018. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2018SORUS329.

Council of Science Editors:

Al Daas H. Résolution de systèmes linéaires issus de la modélisation des réservoirs : Solving linear systems arising from reservoirs modelling. [Doctoral Dissertation]. Sorbonne université; 2018. Available from: http://www.theses.fr/2018SORUS329

29. Ul Jabbar, Absaar. Efficient and robust monolithic finite element multilevel Krylov subspace solvers for the solution of stationary incompressible Navier-Stokes equations.

Degree: 2018, Technische Universität Dortmund

 Multigrid methods belong to the best-known methods for solving linear systems arising from the discretization of elliptic partial differential equations. The main attraction of multigrid… (more)

Subjects/Keywords: Monolithic multilevel methods; Krylov subspaces; GMRES; FEM; Navier-Stokes equations; Saddle point problems; 510; Multi-level-Verfahren; Krylov-Verfahren; Finite-Elemente-Methode; Navier-Stokes-Gleichung

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ul Jabbar, A. (2018). Efficient and robust monolithic finite element multilevel Krylov subspace solvers for the solution of stationary incompressible Navier-Stokes equations. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-19859

Chicago Manual of Style (16th Edition):

Ul Jabbar, Absaar. “Efficient and robust monolithic finite element multilevel Krylov subspace solvers for the solution of stationary incompressible Navier-Stokes equations.” 2018. Doctoral Dissertation, Technische Universität Dortmund. Accessed March 08, 2021. http://dx.doi.org/10.17877/DE290R-19859.

MLA Handbook (7th Edition):

Ul Jabbar, Absaar. “Efficient and robust monolithic finite element multilevel Krylov subspace solvers for the solution of stationary incompressible Navier-Stokes equations.” 2018. Web. 08 Mar 2021.

Vancouver:

Ul Jabbar A. Efficient and robust monolithic finite element multilevel Krylov subspace solvers for the solution of stationary incompressible Navier-Stokes equations. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2018. [cited 2021 Mar 08]. Available from: http://dx.doi.org/10.17877/DE290R-19859.

Council of Science Editors:

Ul Jabbar A. Efficient and robust monolithic finite element multilevel Krylov subspace solvers for the solution of stationary incompressible Navier-Stokes equations. [Doctoral Dissertation]. Technische Universität Dortmund; 2018. Available from: http://dx.doi.org/10.17877/DE290R-19859

30. Linel, Patrice. Méthodes de décomposition de domaines en temps et en espace pour la résolution de systèmes d’EDOs non-linéaires : Time and space domain decomposition method for nonlinear ODE.

Degree: Docteur es, Mathématiques appliquées, 2011, Université Claude Bernard – Lyon I

La complexification de la modélisation multi-physique conduit d’une part à devoir simuler des systèmes d’équations différentielles ordinaires et d’équations différentielles algébriques de plus en plus… (more)

Subjects/Keywords: Complément de Schur; Décomposition de domaine en temps; Newton-Krylov; Parallélisation; Accélération non-linéaire; Condition interface; Domain decomposition; Schur complement; Time domain decomposition; Newton- Krylov; Parallelization; Nonlinear acceleration; Interface condition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Linel, P. (2011). Méthodes de décomposition de domaines en temps et en espace pour la résolution de systèmes d’EDOs non-linéaires : Time and space domain decomposition method for nonlinear ODE. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2011LYO10102

Chicago Manual of Style (16th Edition):

Linel, Patrice. “Méthodes de décomposition de domaines en temps et en espace pour la résolution de systèmes d’EDOs non-linéaires : Time and space domain decomposition method for nonlinear ODE.” 2011. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed March 08, 2021. http://www.theses.fr/2011LYO10102.

MLA Handbook (7th Edition):

Linel, Patrice. “Méthodes de décomposition de domaines en temps et en espace pour la résolution de systèmes d’EDOs non-linéaires : Time and space domain decomposition method for nonlinear ODE.” 2011. Web. 08 Mar 2021.

Vancouver:

Linel P. Méthodes de décomposition de domaines en temps et en espace pour la résolution de systèmes d’EDOs non-linéaires : Time and space domain decomposition method for nonlinear ODE. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2011. [cited 2021 Mar 08]. Available from: http://www.theses.fr/2011LYO10102.

Council of Science Editors:

Linel P. Méthodes de décomposition de domaines en temps et en espace pour la résolution de systèmes d’EDOs non-linéaires : Time and space domain decomposition method for nonlinear ODE. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2011. Available from: http://www.theses.fr/2011LYO10102

[1] [2] [3] [4] [5] [6]

.