Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Koszul). Showing records 1 – 30 of 31 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


Louisiana State University

1. Hawwa, Fareed. Koszul duality for multigraded algebras.

Degree: PhD, Applied Mathematics, 2009, Louisiana State University

 Classical Koszul duality sets up an adjoint pair of functors establishing an equivalence of categories. The equivalence is between the bounded derived category of complexes… (more)

Subjects/Keywords: koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hawwa, F. (2009). Koszul duality for multigraded algebras. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-03122010-131541 ; https://digitalcommons.lsu.edu/gradschool_dissertations/988

Chicago Manual of Style (16th Edition):

Hawwa, Fareed. “Koszul duality for multigraded algebras.” 2009. Doctoral Dissertation, Louisiana State University. Accessed August 22, 2019. etd-03122010-131541 ; https://digitalcommons.lsu.edu/gradschool_dissertations/988.

MLA Handbook (7th Edition):

Hawwa, Fareed. “Koszul duality for multigraded algebras.” 2009. Web. 22 Aug 2019.

Vancouver:

Hawwa F. Koszul duality for multigraded algebras. [Internet] [Doctoral dissertation]. Louisiana State University; 2009. [cited 2019 Aug 22]. Available from: etd-03122010-131541 ; https://digitalcommons.lsu.edu/gradschool_dissertations/988.

Council of Science Editors:

Hawwa F. Koszul duality for multigraded algebras. [Doctoral Dissertation]. Louisiana State University; 2009. Available from: etd-03122010-131541 ; https://digitalcommons.lsu.edu/gradschool_dissertations/988


University of Texas – Austin

2. Cohn, Lee Nathan. Rectifying stable infinity-categories and relative koszul duality for operads.

Degree: Mathematics, 2016, University of Texas – Austin

 This thesis is divided into two main portions. The first portion of this thesis describes a comparison between pretriangulated differential graded categories and certain stable… (more)

Subjects/Keywords: Koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cohn, L. N. (2016). Rectifying stable infinity-categories and relative koszul duality for operads. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/46444

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cohn, Lee Nathan. “Rectifying stable infinity-categories and relative koszul duality for operads.” 2016. Thesis, University of Texas – Austin. Accessed August 22, 2019. http://hdl.handle.net/2152/46444.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cohn, Lee Nathan. “Rectifying stable infinity-categories and relative koszul duality for operads.” 2016. Web. 22 Aug 2019.

Vancouver:

Cohn LN. Rectifying stable infinity-categories and relative koszul duality for operads. [Internet] [Thesis]. University of Texas – Austin; 2016. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/2152/46444.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cohn LN. Rectifying stable infinity-categories and relative koszul duality for operads. [Thesis]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/46444

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Ottawa

3. Wu, Gang. Koszul Algebras and Koszul Duality .

Degree: 2016, University of Ottawa

 In this thesis, we present a detailed exposition of Koszul algebras and Koszul duality. We begin with an overview of the required concepts of graded… (more)

Subjects/Keywords: Koszul algebras; Quadratic algebras; Koszul duality.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wu, G. (2016). Koszul Algebras and Koszul Duality . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/35197

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wu, Gang. “Koszul Algebras and Koszul Duality .” 2016. Thesis, University of Ottawa. Accessed August 22, 2019. http://hdl.handle.net/10393/35197.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wu, Gang. “Koszul Algebras and Koszul Duality .” 2016. Web. 22 Aug 2019.

Vancouver:

Wu G. Koszul Algebras and Koszul Duality . [Internet] [Thesis]. University of Ottawa; 2016. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/10393/35197.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wu G. Koszul Algebras and Koszul Duality . [Thesis]. University of Ottawa; 2016. Available from: http://hdl.handle.net/10393/35197

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Hoffbeck, Éric. Opérades de Koszul et homologie des algèbres en caractéristique positive : Koszul operads and homology of algebras in positive characteristic.

Degree: Docteur es, Mathématiques pures, 2010, Université Lille I – Sciences et Technologies

Cette thèse s’inscrit dans l’étude des catégories d’algèbres associées aux opérades. On développe des outils d’algèbre homologique et une méthode générale de classification (à homotopie… (more)

Subjects/Keywords: Dualité de Koszul

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hoffbeck, . (2010). Opérades de Koszul et homologie des algèbres en caractéristique positive : Koszul operads and homology of algebras in positive characteristic. (Doctoral Dissertation). Université Lille I – Sciences et Technologies. Retrieved from http://www.theses.fr/2010LIL10036

Chicago Manual of Style (16th Edition):

Hoffbeck, Éric. “Opérades de Koszul et homologie des algèbres en caractéristique positive : Koszul operads and homology of algebras in positive characteristic.” 2010. Doctoral Dissertation, Université Lille I – Sciences et Technologies. Accessed August 22, 2019. http://www.theses.fr/2010LIL10036.

MLA Handbook (7th Edition):

Hoffbeck, Éric. “Opérades de Koszul et homologie des algèbres en caractéristique positive : Koszul operads and homology of algebras in positive characteristic.” 2010. Web. 22 Aug 2019.

Vancouver:

Hoffbeck . Opérades de Koszul et homologie des algèbres en caractéristique positive : Koszul operads and homology of algebras in positive characteristic. [Internet] [Doctoral dissertation]. Université Lille I – Sciences et Technologies; 2010. [cited 2019 Aug 22]. Available from: http://www.theses.fr/2010LIL10036.

Council of Science Editors:

Hoffbeck . Opérades de Koszul et homologie des algèbres en caractéristique positive : Koszul operads and homology of algebras in positive characteristic. [Doctoral Dissertation]. Université Lille I – Sciences et Technologies; 2010. Available from: http://www.theses.fr/2010LIL10036


University of Texas – Austin

5. -4112-5745. Aspects of derived Koszul duality.

Degree: Mathematics, 2016, University of Texas – Austin

 This thesis comprises two distinct chapters. In the first, we rigidify constructions of generalized string topology Thom spectra due to Gruher – Salvatore into lax symmetric… (more)

Subjects/Keywords: Koszul duality; String topology; Spectral algebraic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4112-5745. (2016). Aspects of derived Koszul duality. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/40331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

-4112-5745. “Aspects of derived Koszul duality.” 2016. Thesis, University of Texas – Austin. Accessed August 22, 2019. http://hdl.handle.net/2152/40331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

-4112-5745. “Aspects of derived Koszul duality.” 2016. Web. 22 Aug 2019.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4112-5745. Aspects of derived Koszul duality. [Internet] [Thesis]. University of Texas – Austin; 2016. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/2152/40331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

-4112-5745. Aspects of derived Koszul duality. [Thesis]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/40331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation


University of Oregon

6. Phan, Christopher Lee, 1980-. Koszul and generalized Koszul properties for noncommutative graded algebras.

Degree: 2009, University of Oregon

 We investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is… (more)

Subjects/Keywords: Koszul properties; Noncommutative graded algebras; Yoneda algebra; Grobner bases; Homological algebra; Mathematics; Algebra, Homological; Algebra, Yoneda; Koszul algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Phan, Christopher Lee, 1. (2009). Koszul and generalized Koszul properties for noncommutative graded algebras. (Thesis). University of Oregon. Retrieved from http://hdl.handle.net/1794/10367

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Phan, Christopher Lee, 1980-. “Koszul and generalized Koszul properties for noncommutative graded algebras.” 2009. Thesis, University of Oregon. Accessed August 22, 2019. http://hdl.handle.net/1794/10367.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Phan, Christopher Lee, 1980-. “Koszul and generalized Koszul properties for noncommutative graded algebras.” 2009. Web. 22 Aug 2019.

Vancouver:

Phan, Christopher Lee 1. Koszul and generalized Koszul properties for noncommutative graded algebras. [Internet] [Thesis]. University of Oregon; 2009. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/1794/10367.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Phan, Christopher Lee 1. Koszul and generalized Koszul properties for noncommutative graded algebras. [Thesis]. University of Oregon; 2009. Available from: http://hdl.handle.net/1794/10367

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Louisiana State University

7. Taylor, Sean Michael. Mixed Categories of Sheaves on Toric Varieties.

Degree: PhD, Algebraic Geometry, 2018, Louisiana State University

  In [BGS96], Beilinson, Ginzburg, and Soergel introduced the notion of mixed categories. This idea often underlies many interesting "Koszul dualities." In this paper, we… (more)

Subjects/Keywords: Toric varieties; mixed categories; sheaves; finite fields; perverse sheaves; Koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taylor, S. M. (2018). Mixed Categories of Sheaves on Toric Varieties. (Doctoral Dissertation). Louisiana State University. Retrieved from https://digitalcommons.lsu.edu/gradschool_dissertations/4590

Chicago Manual of Style (16th Edition):

Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Doctoral Dissertation, Louisiana State University. Accessed August 22, 2019. https://digitalcommons.lsu.edu/gradschool_dissertations/4590.

MLA Handbook (7th Edition):

Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Web. 22 Aug 2019.

Vancouver:

Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Internet] [Doctoral dissertation]. Louisiana State University; 2018. [cited 2019 Aug 22]. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590.

Council of Science Editors:

Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Doctoral Dissertation]. Louisiana State University; 2018. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590


Universidade Estadual de Campinas

8. Ferreira, Gilmar de Sousa, 1984-. Representações de álgebras de correntes e álgebras de Koszul .

Degree: 2012, Universidade Estadual de Campinas

 Resumo: Nessa dissertação estudamos certas categorias de módulos graduados para uma classe de álgebras de Lie que inclui as álgebras de correntes. Em particular, estudamos… (more)

Subjects/Keywords: Koszul, Álgebra de; Álgebra de correntes; Representações de Lie, álgebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ferreira, Gilmar de Sousa, 1. (2012). Representações de álgebras de correntes e álgebras de Koszul . (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306954

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ferreira, Gilmar de Sousa, 1984-. “Representações de álgebras de correntes e álgebras de Koszul .” 2012. Thesis, Universidade Estadual de Campinas. Accessed August 22, 2019. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306954.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ferreira, Gilmar de Sousa, 1984-. “Representações de álgebras de correntes e álgebras de Koszul .” 2012. Web. 22 Aug 2019.

Vancouver:

Ferreira, Gilmar de Sousa 1. Representações de álgebras de correntes e álgebras de Koszul . [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2019 Aug 22]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306954.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ferreira, Gilmar de Sousa 1. Representações de álgebras de correntes e álgebras de Koszul . [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306954

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

9. Kelly, Jack. Exact categories, Koszul duality, and derived analytic algebra.

Degree: PhD, 2018, University of Oxford

 Recent work of Bambozzi, Ben-Bassat, and Kremnitzer suggests that derived analytic geometry over a valued field k can be modelled as geometry relative to the… (more)

Subjects/Keywords: 510; Mathematics; Koszul Duality; Category Theory; Algebra; Homotopy Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kelly, J. (2018). Exact categories, Koszul duality, and derived analytic algebra. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757816

Chicago Manual of Style (16th Edition):

Kelly, Jack. “Exact categories, Koszul duality, and derived analytic algebra.” 2018. Doctoral Dissertation, University of Oxford. Accessed August 22, 2019. http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757816.

MLA Handbook (7th Edition):

Kelly, Jack. “Exact categories, Koszul duality, and derived analytic algebra.” 2018. Web. 22 Aug 2019.

Vancouver:

Kelly J. Exact categories, Koszul duality, and derived analytic algebra. [Internet] [Doctoral dissertation]. University of Oxford; 2018. [cited 2019 Aug 22]. Available from: http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757816.

Council of Science Editors:

Kelly J. Exact categories, Koszul duality, and derived analytic algebra. [Doctoral Dissertation]. University of Oxford; 2018. Available from: http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757816


Brigham Young University

10. Tay, Julian Boon Kai. Poincaré Polynomial of FJRW Rings and the Group-Weights Conjecture.

Degree: MS, 2013, Brigham Young University

  FJRW-theory is a recent advancement in singularity theory arising from physics. The FJRW-theory is a graded vector space constructed from a quasihomogeneous weighted polynomial… (more)

Subjects/Keywords: Poincaré polynomial; FJRW theory; Group-Weights conjecture; Koszul complex; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tay, J. B. K. (2013). Poincaré Polynomial of FJRW Rings and the Group-Weights Conjecture. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4603&context=etd

Chicago Manual of Style (16th Edition):

Tay, Julian Boon Kai. “Poincaré Polynomial of FJRW Rings and the Group-Weights Conjecture.” 2013. Masters Thesis, Brigham Young University. Accessed August 22, 2019. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4603&context=etd.

MLA Handbook (7th Edition):

Tay, Julian Boon Kai. “Poincaré Polynomial of FJRW Rings and the Group-Weights Conjecture.” 2013. Web. 22 Aug 2019.

Vancouver:

Tay JBK. Poincaré Polynomial of FJRW Rings and the Group-Weights Conjecture. [Internet] [Masters thesis]. Brigham Young University; 2013. [cited 2019 Aug 22]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4603&context=etd.

Council of Science Editors:

Tay JBK. Poincaré Polynomial of FJRW Rings and the Group-Weights Conjecture. [Masters Thesis]. Brigham Young University; 2013. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4603&context=etd

11. Medeiros, Francisco Batista de. Álgebras de Koszul e resoluções projetivas.

Degree: Mestrado, Matemática, 2009, University of São Paulo

Neste trabalho estudamos algumas características das álgebras de Koszul, como por exemplo, a maneira como elas se relacionam com suas respectivas álgebras de Yoneda. Descrevemos… (more)

Subjects/Keywords: álgebra de extensões; algebra of extensions; álgebras de Koszul; bases de Gröbner; Gröbner bases; Koszul algebras; linear resolutions; projetive resolutions; representações de álgebras.; representation of algebras.; resoluções lineares; resoluções projetivas

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Medeiros, F. B. d. (2009). Álgebras de Koszul e resoluções projetivas. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-29072009-192529/ ;

Chicago Manual of Style (16th Edition):

Medeiros, Francisco Batista de. “Álgebras de Koszul e resoluções projetivas.” 2009. Masters Thesis, University of São Paulo. Accessed August 22, 2019. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-29072009-192529/ ;.

MLA Handbook (7th Edition):

Medeiros, Francisco Batista de. “Álgebras de Koszul e resoluções projetivas.” 2009. Web. 22 Aug 2019.

Vancouver:

Medeiros FBd. Álgebras de Koszul e resoluções projetivas. [Internet] [Masters thesis]. University of São Paulo; 2009. [cited 2019 Aug 22]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-29072009-192529/ ;.

Council of Science Editors:

Medeiros FBd. Álgebras de Koszul e resoluções projetivas. [Masters Thesis]. University of São Paulo; 2009. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-29072009-192529/ ;


EPFL

12. Djelid, Ratiba. Déformations conformes des variétés de Finsler-Ehresmann.

Degree: 2011, EPFL

 An intrinsic approach to Finsler geometry is proposed. A concept of Finsler- Ehresmann manifold, denoted by (M,F,H), is introduced and a generalized Chern connection is… (more)

Subjects/Keywords: Finsler geometry; Chern connection; Chern theorem; Koszul formalism; Weyl-Schouten theorem; géométrie finslerienne; connexion de Chern; théorème de Chern; formalisme de Koszul; théorème de Weyl-Schouten

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Djelid, R. (2011). Déformations conformes des variétés de Finsler-Ehresmann. (Thesis). EPFL. Retrieved from http://infoscience.epfl.ch/record/164026

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Djelid, Ratiba. “Déformations conformes des variétés de Finsler-Ehresmann.” 2011. Thesis, EPFL. Accessed August 22, 2019. http://infoscience.epfl.ch/record/164026.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Djelid, Ratiba. “Déformations conformes des variétés de Finsler-Ehresmann.” 2011. Web. 22 Aug 2019.

Vancouver:

Djelid R. Déformations conformes des variétés de Finsler-Ehresmann. [Internet] [Thesis]. EPFL; 2011. [cited 2019 Aug 22]. Available from: http://infoscience.epfl.ch/record/164026.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Djelid R. Déformations conformes des variétés de Finsler-Ehresmann. [Thesis]. EPFL; 2011. Available from: http://infoscience.epfl.ch/record/164026

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Mansuy, Anthony. Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees.

Degree: Docteur es, Sciences - STS, 2013, Reims

Nous introduisons les notions de forêts préordonnées et préordonnées en tas, généralisant les constructions des forêts ordonnées et ordonnées en tas. On démontre que les… (more)

Subjects/Keywords: Combinatoires algébriques; Algèbres de Hopf; Arbres; Opérades quadratiques; Dualité de Koszul; Battages et battages contractants; Algebraic combinatorics; Hopf algebras; Trees; Quadratic operads; Koszul duality; Shuffle and quasi-shuffle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mansuy, A. (2013). Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees. (Doctoral Dissertation). Reims. Retrieved from http://www.theses.fr/2013REIMS008

Chicago Manual of Style (16th Edition):

Mansuy, Anthony. “Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees.” 2013. Doctoral Dissertation, Reims. Accessed August 22, 2019. http://www.theses.fr/2013REIMS008.

MLA Handbook (7th Edition):

Mansuy, Anthony. “Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees.” 2013. Web. 22 Aug 2019.

Vancouver:

Mansuy A. Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees. [Internet] [Doctoral dissertation]. Reims; 2013. [cited 2019 Aug 22]. Available from: http://www.theses.fr/2013REIMS008.

Council of Science Editors:

Mansuy A. Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees. [Doctoral Dissertation]. Reims; 2013. Available from: http://www.theses.fr/2013REIMS008

14. Le Grignou, Brice. Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads.

Degree: Docteur es, Mathématiques, 2016, Côte d'Azur

Dans cette thèse, nous nous intéressons aux propriétés homotopiques des algèbres sur une opérade, desopérades elles-mêmes et des opérades colorées, dans le monde des complexes… (more)

Subjects/Keywords: Opérades; Algèbre homotopique; Algèbre homologique; Dualité de Koszul; Constructions bar et cobar; Ensembles dendroidaux; Operads; Homotopical algebra; Homological algebra; Koszul duality; Bar and cobar constructions; Dendroidal sets

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Le Grignou, B. (2016). Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads. (Doctoral Dissertation). Côte d'Azur. Retrieved from http://www.theses.fr/2016AZUR4058

Chicago Manual of Style (16th Edition):

Le Grignou, Brice. “Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads.” 2016. Doctoral Dissertation, Côte d'Azur. Accessed August 22, 2019. http://www.theses.fr/2016AZUR4058.

MLA Handbook (7th Edition):

Le Grignou, Brice. “Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads.” 2016. Web. 22 Aug 2019.

Vancouver:

Le Grignou B. Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads. [Internet] [Doctoral dissertation]. Côte d'Azur; 2016. [cited 2019 Aug 22]. Available from: http://www.theses.fr/2016AZUR4058.

Council of Science Editors:

Le Grignou B. Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads. [Doctoral Dissertation]. Côte d'Azur; 2016. Available from: http://www.theses.fr/2016AZUR4058


Indian Institute of Science

15. Mohandas, J P. Spectral Theory And Root Bases Associated With Multiparameter Eigenvalue Problems.

Degree: 2007, Indian Institute of Science

 Consider (1) -yn1+ q1y1 = (λr11 + µr12)y1 on [0, 1] y’1(0) = cot α1 and = y’1(1) = a1λ + b1 y1(0) y1(1) c1λ+d1… (more)

Subjects/Keywords: Spectral Theory; Eigenvalue Problems; Sturn-Liouville Problems; Kozul Quotient Space; Root Vectors; Koszul Complex; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mohandas, J. P. (2007). Spectral Theory And Root Bases Associated With Multiparameter Eigenvalue Problems. (Thesis). Indian Institute of Science. Retrieved from http://hdl.handle.net/2005/691

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mohandas, J P. “Spectral Theory And Root Bases Associated With Multiparameter Eigenvalue Problems.” 2007. Thesis, Indian Institute of Science. Accessed August 22, 2019. http://hdl.handle.net/2005/691.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mohandas, J P. “Spectral Theory And Root Bases Associated With Multiparameter Eigenvalue Problems.” 2007. Web. 22 Aug 2019.

Vancouver:

Mohandas JP. Spectral Theory And Root Bases Associated With Multiparameter Eigenvalue Problems. [Internet] [Thesis]. Indian Institute of Science; 2007. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/2005/691.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mohandas JP. Spectral Theory And Root Bases Associated With Multiparameter Eigenvalue Problems. [Thesis]. Indian Institute of Science; 2007. Available from: http://hdl.handle.net/2005/691

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas A&M University

16. Guan, Yonghui. Equations for Chow Varieties, Their Secant Varieties and Other Varieties Arising in Complexity Theory.

Degree: 2016, Texas A&M University

 The Chow variety of polynomials that decompose as a product of linear forms has been studied for more than 100 years. Brill, Gordon, and others… (more)

Subjects/Keywords: Chow variety; Brill's equations; secant variety; flattening; Koszul Young flattening; permanent; VP and VNP

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Guan, Y. (2016). Equations for Chow Varieties, Their Secant Varieties and Other Varieties Arising in Complexity Theory. (Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/157875

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Guan, Yonghui. “Equations for Chow Varieties, Their Secant Varieties and Other Varieties Arising in Complexity Theory.” 2016. Thesis, Texas A&M University. Accessed August 22, 2019. http://hdl.handle.net/1969.1/157875.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Guan, Yonghui. “Equations for Chow Varieties, Their Secant Varieties and Other Varieties Arising in Complexity Theory.” 2016. Web. 22 Aug 2019.

Vancouver:

Guan Y. Equations for Chow Varieties, Their Secant Varieties and Other Varieties Arising in Complexity Theory. [Internet] [Thesis]. Texas A&M University; 2016. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/1969.1/157875.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Guan Y. Equations for Chow Varieties, Their Secant Varieties and Other Varieties Arising in Complexity Theory. [Thesis]. Texas A&M University; 2016. Available from: http://hdl.handle.net/1969.1/157875

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

17. McGilvray, H. C. Jr. A Classification of some Quadratic Algebras.

Degree: PhD, Mathematics, 1998, Virginia Tech

 In this paper, for a select group of quadratic algebras, we investigate restrictions necessary on the generators of the ideal for the resulting algebra to… (more)

Subjects/Keywords: Koszul algebra; quadratic algebra; monomial generators

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McGilvray, H. C. J. (1998). A Classification of some Quadratic Algebras. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/30699

Chicago Manual of Style (16th Edition):

McGilvray, H C Jr. “A Classification of some Quadratic Algebras.” 1998. Doctoral Dissertation, Virginia Tech. Accessed August 22, 2019. http://hdl.handle.net/10919/30699.

MLA Handbook (7th Edition):

McGilvray, H C Jr. “A Classification of some Quadratic Algebras.” 1998. Web. 22 Aug 2019.

Vancouver:

McGilvray HCJ. A Classification of some Quadratic Algebras. [Internet] [Doctoral dissertation]. Virginia Tech; 1998. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/10919/30699.

Council of Science Editors:

McGilvray HCJ. A Classification of some Quadratic Algebras. [Doctoral Dissertation]. Virginia Tech; 1998. Available from: http://hdl.handle.net/10919/30699


Virginia Tech

18. Hartman, Gregory Neil. Graphs and Noncommutative Koszul Algebras.

Degree: PhD, Mathematics, 2002, Virginia Tech

 A new connection between combinatorics and noncommutative algebra is established by relating a certain class of directed graphs to noncommutative Koszul algebras. The directed graphs… (more)

Subjects/Keywords: representations; quivers; Koszul algebras; directed graphs

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hartman, G. N. (2002). Graphs and Noncommutative Koszul Algebras. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/27156

Chicago Manual of Style (16th Edition):

Hartman, Gregory Neil. “Graphs and Noncommutative Koszul Algebras.” 2002. Doctoral Dissertation, Virginia Tech. Accessed August 22, 2019. http://hdl.handle.net/10919/27156.

MLA Handbook (7th Edition):

Hartman, Gregory Neil. “Graphs and Noncommutative Koszul Algebras.” 2002. Web. 22 Aug 2019.

Vancouver:

Hartman GN. Graphs and Noncommutative Koszul Algebras. [Internet] [Doctoral dissertation]. Virginia Tech; 2002. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/10919/27156.

Council of Science Editors:

Hartman GN. Graphs and Noncommutative Koszul Algebras. [Doctoral Dissertation]. Virginia Tech; 2002. Available from: http://hdl.handle.net/10919/27156


Universidade Estadual de Campinas

19. Prata, Daniela Moura, 1984-. Representations of quivers and vector bundles over projectives spaces = Representações de quivers e fibrados vetoriais sobre espaços projetivos .

Degree: 2012, Universidade Estadual de Campinas

 Resumo: Neste trabalho relacionamos algumas classes de fibrados vetoriais...Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital; Abstract: In this… (more)

Subjects/Keywords: Representações de quivers (Matemática); Fibrados vetoriais; Resoluções livres (Álgebra); Koszul, Complexo de; Geometria algébrica

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prata, Daniela Moura, 1. (2012). Representations of quivers and vector bundles over projectives spaces = Representações de quivers e fibrados vetoriais sobre espaços projetivos . (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306012

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Prata, Daniela Moura, 1984-. “Representations of quivers and vector bundles over projectives spaces = Representações de quivers e fibrados vetoriais sobre espaços projetivos .” 2012. Thesis, Universidade Estadual de Campinas. Accessed August 22, 2019. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306012.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Prata, Daniela Moura, 1984-. “Representations of quivers and vector bundles over projectives spaces = Representações de quivers e fibrados vetoriais sobre espaços projetivos .” 2012. Web. 22 Aug 2019.

Vancouver:

Prata, Daniela Moura 1. Representations of quivers and vector bundles over projectives spaces = Representações de quivers e fibrados vetoriais sobre espaços projetivos . [Internet] [Thesis]. Universidade Estadual de Campinas; 2012. [cited 2019 Aug 22]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306012.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Prata, Daniela Moura 1. Representations of quivers and vector bundles over projectives spaces = Representações de quivers e fibrados vetoriais sobre espaços projetivos . [Thesis]. Universidade Estadual de Campinas; 2012. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306012

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Michigan

20. Klein, Patricia. Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology.

Degree: PhD, Mathematics, 2018, University of Michigan

 We consider relationships among Hilbert-Samuel multiplicities, Koszul cohomology, and local cohomology. In particular, we investigate upper and lower bounds on the ratio e(I,M)/l(M/IM) for m-primary… (more)

Subjects/Keywords: commutative algebra; homological algebra; Hilbert-Samuel multiplicities; Koszul homology; Lech's inequality; Mathematics; Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Klein, P. (2018). Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/145974

Chicago Manual of Style (16th Edition):

Klein, Patricia. “Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology.” 2018. Doctoral Dissertation, University of Michigan. Accessed August 22, 2019. http://hdl.handle.net/2027.42/145974.

MLA Handbook (7th Edition):

Klein, Patricia. “Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology.” 2018. Web. 22 Aug 2019.

Vancouver:

Klein P. Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology. [Internet] [Doctoral dissertation]. University of Michigan; 2018. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/2027.42/145974.

Council of Science Editors:

Klein P. Relationships Among Hilbert-Samuel Multiplicities, Koszul Cohomology, and Local Cohomology. [Doctoral Dissertation]. University of Michigan; 2018. Available from: http://hdl.handle.net/2027.42/145974

21. Ridenour, Timothy Blake. Faces of Weight Polytopes, a Generalization of a Theorem of Vinberg and Koszul Algebras.

Degree: Mathematics, 2010, University of California – Riverside

 Let \g be a reductive Lie algebra over \C and let V be a \g-semisimple module. In this article, we study the category \ghat of… (more)

Subjects/Keywords: Mathematics; Generalized Verma Modules; Koszul algebras; Polytopes

…20 21 22 23 24 27 3 Irreducible Ad-Nilpotent Ideals 29 II 38 Koszul algebras 4 Faces… …and Koszul Algebras 4.1 The main results . . . . . . . . . . . . . . . . . . . . 4.2… …Koszul algebras . . . . . . . . 4.6 Proof of the main result… …are able to construct Koszul algebras of any finite global dimension. The truncated… …dimensional modules over these Koszul algebras. It is natural to ask which subsets of the set of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ridenour, T. B. (2010). Faces of Weight Polytopes, a Generalization of a Theorem of Vinberg and Koszul Algebras. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/20h888x6

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ridenour, Timothy Blake. “Faces of Weight Polytopes, a Generalization of a Theorem of Vinberg and Koszul Algebras.” 2010. Thesis, University of California – Riverside. Accessed August 22, 2019. http://www.escholarship.org/uc/item/20h888x6.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ridenour, Timothy Blake. “Faces of Weight Polytopes, a Generalization of a Theorem of Vinberg and Koszul Algebras.” 2010. Web. 22 Aug 2019.

Vancouver:

Ridenour TB. Faces of Weight Polytopes, a Generalization of a Theorem of Vinberg and Koszul Algebras. [Internet] [Thesis]. University of California – Riverside; 2010. [cited 2019 Aug 22]. Available from: http://www.escholarship.org/uc/item/20h888x6.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ridenour TB. Faces of Weight Polytopes, a Generalization of a Theorem of Vinberg and Koszul Algebras. [Thesis]. University of California – Riverside; 2010. Available from: http://www.escholarship.org/uc/item/20h888x6

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

22. Lam, Yan Ting. Calabi-Yau categories and quivers with superpotential.

Degree: PhD, 2014, University of Oxford

 This thesis studies derived equivalences between total spaces of vector bundles and dg-quivers. A dg-quiver is a graded quiver whose path algebra is a dg-algebra.… (more)

Subjects/Keywords: 516.3; Algebraic geometry; Geometry; Representation Theory; Calabi-Yau Categories; Quivers with Superpotential; Derived Equivalences; Tilting; McKay Quivers; Koszul Functor

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lam, Y. T. (2014). Calabi-Yau categories and quivers with superpotential. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:20e38c16-e8c7-4ed4-85c9-e22ee6f6e467 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658419

Chicago Manual of Style (16th Edition):

Lam, Yan Ting. “Calabi-Yau categories and quivers with superpotential.” 2014. Doctoral Dissertation, University of Oxford. Accessed August 22, 2019. http://ora.ox.ac.uk/objects/uuid:20e38c16-e8c7-4ed4-85c9-e22ee6f6e467 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658419.

MLA Handbook (7th Edition):

Lam, Yan Ting. “Calabi-Yau categories and quivers with superpotential.” 2014. Web. 22 Aug 2019.

Vancouver:

Lam YT. Calabi-Yau categories and quivers with superpotential. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2019 Aug 22]. Available from: http://ora.ox.ac.uk/objects/uuid:20e38c16-e8c7-4ed4-85c9-e22ee6f6e467 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658419.

Council of Science Editors:

Lam YT. Calabi-Yau categories and quivers with superpotential. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:20e38c16-e8c7-4ed4-85c9-e22ee6f6e467 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658419

23. Jenkins, Rollo Crozier John. Representations of rational Cherednik algebras : Koszulness and localisation.

Degree: PhD, 2014, University of Edinburgh

 An algebra is a typical object of study in pure mathematics. Take a collection of numbers (for example, all whole numbers or all decimal numbers).… (more)

Subjects/Keywords: 512; algebra; Cherednik algebras; Koszul; geometers; sheaves

…Categories . . . . . . 1.7 Quiver Representations . . . . . . . 1.8 Koszul Algebras… …9 9 12 14 18 19 22 24 27 Koszul Duality for Rank Two 2.1 Classification of Blocks in the… …2.3 Koszul Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Koszul Duals… …Parameters for the Rational Cherednik Algebra in the Literature 139 B Koszul Resolutions 141 C… …algebra for an arbitrary parameter c. The category O associated to Hc (W) is Koszul. A… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jenkins, R. C. J. (2014). Representations of rational Cherednik algebras : Koszulness and localisation. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/8854

Chicago Manual of Style (16th Edition):

Jenkins, Rollo Crozier John. “Representations of rational Cherednik algebras : Koszulness and localisation.” 2014. Doctoral Dissertation, University of Edinburgh. Accessed August 22, 2019. http://hdl.handle.net/1842/8854.

MLA Handbook (7th Edition):

Jenkins, Rollo Crozier John. “Representations of rational Cherednik algebras : Koszulness and localisation.” 2014. Web. 22 Aug 2019.

Vancouver:

Jenkins RCJ. Representations of rational Cherednik algebras : Koszulness and localisation. [Internet] [Doctoral dissertation]. University of Edinburgh; 2014. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/1842/8854.

Council of Science Editors:

Jenkins RCJ. Representations of rational Cherednik algebras : Koszulness and localisation. [Doctoral Dissertation]. University of Edinburgh; 2014. Available from: http://hdl.handle.net/1842/8854


Harvard University

24. Brantner, David Lukas Benjamin. The Lubin-Tate Theory of Spectral Lie Algebras.

Degree: PhD, 2017, Harvard University

We use equivariant discrete Morse theory to establish a general technique in poset topology and demonstrate its applicability by computing various equivariant properties of the… (more)

Subjects/Keywords: Morava E-theory; Lubin-Tate space; spectral Lie algebras; poset topology; discrete Morse theory; Andre-Quillen homology; monoids; Koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brantner, D. L. B. (2017). The Lubin-Tate Theory of Spectral Lie Algebras. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:41140243

Chicago Manual of Style (16th Edition):

Brantner, David Lukas Benjamin. “The Lubin-Tate Theory of Spectral Lie Algebras.” 2017. Doctoral Dissertation, Harvard University. Accessed August 22, 2019. http://nrs.harvard.edu/urn-3:HUL.InstRepos:41140243.

MLA Handbook (7th Edition):

Brantner, David Lukas Benjamin. “The Lubin-Tate Theory of Spectral Lie Algebras.” 2017. Web. 22 Aug 2019.

Vancouver:

Brantner DLB. The Lubin-Tate Theory of Spectral Lie Algebras. [Internet] [Doctoral dissertation]. Harvard University; 2017. [cited 2019 Aug 22]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:41140243.

Council of Science Editors:

Brantner DLB. The Lubin-Tate Theory of Spectral Lie Algebras. [Doctoral Dissertation]. Harvard University; 2017. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:41140243

25. Leray, Johan. Approche fonctorielle et combinatoire de la propérade des algèbres double Poisson : A functorial and combinatorial approach to double Poisson algebras and their properad.

Degree: Docteur es, Mathématiques, 2017, Angers

On construit et étudie la généralisation des algèbres double Poisson décalées à toute catégorie monoïdale symétrique additive. On s’intéresse notamment aux algèbres double Poisson linéaires… (more)

Subjects/Keywords: Algèbre double Poisson; Algèbre double Lie; Algèbre double Lie-Rinehart; Diopérade; Propérade; Adjonction bar-cobar; Dualité de Koszul; Double Poisson algebra; Double Lie algebra; Double Lie-Rinehart algebra; Dioperad; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leray, J. (2017). Approche fonctorielle et combinatoire de la propérade des algèbres double Poisson : A functorial and combinatorial approach to double Poisson algebras and their properad. (Doctoral Dissertation). Angers. Retrieved from http://www.theses.fr/2017ANGE0027

Chicago Manual of Style (16th Edition):

Leray, Johan. “Approche fonctorielle et combinatoire de la propérade des algèbres double Poisson : A functorial and combinatorial approach to double Poisson algebras and their properad.” 2017. Doctoral Dissertation, Angers. Accessed August 22, 2019. http://www.theses.fr/2017ANGE0027.

MLA Handbook (7th Edition):

Leray, Johan. “Approche fonctorielle et combinatoire de la propérade des algèbres double Poisson : A functorial and combinatorial approach to double Poisson algebras and their properad.” 2017. Web. 22 Aug 2019.

Vancouver:

Leray J. Approche fonctorielle et combinatoire de la propérade des algèbres double Poisson : A functorial and combinatorial approach to double Poisson algebras and their properad. [Internet] [Doctoral dissertation]. Angers; 2017. [cited 2019 Aug 22]. Available from: http://www.theses.fr/2017ANGE0027.

Council of Science Editors:

Leray J. Approche fonctorielle et combinatoire de la propérade des algèbres double Poisson : A functorial and combinatorial approach to double Poisson algebras and their properad. [Doctoral Dissertation]. Angers; 2017. Available from: http://www.theses.fr/2017ANGE0027

26. Conner, Andrew Brondos, 1981-. A(infinity)-structures, generalized Koszul properties, and combinatorial topology.

Degree: 2011, University of Oregon

 Motivated by the Adams spectral sequence for computing stable homotopy groups, Priddy defined a class of algebras called Koszul algebras with nice homological properties. Many… (more)

Subjects/Keywords: A-infinity; Face ring; K2; Koszul algebras; Stanley-Reisner; Yoneda algebra; Ring theory; Mathematics

…1 II. YONEDA ALGEBRAS AND GENERALIZED KOSZUL PROPERTIES . . . . . . . 5 II.1 II.2 II.3… …II.4 . . . . 5 5 7 12 K2 FACTOR ALGEBRAS OF KOSZUL ALGEBRAS… …59 A∞ -ALGEBRA STRUCTURES ASSOCIATED WITH KOSZUL ALGEBRAS . . . . 62 REFERENCES CITED… …Algebra and Ext . . . Koszul and Generalized Koszul Properties Componentwise Linear Modules… …Introduction K2 Factors of Face Rings . Examples . . . . . . . . . . . . Koszul Algebras… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Conner, Andrew Brondos, 1. (2011). A(infinity)-structures, generalized Koszul properties, and combinatorial topology. (Thesis). University of Oregon. Retrieved from http://hdl.handle.net/1794/11559

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Conner, Andrew Brondos, 1981-. “A(infinity)-structures, generalized Koszul properties, and combinatorial topology.” 2011. Thesis, University of Oregon. Accessed August 22, 2019. http://hdl.handle.net/1794/11559.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Conner, Andrew Brondos, 1981-. “A(infinity)-structures, generalized Koszul properties, and combinatorial topology.” 2011. Web. 22 Aug 2019.

Vancouver:

Conner, Andrew Brondos 1. A(infinity)-structures, generalized Koszul properties, and combinatorial topology. [Internet] [Thesis]. University of Oregon; 2011. [cited 2019 Aug 22]. Available from: http://hdl.handle.net/1794/11559.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Conner, Andrew Brondos 1. A(infinity)-structures, generalized Koszul properties, and combinatorial topology. [Thesis]. University of Oregon; 2011. Available from: http://hdl.handle.net/1794/11559

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

27. Li, Liping. A generalized Koszul theory and its applications in representation theory.

Degree: PhD, Mathematics, 2012, University of Minnesota

 There are many structures (algebras, categories, etc) with natural gradings such that the degree 0 components are not semisimple. Particular examples include tensor algebras with… (more)

Subjects/Keywords: Directed categories; Extension algebras; Finite EI categories; Koszul, Representations; Standardly stratified algebras

…define generalized Koszul modules and Koszul algebras in a way similar to the classical case… …That is, a graded A-module M is Koszul if M has a linear projective resolution, and A is a… …Koszul algebra if A0 viewed as a graded A-module is Koszul. We also define quasi-Koszul modules… …and quasi-Koszul algebras: M is quasi-Koszul if the ∗ Ext∗ A (A0 , A0 )-module… …ExtA (M, A0 ) is generated in degree 0, and A is a quasi-Koszul algebra if A0 is a… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, L. (2012). A generalized Koszul theory and its applications in representation theory. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/137979

Chicago Manual of Style (16th Edition):

Li, Liping. “A generalized Koszul theory and its applications in representation theory.” 2012. Doctoral Dissertation, University of Minnesota. Accessed August 22, 2019. http://purl.umn.edu/137979.

MLA Handbook (7th Edition):

Li, Liping. “A generalized Koszul theory and its applications in representation theory.” 2012. Web. 22 Aug 2019.

Vancouver:

Li L. A generalized Koszul theory and its applications in representation theory. [Internet] [Doctoral dissertation]. University of Minnesota; 2012. [cited 2019 Aug 22]. Available from: http://purl.umn.edu/137979.

Council of Science Editors:

Li L. A generalized Koszul theory and its applications in representation theory. [Doctoral Dissertation]. University of Minnesota; 2012. Available from: http://purl.umn.edu/137979

28. Tête, Claire. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.

Degree: Docteur es, Mathématiques et leurs interactions, 2014, Poitiers

Cette thèse d'algèbre commutative porte principalement sur la théorie de la profondeur. Nous nous efforçons d'en fournir une approche épurée d'hypothèse noethérienne dans l'espoir d'échapper… (more)

Subjects/Keywords: Algèbre commutative effective; (co)homologie de Koszul; Cohomologie de Cech; Suite exacte de Mayer-Vietoris; Cohomologie du totalisé d'un bicomplexe; Profondeur; Suite régulière; Complètement sécante; 1-Sécante; Quasi-Régulière; Dimension de Krull; Résolution libre finie; Construction de Tate; Calcul de l'anneau des entiers d'un corps de nombres; Effective commutative algebra; Koszul cohomology; Cech cohomology; Mayer-Vietoris exact sequence; Cohomology of the totalization of a bicomplex; Depth; Regular sequence; 1-Secant sequence; Quasi-Regular sequence; Krull dimension; Finite free resolution; Tate construction; Algorithm for computing the ring of integers of a number field; 512.44

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tête, C. (2014). Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2014POIT2288

Chicago Manual of Style (16th Edition):

Tête, Claire. “Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.” 2014. Doctoral Dissertation, Poitiers. Accessed August 22, 2019. http://www.theses.fr/2014POIT2288.

MLA Handbook (7th Edition):

Tête, Claire. “Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects.” 2014. Web. 22 Aug 2019.

Vancouver:

Tête C. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. [Internet] [Doctoral dissertation]. Poitiers; 2014. [cited 2019 Aug 22]. Available from: http://www.theses.fr/2014POIT2288.

Council of Science Editors:

Tête C. Profondeur, dimension et résolutions en algèbre commutative : quelques aspects effectifs : Depth, dimension and resolutions in commutative algebra : some effective aspects. [Doctoral Dissertation]. Poitiers; 2014. Available from: http://www.theses.fr/2014POIT2288

29. Sáenz de Cabezón Irigaray, Eduardo. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.

Degree: 2008, Universidad de La Rioja

With a particular focus on explicit computations and applications of the Koszul homology and Betti numbers of monomial ideals, the main goals od this thesis… (more)

Subjects/Keywords: combinatorial commutative algebra; monomial ideals; Betti numbers; algebraic analysis of system reliability; formal theory of differential systems; homología de Koszul; álgebra conmutativa combinatoria; ideales monomiales; números de Betti; análisis algebráico de la fiabilidad de sistemas; teoría formal de sistemas diferenciales; Koszul homology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sáenz de Cabezón Irigaray, E. (2008). Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. (Thesis). Universidad de La Rioja. Retrieved from https://dialnet.unirioja.es/servlet/oaites?codigo=13745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sáenz de Cabezón Irigaray, Eduardo. “Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.” 2008. Thesis, Universidad de La Rioja. Accessed August 22, 2019. https://dialnet.unirioja.es/servlet/oaites?codigo=13745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sáenz de Cabezón Irigaray, Eduardo. “Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones.” 2008. Web. 22 Aug 2019.

Vancouver:

Sáenz de Cabezón Irigaray E. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. [Internet] [Thesis]. Universidad de La Rioja; 2008. [cited 2019 Aug 22]. Available from: https://dialnet.unirioja.es/servlet/oaites?codigo=13745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sáenz de Cabezón Irigaray E. Combinatorial Koszul Homology: Computations and Applications = Homología de Koszul combinatoria: Cálculos y aplicaciones. [Thesis]. Universidad de La Rioja; 2008. Available from: https://dialnet.unirioja.es/servlet/oaites?codigo=13745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

30. van der Laan, P.P.I. Operads : Hopf algebras and coloured Koszul duality.

Degree: 2004, University Utrecht

 Operads are tools designed to study not mathematical objects themselves, but operations on these. A simplified example: instead of integers, one studies multiplication. Multiplication is… (more)

Subjects/Keywords: Wiskunde en Informatica (WIIN); Other mathematical specialities; Wiskunde en computerwetenschappen; Wiskunde: algemeen; Operads; Homological Algebra; Hopf Algebras; Koszul Duality; trees; L-Infinity Algebras; Homotopy Algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

van der Laan, P. P. I. (2004). Operads : Hopf algebras and coloured Koszul duality. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/31825 ; URN:NBN:NL:UI:10-1874-31825 ; URN:NBN:NL:UI:10-1874-31825 ; http://dspace.library.uu.nl/handle/1874/31825

Chicago Manual of Style (16th Edition):

van der Laan, P P I. “Operads : Hopf algebras and coloured Koszul duality.” 2004. Doctoral Dissertation, University Utrecht. Accessed August 22, 2019. http://dspace.library.uu.nl/handle/1874/31825 ; URN:NBN:NL:UI:10-1874-31825 ; URN:NBN:NL:UI:10-1874-31825 ; http://dspace.library.uu.nl/handle/1874/31825.

MLA Handbook (7th Edition):

van der Laan, P P I. “Operads : Hopf algebras and coloured Koszul duality.” 2004. Web. 22 Aug 2019.

Vancouver:

van der Laan PPI. Operads : Hopf algebras and coloured Koszul duality. [Internet] [Doctoral dissertation]. University Utrecht; 2004. [cited 2019 Aug 22]. Available from: http://dspace.library.uu.nl/handle/1874/31825 ; URN:NBN:NL:UI:10-1874-31825 ; URN:NBN:NL:UI:10-1874-31825 ; http://dspace.library.uu.nl/handle/1874/31825.

Council of Science Editors:

van der Laan PPI. Operads : Hopf algebras and coloured Koszul duality. [Doctoral Dissertation]. University Utrecht; 2004. Available from: http://dspace.library.uu.nl/handle/1874/31825 ; URN:NBN:NL:UI:10-1874-31825 ; URN:NBN:NL:UI:10-1874-31825 ; http://dspace.library.uu.nl/handle/1874/31825

[1] [2]

.