Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Koszul Duality). Showing records 1 – 9 of 9 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Louisiana State University

1. Hawwa, Fareed. Koszul duality for multigraded algebras.

Degree: PhD, Applied Mathematics, 2009, Louisiana State University

 Classical Koszul duality sets up an adjoint pair of functors establishing an equivalence of categories. The equivalence is between the bounded derived category of complexes… (more)

Subjects/Keywords: koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hawwa, F. (2009). Koszul duality for multigraded algebras. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-03122010-131541 ; https://digitalcommons.lsu.edu/gradschool_dissertations/988

Chicago Manual of Style (16th Edition):

Hawwa, Fareed. “Koszul duality for multigraded algebras.” 2009. Doctoral Dissertation, Louisiana State University. Accessed July 23, 2019. etd-03122010-131541 ; https://digitalcommons.lsu.edu/gradschool_dissertations/988.

MLA Handbook (7th Edition):

Hawwa, Fareed. “Koszul duality for multigraded algebras.” 2009. Web. 23 Jul 2019.

Vancouver:

Hawwa F. Koszul duality for multigraded algebras. [Internet] [Doctoral dissertation]. Louisiana State University; 2009. [cited 2019 Jul 23]. Available from: etd-03122010-131541 ; https://digitalcommons.lsu.edu/gradschool_dissertations/988.

Council of Science Editors:

Hawwa F. Koszul duality for multigraded algebras. [Doctoral Dissertation]. Louisiana State University; 2009. Available from: etd-03122010-131541 ; https://digitalcommons.lsu.edu/gradschool_dissertations/988


University of Texas – Austin

2. Cohn, Lee Nathan. Rectifying stable infinity-categories and relative koszul duality for operads.

Degree: Mathematics, 2016, University of Texas – Austin

 This thesis is divided into two main portions. The first portion of this thesis describes a comparison between pretriangulated differential graded categories and certain stable… (more)

Subjects/Keywords: Koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cohn, L. N. (2016). Rectifying stable infinity-categories and relative koszul duality for operads. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/46444

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cohn, Lee Nathan. “Rectifying stable infinity-categories and relative koszul duality for operads.” 2016. Thesis, University of Texas – Austin. Accessed July 23, 2019. http://hdl.handle.net/2152/46444.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cohn, Lee Nathan. “Rectifying stable infinity-categories and relative koszul duality for operads.” 2016. Web. 23 Jul 2019.

Vancouver:

Cohn LN. Rectifying stable infinity-categories and relative koszul duality for operads. [Internet] [Thesis]. University of Texas – Austin; 2016. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/2152/46444.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cohn LN. Rectifying stable infinity-categories and relative koszul duality for operads. [Thesis]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/46444

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Ottawa

3. Wu, Gang. Koszul Algebras and Koszul Duality .

Degree: 2016, University of Ottawa

 In this thesis, we present a detailed exposition of Koszul algebras and Koszul duality. We begin with an overview of the required concepts of graded… (more)

Subjects/Keywords: Koszul algebras; Quadratic algebras; Koszul duality.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wu, G. (2016). Koszul Algebras and Koszul Duality . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/35197

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wu, Gang. “Koszul Algebras and Koszul Duality .” 2016. Thesis, University of Ottawa. Accessed July 23, 2019. http://hdl.handle.net/10393/35197.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wu, Gang. “Koszul Algebras and Koszul Duality .” 2016. Web. 23 Jul 2019.

Vancouver:

Wu G. Koszul Algebras and Koszul Duality . [Internet] [Thesis]. University of Ottawa; 2016. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/10393/35197.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wu G. Koszul Algebras and Koszul Duality . [Thesis]. University of Ottawa; 2016. Available from: http://hdl.handle.net/10393/35197

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

4. -4112-5745. Aspects of derived Koszul duality.

Degree: Mathematics, 2016, University of Texas – Austin

 This thesis comprises two distinct chapters. In the first, we rigidify constructions of generalized string topology Thom spectra due to Gruher – Salvatore into lax symmetric… (more)

Subjects/Keywords: Koszul duality; String topology; Spectral algebraic geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4112-5745. (2016). Aspects of derived Koszul duality. (Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/40331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

-4112-5745. “Aspects of derived Koszul duality.” 2016. Thesis, University of Texas – Austin. Accessed July 23, 2019. http://hdl.handle.net/2152/40331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

-4112-5745. “Aspects of derived Koszul duality.” 2016. Web. 23 Jul 2019.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4112-5745. Aspects of derived Koszul duality. [Internet] [Thesis]. University of Texas – Austin; 2016. [cited 2019 Jul 23]. Available from: http://hdl.handle.net/2152/40331.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

-4112-5745. Aspects of derived Koszul duality. [Thesis]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/40331

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation


Louisiana State University

5. Taylor, Sean Michael. Mixed Categories of Sheaves on Toric Varieties.

Degree: PhD, Algebraic Geometry, 2018, Louisiana State University

  In [BGS96], Beilinson, Ginzburg, and Soergel introduced the notion of mixed categories. This idea often underlies many interesting "Koszul dualities." In this paper, we… (more)

Subjects/Keywords: Toric varieties; mixed categories; sheaves; finite fields; perverse sheaves; Koszul duality

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Taylor, S. M. (2018). Mixed Categories of Sheaves on Toric Varieties. (Doctoral Dissertation). Louisiana State University. Retrieved from https://digitalcommons.lsu.edu/gradschool_dissertations/4590

Chicago Manual of Style (16th Edition):

Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Doctoral Dissertation, Louisiana State University. Accessed July 23, 2019. https://digitalcommons.lsu.edu/gradschool_dissertations/4590.

MLA Handbook (7th Edition):

Taylor, Sean Michael. “Mixed Categories of Sheaves on Toric Varieties.” 2018. Web. 23 Jul 2019.

Vancouver:

Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Internet] [Doctoral dissertation]. Louisiana State University; 2018. [cited 2019 Jul 23]. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590.

Council of Science Editors:

Taylor SM. Mixed Categories of Sheaves on Toric Varieties. [Doctoral Dissertation]. Louisiana State University; 2018. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/4590


University of Oxford

6. Kelly, Jack. Exact categories, Koszul duality, and derived analytic algebra.

Degree: PhD, 2018, University of Oxford

 Recent work of Bambozzi, Ben-Bassat, and Kremnitzer suggests that derived analytic geometry over a valued field k can be modelled as geometry relative to the… (more)

Subjects/Keywords: 510; Mathematics; Koszul Duality; Category Theory; Algebra; Homotopy Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kelly, J. (2018). Exact categories, Koszul duality, and derived analytic algebra. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757816

Chicago Manual of Style (16th Edition):

Kelly, Jack. “Exact categories, Koszul duality, and derived analytic algebra.” 2018. Doctoral Dissertation, University of Oxford. Accessed July 23, 2019. http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757816.

MLA Handbook (7th Edition):

Kelly, Jack. “Exact categories, Koszul duality, and derived analytic algebra.” 2018. Web. 23 Jul 2019.

Vancouver:

Kelly J. Exact categories, Koszul duality, and derived analytic algebra. [Internet] [Doctoral dissertation]. University of Oxford; 2018. [cited 2019 Jul 23]. Available from: http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757816.

Council of Science Editors:

Kelly J. Exact categories, Koszul duality, and derived analytic algebra. [Doctoral Dissertation]. University of Oxford; 2018. Available from: http://ora.ox.ac.uk/objects/uuid:27064241-0ad3-49c3-9d7d-870d51fe110b ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.757816

7. Mansuy, Anthony. Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees.

Degree: Docteur es, Sciences - STS, 2013, Reims

Nous introduisons les notions de forêts préordonnées et préordonnées en tas, généralisant les constructions des forêts ordonnées et ordonnées en tas. On démontre que les… (more)

Subjects/Keywords: Combinatoires algébriques; Algèbres de Hopf; Arbres; Opérades quadratiques; Dualité de Koszul; Battages et battages contractants; Algebraic combinatorics; Hopf algebras; Trees; Quadratic operads; Koszul duality; Shuffle and quasi-shuffle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mansuy, A. (2013). Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees. (Doctoral Dissertation). Reims. Retrieved from http://www.theses.fr/2013REIMS008

Chicago Manual of Style (16th Edition):

Mansuy, Anthony. “Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees.” 2013. Doctoral Dissertation, Reims. Accessed July 23, 2019. http://www.theses.fr/2013REIMS008.

MLA Handbook (7th Edition):

Mansuy, Anthony. “Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees.” 2013. Web. 23 Jul 2019.

Vancouver:

Mansuy A. Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees. [Internet] [Doctoral dissertation]. Reims; 2013. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2013REIMS008.

Council of Science Editors:

Mansuy A. Structures Hopf-algébriques et opéradiques sur différentes familles d'arbres : Hopf-algebraics and operadics structures on different families of trees. [Doctoral Dissertation]. Reims; 2013. Available from: http://www.theses.fr/2013REIMS008

8. Le Grignou, Brice. Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads.

Degree: Docteur es, Mathématiques, 2016, Côte d'Azur

Dans cette thèse, nous nous intéressons aux propriétés homotopiques des algèbres sur une opérade, desopérades elles-mêmes et des opérades colorées, dans le monde des complexes… (more)

Subjects/Keywords: Opérades; Algèbre homotopique; Algèbre homologique; Dualité de Koszul; Constructions bar et cobar; Ensembles dendroidaux; Operads; Homotopical algebra; Homological algebra; Koszul duality; Bar and cobar constructions; Dendroidal sets

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Le Grignou, B. (2016). Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads. (Doctoral Dissertation). Côte d'Azur. Retrieved from http://www.theses.fr/2016AZUR4058

Chicago Manual of Style (16th Edition):

Le Grignou, Brice. “Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads.” 2016. Doctoral Dissertation, Côte d'Azur. Accessed July 23, 2019. http://www.theses.fr/2016AZUR4058.

MLA Handbook (7th Edition):

Le Grignou, Brice. “Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads.” 2016. Web. 23 Jul 2019.

Vancouver:

Le Grignou B. Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads. [Internet] [Doctoral dissertation]. Côte d'Azur; 2016. [cited 2019 Jul 23]. Available from: http://www.theses.fr/2016AZUR4058.

Council of Science Editors:

Le Grignou B. Théories homotopiques des algèbres unitaires et des opérades : Homotopy theories of unital algebras and operads. [Doctoral Dissertation]. Côte d'Azur; 2016. Available from: http://www.theses.fr/2016AZUR4058

9. van der Laan, P.P.I. Operads : Hopf algebras and coloured Koszul duality.

Degree: 2004, University Utrecht

 Operads are tools designed to study not mathematical objects themselves, but operations on these. A simplified example: instead of integers, one studies multiplication. Multiplication is… (more)

Subjects/Keywords: Wiskunde en Informatica (WIIN); Other mathematical specialities; Wiskunde en computerwetenschappen; Wiskunde: algemeen; Operads; Homological Algebra; Hopf Algebras; Koszul Duality; trees; L-Infinity Algebras; Homotopy Algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

van der Laan, P. P. I. (2004). Operads : Hopf algebras and coloured Koszul duality. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/31825 ; URN:NBN:NL:UI:10-1874-31825 ; URN:NBN:NL:UI:10-1874-31825 ; http://dspace.library.uu.nl/handle/1874/31825

Chicago Manual of Style (16th Edition):

van der Laan, P P I. “Operads : Hopf algebras and coloured Koszul duality.” 2004. Doctoral Dissertation, University Utrecht. Accessed July 23, 2019. http://dspace.library.uu.nl/handle/1874/31825 ; URN:NBN:NL:UI:10-1874-31825 ; URN:NBN:NL:UI:10-1874-31825 ; http://dspace.library.uu.nl/handle/1874/31825.

MLA Handbook (7th Edition):

van der Laan, P P I. “Operads : Hopf algebras and coloured Koszul duality.” 2004. Web. 23 Jul 2019.

Vancouver:

van der Laan PPI. Operads : Hopf algebras and coloured Koszul duality. [Internet] [Doctoral dissertation]. University Utrecht; 2004. [cited 2019 Jul 23]. Available from: http://dspace.library.uu.nl/handle/1874/31825 ; URN:NBN:NL:UI:10-1874-31825 ; URN:NBN:NL:UI:10-1874-31825 ; http://dspace.library.uu.nl/handle/1874/31825.

Council of Science Editors:

van der Laan PPI. Operads : Hopf algebras and coloured Koszul duality. [Doctoral Dissertation]. University Utrecht; 2004. Available from: http://dspace.library.uu.nl/handle/1874/31825 ; URN:NBN:NL:UI:10-1874-31825 ; URN:NBN:NL:UI:10-1874-31825 ; http://dspace.library.uu.nl/handle/1874/31825

.