Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Knot). Showing records 1 – 30 of 366 total matches.

[1] [2] [3] [4] [5] … [13]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


Louisiana State University

1. Peng, Jun. Beyond the Tails of the Colored Jones Polynomial.

Degree: PhD, Applied Mathematics, 2016, Louisiana State University

 In [2] Armond showed that the heads and tails of the colored Jones polynomial exist for adequate links. This was also shown independently by Garoufalidis… (more)

Subjects/Keywords: alternating knot; knot theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peng, J. (2016). Beyond the Tails of the Colored Jones Polynomial. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07012016-104111 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2227

Chicago Manual of Style (16th Edition):

Peng, Jun. “Beyond the Tails of the Colored Jones Polynomial.” 2016. Doctoral Dissertation, Louisiana State University. Accessed September 28, 2020. etd-07012016-104111 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2227.

MLA Handbook (7th Edition):

Peng, Jun. “Beyond the Tails of the Colored Jones Polynomial.” 2016. Web. 28 Sep 2020.

Vancouver:

Peng J. Beyond the Tails of the Colored Jones Polynomial. [Internet] [Doctoral dissertation]. Louisiana State University; 2016. [cited 2020 Sep 28]. Available from: etd-07012016-104111 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2227.

Council of Science Editors:

Peng J. Beyond the Tails of the Colored Jones Polynomial. [Doctoral Dissertation]. Louisiana State University; 2016. Available from: etd-07012016-104111 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2227


California State Polytechnic University – Pomona

2. Arrua, Alicia. On the additivity of crossing numbers.

Degree: MS, Mathematics, 2015, California State Polytechnic University – Pomona

 The additivity of crossing numbers over a composition of links has been an open problem for over one hundred years. It has been proved that… (more)

Subjects/Keywords: knot theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arrua, A. (2015). On the additivity of crossing numbers. (Masters Thesis). California State Polytechnic University – Pomona. Retrieved from http://hdl.handle.net/10211.3/145707

Chicago Manual of Style (16th Edition):

Arrua, Alicia. “On the additivity of crossing numbers.” 2015. Masters Thesis, California State Polytechnic University – Pomona. Accessed September 28, 2020. http://hdl.handle.net/10211.3/145707.

MLA Handbook (7th Edition):

Arrua, Alicia. “On the additivity of crossing numbers.” 2015. Web. 28 Sep 2020.

Vancouver:

Arrua A. On the additivity of crossing numbers. [Internet] [Masters thesis]. California State Polytechnic University – Pomona; 2015. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10211.3/145707.

Council of Science Editors:

Arrua A. On the additivity of crossing numbers. [Masters Thesis]. California State Polytechnic University – Pomona; 2015. Available from: http://hdl.handle.net/10211.3/145707


California State Polytechnic University – Pomona

3. Lamera, Jeremy. An Upper Bound for the Mosaic Number of (2,q)-Torus Knots.

Degree: Masters of Science in Mathematics, Department of Mathematics and Statistics, 2016, California State Polytechnic University – Pomona

 In 2014, Hwa Jeong Lee, Kyungpo Hong, Ho Lee, and Seungsang Oh provided and proved an upper bound for the mosaic number of torus knots… (more)

Subjects/Keywords: knot theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lamera, J. (2016). An Upper Bound for the Mosaic Number of (2,q)-Torus Knots. (Masters Thesis). California State Polytechnic University – Pomona. Retrieved from http://hdl.handle.net/10211.3/173513

Chicago Manual of Style (16th Edition):

Lamera, Jeremy. “An Upper Bound for the Mosaic Number of (2,q)-Torus Knots.” 2016. Masters Thesis, California State Polytechnic University – Pomona. Accessed September 28, 2020. http://hdl.handle.net/10211.3/173513.

MLA Handbook (7th Edition):

Lamera, Jeremy. “An Upper Bound for the Mosaic Number of (2,q)-Torus Knots.” 2016. Web. 28 Sep 2020.

Vancouver:

Lamera J. An Upper Bound for the Mosaic Number of (2,q)-Torus Knots. [Internet] [Masters thesis]. California State Polytechnic University – Pomona; 2016. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10211.3/173513.

Council of Science Editors:

Lamera J. An Upper Bound for the Mosaic Number of (2,q)-Torus Knots. [Masters Thesis]. California State Polytechnic University – Pomona; 2016. Available from: http://hdl.handle.net/10211.3/173513


Massey University

4. Al Fran, Howida. Generalised knot groups of connect sums of torus knots.

Degree: MS, Mathematics, 2012, Massey University

 Kelly (1990) and Wada (1992) independently identi ed and de ned the generalised knot groups (Gn). The square (SK) and granny (GK) knots are two… (more)

Subjects/Keywords: Knot theory; Torus knots; Knot groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Al Fran, H. (2012). Generalised knot groups of connect sums of torus knots. (Masters Thesis). Massey University. Retrieved from http://hdl.handle.net/10179/4103

Chicago Manual of Style (16th Edition):

Al Fran, Howida. “Generalised knot groups of connect sums of torus knots.” 2012. Masters Thesis, Massey University. Accessed September 28, 2020. http://hdl.handle.net/10179/4103.

MLA Handbook (7th Edition):

Al Fran, Howida. “Generalised knot groups of connect sums of torus knots.” 2012. Web. 28 Sep 2020.

Vancouver:

Al Fran H. Generalised knot groups of connect sums of torus knots. [Internet] [Masters thesis]. Massey University; 2012. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10179/4103.

Council of Science Editors:

Al Fran H. Generalised knot groups of connect sums of torus knots. [Masters Thesis]. Massey University; 2012. Available from: http://hdl.handle.net/10179/4103


University of Illinois – Chicago

5. Schneider, Jonathan. Diagrammatic Theories of 1- and 2- Dimensional Knots.

Degree: 2016, University of Illinois – Chicago

 A meta-theory is described whereby any diagrammatic knot theory may be defined by specifying diagrams and moves. This is done explicitly in dimensions 1 and… (more)

Subjects/Keywords: knot theory; knot diagrams; surface knot theory; 2-knot theory; virtual knots; virtual knot theory; welded knots

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schneider, J. (2016). Diagrammatic Theories of 1- and 2- Dimensional Knots. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Thesis, University of Illinois – Chicago. Accessed September 28, 2020. http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Web. 28 Sep 2020.

Vancouver:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Ronnenberg, Mark. A survey of butterfly diagrams for knots and links.

Degree: 2017, University of Northern Iowa

1 PDF file (ix, 93 pages) Advisors/Committee Members: Theron Hitchman.

Subjects/Keywords: Knot theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ronnenberg, M. (2017). A survey of butterfly diagrams for knots and links. (Thesis). University of Northern Iowa. Retrieved from https://scholarworks.uni.edu/etd/364

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ronnenberg, Mark. “A survey of butterfly diagrams for knots and links.” 2017. Thesis, University of Northern Iowa. Accessed September 28, 2020. https://scholarworks.uni.edu/etd/364.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ronnenberg, Mark. “A survey of butterfly diagrams for knots and links.” 2017. Web. 28 Sep 2020.

Vancouver:

Ronnenberg M. A survey of butterfly diagrams for knots and links. [Internet] [Thesis]. University of Northern Iowa; 2017. [cited 2020 Sep 28]. Available from: https://scholarworks.uni.edu/etd/364.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ronnenberg M. A survey of butterfly diagrams for knots and links. [Thesis]. University of Northern Iowa; 2017. Available from: https://scholarworks.uni.edu/etd/364

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Cornell University

7. Samuelson, Peter. Kauffman Bracket Skein Modules And The Quantum Torus.

Degree: PhD, Mathematics, 2012, Cornell University

 If M is a 3-manifold, the Kauffman bracket skein module is a vector space Kq (M ) functorially associated to M that depends on a… (more)

Subjects/Keywords: knot theory; quantum algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Samuelson, P. (2012). Kauffman Bracket Skein Modules And The Quantum Torus. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/31119

Chicago Manual of Style (16th Edition):

Samuelson, Peter. “Kauffman Bracket Skein Modules And The Quantum Torus.” 2012. Doctoral Dissertation, Cornell University. Accessed September 28, 2020. http://hdl.handle.net/1813/31119.

MLA Handbook (7th Edition):

Samuelson, Peter. “Kauffman Bracket Skein Modules And The Quantum Torus.” 2012. Web. 28 Sep 2020.

Vancouver:

Samuelson P. Kauffman Bracket Skein Modules And The Quantum Torus. [Internet] [Doctoral dissertation]. Cornell University; 2012. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1813/31119.

Council of Science Editors:

Samuelson P. Kauffman Bracket Skein Modules And The Quantum Torus. [Doctoral Dissertation]. Cornell University; 2012. Available from: http://hdl.handle.net/1813/31119

8. NC DOCKS at The University of North Carolina at Greensboro; Supulski, Gwendolyn Eva. An introduction to knots and knot groups.

Degree: 1970, NC Docks

 The purpose of this paper is to present an introduction to the theory of knots and knot groups assuming an intermediate knowledge of group theory… (more)

Subjects/Keywords: Knot theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

NC DOCKS at The University of North Carolina at Greensboro; Supulski, G. E. (1970). An introduction to knots and knot groups. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/supulski_gwendolyn_1970.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

NC DOCKS at The University of North Carolina at Greensboro; Supulski, Gwendolyn Eva. “An introduction to knots and knot groups.” 1970. Thesis, NC Docks. Accessed September 28, 2020. http://libres.uncg.edu/ir/uncg/f/supulski_gwendolyn_1970.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

NC DOCKS at The University of North Carolina at Greensboro; Supulski, Gwendolyn Eva. “An introduction to knots and knot groups.” 1970. Web. 28 Sep 2020.

Vancouver:

NC DOCKS at The University of North Carolina at Greensboro; Supulski GE. An introduction to knots and knot groups. [Internet] [Thesis]. NC Docks; 1970. [cited 2020 Sep 28]. Available from: http://libres.uncg.edu/ir/uncg/f/supulski_gwendolyn_1970.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

NC DOCKS at The University of North Carolina at Greensboro; Supulski GE. An introduction to knots and knot groups. [Thesis]. NC Docks; 1970. Available from: http://libres.uncg.edu/ir/uncg/f/supulski_gwendolyn_1970.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McMaster University

9. Karimi, Homayun. Some Results on the Slice-Ribbon Conjecture.

Degree: MSc, 2013, McMaster University

Slice-ribbon conjecture has been proved for some special families of knots. In this thesis, we briefly mention some of these results.

Master of Science (MSc)

Advisors/Committee Members: Boden, Hans U., Mathematics and Statistics.

Subjects/Keywords: Slice Knot; Ribbon Knot; Slice-Ribbon Conjecture; 2-Bridge Knot; Pretzel Knot; Geometry and Topology; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karimi, H. (2013). Some Results on the Slice-Ribbon Conjecture. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/13481

Chicago Manual of Style (16th Edition):

Karimi, Homayun. “Some Results on the Slice-Ribbon Conjecture.” 2013. Masters Thesis, McMaster University. Accessed September 28, 2020. http://hdl.handle.net/11375/13481.

MLA Handbook (7th Edition):

Karimi, Homayun. “Some Results on the Slice-Ribbon Conjecture.” 2013. Web. 28 Sep 2020.

Vancouver:

Karimi H. Some Results on the Slice-Ribbon Conjecture. [Internet] [Masters thesis]. McMaster University; 2013. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/11375/13481.

Council of Science Editors:

Karimi H. Some Results on the Slice-Ribbon Conjecture. [Masters Thesis]. McMaster University; 2013. Available from: http://hdl.handle.net/11375/13481

10. Johnson, Genevieve R. The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots.

Degree: 2017, University of Northern Iowa

1 PDF file (ix, 112 pages) Advisors/Committee Members: Theron J. Hitchman.

Subjects/Keywords: Knot theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Johnson, G. R. (2017). The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots. (Thesis). University of Northern Iowa. Retrieved from https://scholarworks.uni.edu/etd/462

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Johnson, Genevieve R. “The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots.” 2017. Thesis, University of Northern Iowa. Accessed September 28, 2020. https://scholarworks.uni.edu/etd/462.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Johnson, Genevieve R. “The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots.” 2017. Web. 28 Sep 2020.

Vancouver:

Johnson GR. The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots. [Internet] [Thesis]. University of Northern Iowa; 2017. [cited 2020 Sep 28]. Available from: https://scholarworks.uni.edu/etd/462.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Johnson GR. The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots. [Thesis]. University of Northern Iowa; 2017. Available from: https://scholarworks.uni.edu/etd/462

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


California State University – San Bernardino

11. Sacdalan, Alvin Mendoza. Aspects of the Jones polynomial.

Degree: MAin Mathematics, Mathematics, 2006, California State University – San Bernardino

 A knot invariant called the Jones polynomial will be defined in two ways, as the Kauffman Bracket polynomial and the Tutte polynomial. Three properties of… (more)

Subjects/Keywords: Knot polynomials; Knot theory; Knot polynomials; Knot theory.; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sacdalan, A. M. (2006). Aspects of the Jones polynomial. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/2872

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sacdalan, Alvin Mendoza. “Aspects of the Jones polynomial.” 2006. Thesis, California State University – San Bernardino. Accessed September 28, 2020. https://scholarworks.lib.csusb.edu/etd-project/2872.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sacdalan, Alvin Mendoza. “Aspects of the Jones polynomial.” 2006. Web. 28 Sep 2020.

Vancouver:

Sacdalan AM. Aspects of the Jones polynomial. [Internet] [Thesis]. California State University – San Bernardino; 2006. [cited 2020 Sep 28]. Available from: https://scholarworks.lib.csusb.edu/etd-project/2872.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sacdalan AM. Aspects of the Jones polynomial. [Thesis]. California State University – San Bernardino; 2006. Available from: https://scholarworks.lib.csusb.edu/etd-project/2872

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Oregon State University

12. Eshtiaghi, Hassan. Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker).

Degree: PhD, Botany, 1974, Oregon State University

 The northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) is a widespread pest on many plants in temperate zones such as the Pacific Northwest (U. S.… (more)

Subjects/Keywords: Root-knot

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eshtiaghi, H. (1974). Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker). (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/44247

Chicago Manual of Style (16th Edition):

Eshtiaghi, Hassan. “Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker).” 1974. Doctoral Dissertation, Oregon State University. Accessed September 28, 2020. http://hdl.handle.net/1957/44247.

MLA Handbook (7th Edition):

Eshtiaghi, Hassan. “Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker).” 1974. Web. 28 Sep 2020.

Vancouver:

Eshtiaghi H. Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker). [Internet] [Doctoral dissertation]. Oregon State University; 1974. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1957/44247.

Council of Science Editors:

Eshtiaghi H. Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker). [Doctoral Dissertation]. Oregon State University; 1974. Available from: http://hdl.handle.net/1957/44247


Central Connecticut State University

13. Wysong, Kimberly Ann, 1979-. Minimal Embeddings of Knots in the Cubic Lattice.

Degree: Department of Mathematical Sciences, 2008, Central Connecticut State University

 steps required to represent the knot as a polygon in the cubic lattice. Several lower bounds for the lattice step numbers of different knots have… (more)

Subjects/Keywords: Knot theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wysong, Kimberly Ann, 1. (2008). Minimal Embeddings of Knots in the Cubic Lattice. (Thesis). Central Connecticut State University. Retrieved from http://content.library.ccsu.edu/u?/ccsutheses,1019

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wysong, Kimberly Ann, 1979-. “Minimal Embeddings of Knots in the Cubic Lattice.” 2008. Thesis, Central Connecticut State University. Accessed September 28, 2020. http://content.library.ccsu.edu/u?/ccsutheses,1019.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wysong, Kimberly Ann, 1979-. “Minimal Embeddings of Knots in the Cubic Lattice.” 2008. Web. 28 Sep 2020.

Vancouver:

Wysong, Kimberly Ann 1. Minimal Embeddings of Knots in the Cubic Lattice. [Internet] [Thesis]. Central Connecticut State University; 2008. [cited 2020 Sep 28]. Available from: http://content.library.ccsu.edu/u?/ccsutheses,1019.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wysong, Kimberly Ann 1. Minimal Embeddings of Knots in the Cubic Lattice. [Thesis]. Central Connecticut State University; 2008. Available from: http://content.library.ccsu.edu/u?/ccsutheses,1019

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

14. Simpson, David H. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.

Degree: 2019, University of Illinois – Chicago

 We examine the relation between Ribbon Hopf Algebras and 1-1 Tangles  – knot diagrams that are cut at a point with the ends pulled apart.… (more)

Subjects/Keywords: Knot Invariants; Hopf Algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Simpson, D. H. (2019). The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Simpson, David H. “The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.” 2019. Thesis, University of Illinois – Chicago. Accessed September 28, 2020. http://hdl.handle.net/10027/23681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Simpson, David H. “The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.” 2019. Web. 28 Sep 2020.

Vancouver:

Simpson DH. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. [Internet] [Thesis]. University of Illinois – Chicago; 2019. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10027/23681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Simpson DH. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. [Thesis]. University of Illinois – Chicago; 2019. Available from: http://hdl.handle.net/10027/23681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

15. Piccirillo, Lisa Marie. Knot traces and the slice genus.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

Knot traces are elementary 4-manifolds built by attaching a single 2-handle to the 4-ball; these are the canonical examples 4-manifolds with non-trivial middle dimensional homology.… (more)

Subjects/Keywords: 4-manifold topology; Knot concordance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Piccirillo, L. M. (2019). Knot traces and the slice genus. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/2772

Chicago Manual of Style (16th Edition):

Piccirillo, Lisa Marie. “Knot traces and the slice genus.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed September 28, 2020. http://dx.doi.org/10.26153/tsw/2772.

MLA Handbook (7th Edition):

Piccirillo, Lisa Marie. “Knot traces and the slice genus.” 2019. Web. 28 Sep 2020.

Vancouver:

Piccirillo LM. Knot traces and the slice genus. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2020 Sep 28]. Available from: http://dx.doi.org/10.26153/tsw/2772.

Council of Science Editors:

Piccirillo LM. Knot traces and the slice genus. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/2772


Michigan State University

16. Lee, Christine Ruey Shan. Jones-type link invariants and applications to 3-manifold topology.

Degree: 2015, Michigan State University

"It is known that the Slope Conjecture is true for an adequate link, and that the colored Jones polynomial of a semi-adequate link has a… (more)

Subjects/Keywords: Polynomials; Knot theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lee, C. R. S. (2015). Jones-type link invariants and applications to 3-manifold topology. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:2912

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lee, Christine Ruey Shan. “Jones-type link invariants and applications to 3-manifold topology.” 2015. Thesis, Michigan State University. Accessed September 28, 2020. http://etd.lib.msu.edu/islandora/object/etd:2912.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lee, Christine Ruey Shan. “Jones-type link invariants and applications to 3-manifold topology.” 2015. Web. 28 Sep 2020.

Vancouver:

Lee CRS. Jones-type link invariants and applications to 3-manifold topology. [Internet] [Thesis]. Michigan State University; 2015. [cited 2020 Sep 28]. Available from: http://etd.lib.msu.edu/islandora/object/etd:2912.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee CRS. Jones-type link invariants and applications to 3-manifold topology. [Thesis]. Michigan State University; 2015. Available from: http://etd.lib.msu.edu/islandora/object/etd:2912

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Victoria University of Wellington

17. Le Gros, Giovanna. The Khovanov homology of knots.

Degree: 2015, Victoria University of Wellington

 The Khovanov homology is a knot invariant which first appeared in Khovanov's original paper of 1999, titled ``a categorification of the Jones polynomial.'' This thesis… (more)

Subjects/Keywords: Knot invariant; Jones polynomial; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Le Gros, G. (2015). The Khovanov homology of knots. (Masters Thesis). Victoria University of Wellington. Retrieved from http://hdl.handle.net/10063/4901

Chicago Manual of Style (16th Edition):

Le Gros, Giovanna. “The Khovanov homology of knots.” 2015. Masters Thesis, Victoria University of Wellington. Accessed September 28, 2020. http://hdl.handle.net/10063/4901.

MLA Handbook (7th Edition):

Le Gros, Giovanna. “The Khovanov homology of knots.” 2015. Web. 28 Sep 2020.

Vancouver:

Le Gros G. The Khovanov homology of knots. [Internet] [Masters thesis]. Victoria University of Wellington; 2015. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10063/4901.

Council of Science Editors:

Le Gros G. The Khovanov homology of knots. [Masters Thesis]. Victoria University of Wellington; 2015. Available from: http://hdl.handle.net/10063/4901


University of Toronto

18. Halacheva, Iva. Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group.

Degree: PhD, 2016, University of Toronto

 This thesis consists of two parts, the first part is in the setting of algebraic knot theory while the second studies ideas in representation theory.… (more)

Subjects/Keywords: Knot theory; Representation theory; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Halacheva, I. (2016). Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/76486

Chicago Manual of Style (16th Edition):

Halacheva, Iva. “Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group.” 2016. Doctoral Dissertation, University of Toronto. Accessed September 28, 2020. http://hdl.handle.net/1807/76486.

MLA Handbook (7th Edition):

Halacheva, Iva. “Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group.” 2016. Web. 28 Sep 2020.

Vancouver:

Halacheva I. Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group. [Internet] [Doctoral dissertation]. University of Toronto; 2016. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1807/76486.

Council of Science Editors:

Halacheva I. Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group. [Doctoral Dissertation]. University of Toronto; 2016. Available from: http://hdl.handle.net/1807/76486


University of Arizona

19. Noel, Gregory Ross, 1947-. Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita .

Degree: 1972, University of Arizona

Subjects/Keywords: Root-knot.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Noel, Gregory Ross, 1. (1972). Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita . (Masters Thesis). University of Arizona. Retrieved from http://hdl.handle.net/10150/554887

Chicago Manual of Style (16th Edition):

Noel, Gregory Ross, 1947-. “Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita .” 1972. Masters Thesis, University of Arizona. Accessed September 28, 2020. http://hdl.handle.net/10150/554887.

MLA Handbook (7th Edition):

Noel, Gregory Ross, 1947-. “Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita .” 1972. Web. 28 Sep 2020.

Vancouver:

Noel, Gregory Ross 1. Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita . [Internet] [Masters thesis]. University of Arizona; 1972. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10150/554887.

Council of Science Editors:

Noel, Gregory Ross 1. Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita . [Masters Thesis]. University of Arizona; 1972. Available from: http://hdl.handle.net/10150/554887


University of Ghana

20. Vigbedor , D.H. Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana .

Degree: 2019, University of Ghana

 The pathogenicity of fungus, Fusarium oxysporum f. sp. lycopersici and nematode, Meloidogyne incognita on growth, yield and wilt severity was studied on two tomato varieties,… (more)

Subjects/Keywords: Tomato; Ghana; Root-Knot Nematode

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vigbedor , D. H. (2019). Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana . (Masters Thesis). University of Ghana. Retrieved from http://ugspace.ug.edu.gh/handle/123456789/35183

Chicago Manual of Style (16th Edition):

Vigbedor , D H. “Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana .” 2019. Masters Thesis, University of Ghana. Accessed September 28, 2020. http://ugspace.ug.edu.gh/handle/123456789/35183.

MLA Handbook (7th Edition):

Vigbedor , D H. “Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana .” 2019. Web. 28 Sep 2020.

Vancouver:

Vigbedor DH. Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana . [Internet] [Masters thesis]. University of Ghana; 2019. [cited 2020 Sep 28]. Available from: http://ugspace.ug.edu.gh/handle/123456789/35183.

Council of Science Editors:

Vigbedor DH. Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana . [Masters Thesis]. University of Ghana; 2019. Available from: http://ugspace.ug.edu.gh/handle/123456789/35183


Louisiana State University

21. Cai, Xuanting. Skein theory and topological quantum field theory.

Degree: PhD, Applied Mathematics, 2013, Louisiana State University

 Skein modules arise naturally when mathematicians try to generalize the Jones polynomial of knots. In the first part of this work, we study properties of… (more)

Subjects/Keywords: knot theory; TQFT; skein theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cai, X. (2013). Skein theory and topological quantum field theory. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-04052013-164820 ; https://digitalcommons.lsu.edu/gradschool_dissertations/4070

Chicago Manual of Style (16th Edition):

Cai, Xuanting. “Skein theory and topological quantum field theory.” 2013. Doctoral Dissertation, Louisiana State University. Accessed September 28, 2020. etd-04052013-164820 ; https://digitalcommons.lsu.edu/gradschool_dissertations/4070.

MLA Handbook (7th Edition):

Cai, Xuanting. “Skein theory and topological quantum field theory.” 2013. Web. 28 Sep 2020.

Vancouver:

Cai X. Skein theory and topological quantum field theory. [Internet] [Doctoral dissertation]. Louisiana State University; 2013. [cited 2020 Sep 28]. Available from: etd-04052013-164820 ; https://digitalcommons.lsu.edu/gradschool_dissertations/4070.

Council of Science Editors:

Cai X. Skein theory and topological quantum field theory. [Doctoral Dissertation]. Louisiana State University; 2013. Available from: etd-04052013-164820 ; https://digitalcommons.lsu.edu/gradschool_dissertations/4070


Oklahoma State University

22. Yang, Xiaowei. Integral graded homology of Reeb chord complex of Legendrian knots in R^3.

Degree: Mathematics, 2014, Oklahoma State University

 The main work of this thesis concerns the classification of Legendrian knots up to Legendrian isotopy in R3 with standard contact structure. In the thesis,… (more)

Subjects/Keywords: legendrian knot; reeb chord

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, X. (2014). Integral graded homology of Reeb chord complex of Legendrian knots in R^3. (Thesis). Oklahoma State University. Retrieved from http://hdl.handle.net/11244/15211

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yang, Xiaowei. “Integral graded homology of Reeb chord complex of Legendrian knots in R^3.” 2014. Thesis, Oklahoma State University. Accessed September 28, 2020. http://hdl.handle.net/11244/15211.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yang, Xiaowei. “Integral graded homology of Reeb chord complex of Legendrian knots in R^3.” 2014. Web. 28 Sep 2020.

Vancouver:

Yang X. Integral graded homology of Reeb chord complex of Legendrian knots in R^3. [Internet] [Thesis]. Oklahoma State University; 2014. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/11244/15211.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yang X. Integral graded homology of Reeb chord complex of Legendrian knots in R^3. [Thesis]. Oklahoma State University; 2014. Available from: http://hdl.handle.net/11244/15211

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McMaster University

23. White, Lindsay. Alexander Invariants of Periodic Virtual Knots.

Degree: PhD, 2017, McMaster University

In this thesis, we show that every periodic virtual knot can be realized as the closure of a periodic virtual braid. If K is a… (more)

Subjects/Keywords: Knot Theory; Virtual Knots; Periodic Knots; Virtual Knot Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

White, L. (2017). Alexander Invariants of Periodic Virtual Knots. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/21006

Chicago Manual of Style (16th Edition):

White, Lindsay. “Alexander Invariants of Periodic Virtual Knots.” 2017. Doctoral Dissertation, McMaster University. Accessed September 28, 2020. http://hdl.handle.net/11375/21006.

MLA Handbook (7th Edition):

White, Lindsay. “Alexander Invariants of Periodic Virtual Knots.” 2017. Web. 28 Sep 2020.

Vancouver:

White L. Alexander Invariants of Periodic Virtual Knots. [Internet] [Doctoral dissertation]. McMaster University; 2017. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/11375/21006.

Council of Science Editors:

White L. Alexander Invariants of Periodic Virtual Knots. [Doctoral Dissertation]. McMaster University; 2017. Available from: http://hdl.handle.net/11375/21006


McMaster University

24. Chen, Jie. Unknotting operations for classical, virtual and welded knots.

Degree: MSc, 2019, McMaster University

This thesis is largely expository, and we provide a survey on unknotting operations. We examine these local transformations for classical, virtual and welded knots and… (more)

Subjects/Keywords: unknotting operation; virtual knot; unknotting number; welded knot

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, J. (2019). Unknotting operations for classical, virtual and welded knots. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/25082

Chicago Manual of Style (16th Edition):

Chen, Jie. “Unknotting operations for classical, virtual and welded knots.” 2019. Masters Thesis, McMaster University. Accessed September 28, 2020. http://hdl.handle.net/11375/25082.

MLA Handbook (7th Edition):

Chen, Jie. “Unknotting operations for classical, virtual and welded knots.” 2019. Web. 28 Sep 2020.

Vancouver:

Chen J. Unknotting operations for classical, virtual and welded knots. [Internet] [Masters thesis]. McMaster University; 2019. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/11375/25082.

Council of Science Editors:

Chen J. Unknotting operations for classical, virtual and welded knots. [Masters Thesis]. McMaster University; 2019. Available from: http://hdl.handle.net/11375/25082


Univerzitet u Beogradu

25. Zeković, Ana Z. 1982-. Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

Računarstvo - Teorija čvorova / Computer science - Knot theory

Glavni sadržaj ovog rada je konstrukcija novih metoda za određivanje različitih tipova rastojanja čvorova -… (more)

Subjects/Keywords: Conway notation; knot distance; unknotting number; knot minimization; Perko pair knots

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zeković, A. Z. 1. (2016). Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:11475/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zeković, Ana Z 1982-. “Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova.” 2016. Thesis, Univerzitet u Beogradu. Accessed September 28, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:11475/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zeković, Ana Z 1982-. “Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova.” 2016. Web. 28 Sep 2020.

Vancouver:

Zeković AZ1. Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2020 Sep 28]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11475/bdef:Content/get.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zeković AZ1. Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11475/bdef:Content/get

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Princeton University

26. Truong, Linh My. Applications of Heegaard Floer Homology to Knot Concordance .

Degree: PhD, 2016, Princeton University

 We consider several applications of Heegaard Floer homology to the study of knot concordance. Using the techniques of bordered Heegaard Floer homology, we compute the… (more)

Subjects/Keywords: heegaard floer homology; knot concordance; knot theory; low dimensional topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Truong, L. M. (2016). Applications of Heegaard Floer Homology to Knot Concordance . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp019880vt394

Chicago Manual of Style (16th Edition):

Truong, Linh My. “Applications of Heegaard Floer Homology to Knot Concordance .” 2016. Doctoral Dissertation, Princeton University. Accessed September 28, 2020. http://arks.princeton.edu/ark:/88435/dsp019880vt394.

MLA Handbook (7th Edition):

Truong, Linh My. “Applications of Heegaard Floer Homology to Knot Concordance .” 2016. Web. 28 Sep 2020.

Vancouver:

Truong LM. Applications of Heegaard Floer Homology to Knot Concordance . [Internet] [Doctoral dissertation]. Princeton University; 2016. [cited 2020 Sep 28]. Available from: http://arks.princeton.edu/ark:/88435/dsp019880vt394.

Council of Science Editors:

Truong LM. Applications of Heegaard Floer Homology to Knot Concordance . [Doctoral Dissertation]. Princeton University; 2016. Available from: http://arks.princeton.edu/ark:/88435/dsp019880vt394


University of Iowa

27. Honken, Annette Marie. Mapping distance one neighborhoods within knot distance graphs.

Degree: PhD, Mathematics, 2015, University of Iowa

  A knot is an embedding of S1 in three-dimensional space. Generally, it can be thought of as a knotted piece of string with the… (more)

Subjects/Keywords: publicabstract; graph theory; knot theory; rational knot; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Honken, A. M. (2015). Mapping distance one neighborhoods within knot distance graphs. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/1852

Chicago Manual of Style (16th Edition):

Honken, Annette Marie. “Mapping distance one neighborhoods within knot distance graphs.” 2015. Doctoral Dissertation, University of Iowa. Accessed September 28, 2020. https://ir.uiowa.edu/etd/1852.

MLA Handbook (7th Edition):

Honken, Annette Marie. “Mapping distance one neighborhoods within knot distance graphs.” 2015. Web. 28 Sep 2020.

Vancouver:

Honken AM. Mapping distance one neighborhoods within knot distance graphs. [Internet] [Doctoral dissertation]. University of Iowa; 2015. [cited 2020 Sep 28]. Available from: https://ir.uiowa.edu/etd/1852.

Council of Science Editors:

Honken AM. Mapping distance one neighborhoods within knot distance graphs. [Doctoral Dissertation]. University of Iowa; 2015. Available from: https://ir.uiowa.edu/etd/1852


University of Georgia

28. Mullikin, Chad A. S. On length minimizing curves with distortion thickness bounded below and distortion bounded above.

Degree: 2014, University of Georgia

 The distortion of a curve is the supremum, taken over distinct pairs of points of the curve, of the ratio of arclength to spatial distance… (more)

Subjects/Keywords: Knot Theory; Knot Energy; Gromov\'s Distortion; Ropelength

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mullikin, C. A. S. (2014). On length minimizing curves with distortion thickness bounded below and distortion bounded above. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/23475

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mullikin, Chad A S. “On length minimizing curves with distortion thickness bounded below and distortion bounded above.” 2014. Thesis, University of Georgia. Accessed September 28, 2020. http://hdl.handle.net/10724/23475.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mullikin, Chad A S. “On length minimizing curves with distortion thickness bounded below and distortion bounded above.” 2014. Web. 28 Sep 2020.

Vancouver:

Mullikin CAS. On length minimizing curves with distortion thickness bounded below and distortion bounded above. [Internet] [Thesis]. University of Georgia; 2014. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10724/23475.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mullikin CAS. On length minimizing curves with distortion thickness bounded below and distortion bounded above. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/23475

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

29. Samson, Genevieve. Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots.

Degree: MS, Textile Engineering, 2009, North Carolina State University

 Despite the latest polymer materials and surgical suturing techniques, the knot will always be the weakest point of the tied suture loop. In theory, the… (more)

Subjects/Keywords: knot security; knot reinforcement; surgical knot; suture

…5 2.2 Knot Definition… …8 2.4 Knot Challenges and Limitations… …10 2.5 Knot Performance… …11 2.5.1 Knot Mechanics… …11 2.5.2 Type of Knot Failure… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Samson, G. (2009). Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots. (Thesis). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/2783

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Samson, Genevieve. “Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots.” 2009. Thesis, North Carolina State University. Accessed September 28, 2020. http://www.lib.ncsu.edu/resolver/1840.16/2783.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Samson, Genevieve. “Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots.” 2009. Web. 28 Sep 2020.

Vancouver:

Samson G. Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots. [Internet] [Thesis]. North Carolina State University; 2009. [cited 2020 Sep 28]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/2783.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Samson G. Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots. [Thesis]. North Carolina State University; 2009. Available from: http://www.lib.ncsu.edu/resolver/1840.16/2783

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

30. Padey, Ramesh Chandra. A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;.

Degree: Agriculture Botany, 2005, Chaudhary Charan Singh University

A Study On The Effect Of Botanical Pesticides To Control Root Knot_Nematode In Some Vegetable Crops

Advisors/Committee Members: Dwivedi, B. K..

Subjects/Keywords: Botanical Pesticides; Root Knot; Nematode; Vegetable Crops

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Padey, R. C. (2005). A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;. (Thesis). Chaudhary Charan Singh University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/20153

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Padey, Ramesh Chandra. “A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;.” 2005. Thesis, Chaudhary Charan Singh University. Accessed September 28, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/20153.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Padey, Ramesh Chandra. “A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;.” 2005. Web. 28 Sep 2020.

Vancouver:

Padey RC. A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;. [Internet] [Thesis]. Chaudhary Charan Singh University; 2005. [cited 2020 Sep 28]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20153.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Padey RC. A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;. [Thesis]. Chaudhary Charan Singh University; 2005. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20153

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5] … [13]

.