Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Knot)`

.
Showing records 1 – 30 of
366 total matches.

◁ [1] [2] [3] [4] [5] … [13] ▶

Search Limiters

Dates

- 2016 – 2020 (104)
- 2011 – 2015 (148)
- 2006 – 2010 (66)
- 2001 – 2005 (22)
- 1996 – 2000 (10)
- 1981 – 1985 (10)

Universities

- University of Florida (31)
- Rice University (12)
- University of Georgia (12)
- University of Iowa (12)
- Louisiana State University (10)
- Michigan State University (10)

Department

- Mathematics (39)
- Natural Sciences (12)
- Entomology and Nematology (11)
- Applied Mathematics (10)
- Botany (10)
- Plant Pathology (10)

Degrees

- PhD (111)
- MS (41)
- Docteur es (16)

Languages

- English (216)
- Portuguese (28)
- French (10)

▼ Search Limiters

Louisiana State University

1. Peng, Jun. Beyond the Tails of the Colored Jones Polynomial.

Degree: PhD, Applied Mathematics, 2016, Louisiana State University

URL: etd-07012016-104111 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2227

► In [2] Armond showed that the heads and tails of the colored Jones polynomial exist for adequate links. This was also shown independently by Garoufalidis…
(more)

Subjects/Keywords: alternating knot; knot theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Peng, J. (2016). Beyond the Tails of the Colored Jones Polynomial. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-07012016-104111 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2227

Chicago Manual of Style (16^{th} Edition):

Peng, Jun. “Beyond the Tails of the Colored Jones Polynomial.” 2016. Doctoral Dissertation, Louisiana State University. Accessed September 28, 2020. etd-07012016-104111 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2227.

MLA Handbook (7^{th} Edition):

Peng, Jun. “Beyond the Tails of the Colored Jones Polynomial.” 2016. Web. 28 Sep 2020.

Vancouver:

Peng J. Beyond the Tails of the Colored Jones Polynomial. [Internet] [Doctoral dissertation]. Louisiana State University; 2016. [cited 2020 Sep 28]. Available from: etd-07012016-104111 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2227.

Council of Science Editors:

Peng J. Beyond the Tails of the Colored Jones Polynomial. [Doctoral Dissertation]. Louisiana State University; 2016. Available from: etd-07012016-104111 ; https://digitalcommons.lsu.edu/gradschool_dissertations/2227

California State Polytechnic University – Pomona

2. Arrua, Alicia. On the additivity of crossing numbers.

Degree: MS, Mathematics, 2015, California State Polytechnic University – Pomona

URL: http://hdl.handle.net/10211.3/145707

► The additivity of crossing numbers over a composition of links has been an open problem for over one hundred years. It has been proved that…
(more)

Subjects/Keywords: knot theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Arrua, A. (2015). On the additivity of crossing numbers. (Masters Thesis). California State Polytechnic University – Pomona. Retrieved from http://hdl.handle.net/10211.3/145707

Chicago Manual of Style (16^{th} Edition):

Arrua, Alicia. “On the additivity of crossing numbers.” 2015. Masters Thesis, California State Polytechnic University – Pomona. Accessed September 28, 2020. http://hdl.handle.net/10211.3/145707.

MLA Handbook (7^{th} Edition):

Arrua, Alicia. “On the additivity of crossing numbers.” 2015. Web. 28 Sep 2020.

Vancouver:

Arrua A. On the additivity of crossing numbers. [Internet] [Masters thesis]. California State Polytechnic University – Pomona; 2015. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10211.3/145707.

Council of Science Editors:

Arrua A. On the additivity of crossing numbers. [Masters Thesis]. California State Polytechnic University – Pomona; 2015. Available from: http://hdl.handle.net/10211.3/145707

California State Polytechnic University – Pomona

3. Lamera, Jeremy. An Upper Bound for the Mosaic Number of (2,q)-Torus Knots.

Degree: Masters of Science in Mathematics, Department of Mathematics and Statistics, 2016, California State Polytechnic University – Pomona

URL: http://hdl.handle.net/10211.3/173513

► In 2014, Hwa Jeong Lee, Kyungpo Hong, Ho Lee, and Seungsang Oh provided and proved an upper bound for the mosaic number of torus knots…
(more)

Subjects/Keywords: knot theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lamera, J. (2016). An Upper Bound for the Mosaic Number of (2,q)-Torus Knots. (Masters Thesis). California State Polytechnic University – Pomona. Retrieved from http://hdl.handle.net/10211.3/173513

Chicago Manual of Style (16^{th} Edition):

Lamera, Jeremy. “An Upper Bound for the Mosaic Number of (2,q)-Torus Knots.” 2016. Masters Thesis, California State Polytechnic University – Pomona. Accessed September 28, 2020. http://hdl.handle.net/10211.3/173513.

MLA Handbook (7^{th} Edition):

Lamera, Jeremy. “An Upper Bound for the Mosaic Number of (2,q)-Torus Knots.” 2016. Web. 28 Sep 2020.

Vancouver:

Lamera J. An Upper Bound for the Mosaic Number of (2,q)-Torus Knots. [Internet] [Masters thesis]. California State Polytechnic University – Pomona; 2016. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10211.3/173513.

Council of Science Editors:

Lamera J. An Upper Bound for the Mosaic Number of (2,q)-Torus Knots. [Masters Thesis]. California State Polytechnic University – Pomona; 2016. Available from: http://hdl.handle.net/10211.3/173513

Massey University

4.
Al Fran, Howida.
Generalised *knot* groups of connect sums of torus knots.

Degree: MS, Mathematics, 2012, Massey University

URL: http://hdl.handle.net/10179/4103

► Kelly (1990) and Wada (1992) independently identi ed and de ned the generalised *knot* groups (Gn). The square (SK) and granny (GK) knots are two…
(more)

Subjects/Keywords: Knot theory; Torus knots; Knot groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Al Fran, H. (2012). Generalised knot groups of connect sums of torus knots. (Masters Thesis). Massey University. Retrieved from http://hdl.handle.net/10179/4103

Chicago Manual of Style (16^{th} Edition):

Al Fran, Howida. “Generalised knot groups of connect sums of torus knots.” 2012. Masters Thesis, Massey University. Accessed September 28, 2020. http://hdl.handle.net/10179/4103.

MLA Handbook (7^{th} Edition):

Al Fran, Howida. “Generalised knot groups of connect sums of torus knots.” 2012. Web. 28 Sep 2020.

Vancouver:

Al Fran H. Generalised knot groups of connect sums of torus knots. [Internet] [Masters thesis]. Massey University; 2012. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10179/4103.

Council of Science Editors:

Al Fran H. Generalised knot groups of connect sums of torus knots. [Masters Thesis]. Massey University; 2012. Available from: http://hdl.handle.net/10179/4103

University of Illinois – Chicago

5. Schneider, Jonathan. Diagrammatic Theories of 1- and 2- Dimensional Knots.

Degree: 2016, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/20811

► A meta-theory is described whereby any diagrammatic *knot* theory may be defined by specifying diagrams and moves. This is done explicitly in dimensions 1 and…
(more)

Subjects/Keywords: knot theory; knot diagrams; surface knot theory; 2-knot theory; virtual knots; virtual knot theory; welded knots

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Schneider, J. (2016). Diagrammatic Theories of 1- and 2- Dimensional Knots. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/20811

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Thesis, University of Illinois – Chicago. Accessed September 28, 2020. http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Schneider, Jonathan. “Diagrammatic Theories of 1- and 2- Dimensional Knots.” 2016. Web. 28 Sep 2020.

Vancouver:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Internet] [Thesis]. University of Illinois – Chicago; 2016. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10027/20811.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schneider J. Diagrammatic Theories of 1- and 2- Dimensional Knots. [Thesis]. University of Illinois – Chicago; 2016. Available from: http://hdl.handle.net/10027/20811

Not specified: Masters Thesis or Doctoral Dissertation

6. Ronnenberg, Mark. A survey of butterfly diagrams for knots and links.

Degree: 2017, University of Northern Iowa

URL: https://scholarworks.uni.edu/etd/364

1 PDF file (ix, 93 pages)
*Advisors/Committee Members: Theron Hitchman.*

Subjects/Keywords: Knot theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ronnenberg, M. (2017). A survey of butterfly diagrams for knots and links. (Thesis). University of Northern Iowa. Retrieved from https://scholarworks.uni.edu/etd/364

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ronnenberg, Mark. “A survey of butterfly diagrams for knots and links.” 2017. Thesis, University of Northern Iowa. Accessed September 28, 2020. https://scholarworks.uni.edu/etd/364.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ronnenberg, Mark. “A survey of butterfly diagrams for knots and links.” 2017. Web. 28 Sep 2020.

Vancouver:

Ronnenberg M. A survey of butterfly diagrams for knots and links. [Internet] [Thesis]. University of Northern Iowa; 2017. [cited 2020 Sep 28]. Available from: https://scholarworks.uni.edu/etd/364.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ronnenberg M. A survey of butterfly diagrams for knots and links. [Thesis]. University of Northern Iowa; 2017. Available from: https://scholarworks.uni.edu/etd/364

Not specified: Masters Thesis or Doctoral Dissertation

Cornell University

7. Samuelson, Peter. Kauffman Bracket Skein Modules And The Quantum Torus.

Degree: PhD, Mathematics, 2012, Cornell University

URL: http://hdl.handle.net/1813/31119

► If M is a 3-manifold, the Kauffman bracket skein module is a vector space Kq (M ) functorially associated to M that depends on a…
(more)

Subjects/Keywords: knot theory; quantum algebra

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Samuelson, P. (2012). Kauffman Bracket Skein Modules And The Quantum Torus. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/31119

Chicago Manual of Style (16^{th} Edition):

Samuelson, Peter. “Kauffman Bracket Skein Modules And The Quantum Torus.” 2012. Doctoral Dissertation, Cornell University. Accessed September 28, 2020. http://hdl.handle.net/1813/31119.

MLA Handbook (7^{th} Edition):

Samuelson, Peter. “Kauffman Bracket Skein Modules And The Quantum Torus.” 2012. Web. 28 Sep 2020.

Vancouver:

Samuelson P. Kauffman Bracket Skein Modules And The Quantum Torus. [Internet] [Doctoral dissertation]. Cornell University; 2012. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1813/31119.

Council of Science Editors:

Samuelson P. Kauffman Bracket Skein Modules And The Quantum Torus. [Doctoral Dissertation]. Cornell University; 2012. Available from: http://hdl.handle.net/1813/31119

8.
NC DOCKS at The University of North Carolina at Greensboro; Supulski, Gwendolyn Eva.
An introduction to knots and *knot* groups.

Degree: 1970, NC Docks

URL: http://libres.uncg.edu/ir/uncg/f/supulski_gwendolyn_1970.pdf

► The purpose of this paper is to present an introduction to the theory of knots and *knot* groups assuming an intermediate knowledge of group theory…
(more)

Subjects/Keywords: Knot theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

NC DOCKS at The University of North Carolina at Greensboro; Supulski, G. E. (1970). An introduction to knots and knot groups. (Thesis). NC Docks. Retrieved from http://libres.uncg.edu/ir/uncg/f/supulski_gwendolyn_1970.pdf

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

NC DOCKS at The University of North Carolina at Greensboro; Supulski, Gwendolyn Eva. “An introduction to knots and knot groups.” 1970. Thesis, NC Docks. Accessed September 28, 2020. http://libres.uncg.edu/ir/uncg/f/supulski_gwendolyn_1970.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

NC DOCKS at The University of North Carolina at Greensboro; Supulski, Gwendolyn Eva. “An introduction to knots and knot groups.” 1970. Web. 28 Sep 2020.

Vancouver:

NC DOCKS at The University of North Carolina at Greensboro; Supulski GE. An introduction to knots and knot groups. [Internet] [Thesis]. NC Docks; 1970. [cited 2020 Sep 28]. Available from: http://libres.uncg.edu/ir/uncg/f/supulski_gwendolyn_1970.pdf.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

NC DOCKS at The University of North Carolina at Greensboro; Supulski GE. An introduction to knots and knot groups. [Thesis]. NC Docks; 1970. Available from: http://libres.uncg.edu/ir/uncg/f/supulski_gwendolyn_1970.pdf

Not specified: Masters Thesis or Doctoral Dissertation

McMaster University

9. Karimi, Homayun. Some Results on the Slice-Ribbon Conjecture.

Degree: MSc, 2013, McMaster University

URL: http://hdl.handle.net/11375/13481

Slice-ribbon conjecture has been proved for some special families of knots. In this thesis, we briefly mention some of these results.

Master of Science (MSc)

Subjects/Keywords: Slice Knot; Ribbon Knot; Slice-Ribbon Conjecture; 2-Bridge Knot; Pretzel Knot; Geometry and Topology; Geometry and Topology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Karimi, H. (2013). Some Results on the Slice-Ribbon Conjecture. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/13481

Chicago Manual of Style (16^{th} Edition):

Karimi, Homayun. “Some Results on the Slice-Ribbon Conjecture.” 2013. Masters Thesis, McMaster University. Accessed September 28, 2020. http://hdl.handle.net/11375/13481.

MLA Handbook (7^{th} Edition):

Karimi, Homayun. “Some Results on the Slice-Ribbon Conjecture.” 2013. Web. 28 Sep 2020.

Vancouver:

Karimi H. Some Results on the Slice-Ribbon Conjecture. [Internet] [Masters thesis]. McMaster University; 2013. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/11375/13481.

Council of Science Editors:

Karimi H. Some Results on the Slice-Ribbon Conjecture. [Masters Thesis]. McMaster University; 2013. Available from: http://hdl.handle.net/11375/13481

10. Johnson, Genevieve R. The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots.

Degree: 2017, University of Northern Iowa

URL: https://scholarworks.uni.edu/etd/462

1 PDF file (ix, 112 pages)
*Advisors/Committee Members: Theron J. Hitchman.*

Subjects/Keywords: Knot theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Johnson, G. R. (2017). The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots. (Thesis). University of Northern Iowa. Retrieved from https://scholarworks.uni.edu/etd/462

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Johnson, Genevieve R. “The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots.” 2017. Thesis, University of Northern Iowa. Accessed September 28, 2020. https://scholarworks.uni.edu/etd/462.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Johnson, Genevieve R. “The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots.” 2017. Web. 28 Sep 2020.

Vancouver:

Johnson GR. The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots. [Internet] [Thesis]. University of Northern Iowa; 2017. [cited 2020 Sep 28]. Available from: https://scholarworks.uni.edu/etd/462.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Johnson GR. The programmatic manipulation of planar diagram codes to find an upper bound on the bridge index of prime knots. [Thesis]. University of Northern Iowa; 2017. Available from: https://scholarworks.uni.edu/etd/462

Not specified: Masters Thesis or Doctoral Dissertation

California State University – San Bernardino

11. Sacdalan, Alvin Mendoza. Aspects of the Jones polynomial.

Degree: MAin Mathematics, Mathematics, 2006, California State University – San Bernardino

URL: https://scholarworks.lib.csusb.edu/etd-project/2872

► A *knot* invariant called the Jones polynomial will be defined in two ways, as the Kauffman Bracket polynomial and the Tutte polynomial. Three properties of…
(more)

Subjects/Keywords: Knot polynomials; Knot theory; Knot polynomials; Knot theory.; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sacdalan, A. M. (2006). Aspects of the Jones polynomial. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/2872

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sacdalan, Alvin Mendoza. “Aspects of the Jones polynomial.” 2006. Thesis, California State University – San Bernardino. Accessed September 28, 2020. https://scholarworks.lib.csusb.edu/etd-project/2872.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sacdalan, Alvin Mendoza. “Aspects of the Jones polynomial.” 2006. Web. 28 Sep 2020.

Vancouver:

Sacdalan AM. Aspects of the Jones polynomial. [Internet] [Thesis]. California State University – San Bernardino; 2006. [cited 2020 Sep 28]. Available from: https://scholarworks.lib.csusb.edu/etd-project/2872.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sacdalan AM. Aspects of the Jones polynomial. [Thesis]. California State University – San Bernardino; 2006. Available from: https://scholarworks.lib.csusb.edu/etd-project/2872

Not specified: Masters Thesis or Doctoral Dissertation

Oregon State University

12.
Eshtiaghi, Hassan.
Effects of the northern root-*knot* nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker).

Degree: PhD, Botany, 1974, Oregon State University

URL: http://hdl.handle.net/1957/44247

► The northern root-*knot* nematode (Meloidogyne hapla Chitwood, 1949) is a widespread pest on many plants in temperate zones such as the Pacific Northwest (U. S.…
(more)

Subjects/Keywords: Root-knot

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Eshtiaghi, H. (1974). Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker). (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/44247

Chicago Manual of Style (16^{th} Edition):

Eshtiaghi, Hassan. “Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker).” 1974. Doctoral Dissertation, Oregon State University. Accessed September 28, 2020. http://hdl.handle.net/1957/44247.

MLA Handbook (7^{th} Edition):

Eshtiaghi, Hassan. “Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker).” 1974. Web. 28 Sep 2020.

Vancouver:

Eshtiaghi H. Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker). [Internet] [Doctoral dissertation]. Oregon State University; 1974. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1957/44247.

Council of Science Editors:

Eshtiaghi H. Effects of the northern root-knot nematode (Meloidogyne hapla Chitwood, 1949) on Mitcham peppermint (Mentha piperita L.) and Scotch spearmint (Mentha cardiaca Baker). [Doctoral Dissertation]. Oregon State University; 1974. Available from: http://hdl.handle.net/1957/44247

Central Connecticut State University

13. Wysong, Kimberly Ann, 1979-. Minimal Embeddings of Knots in the Cubic Lattice.

Degree: Department of Mathematical Sciences, 2008, Central Connecticut State University

URL: http://content.library.ccsu.edu/u?/ccsutheses,1019

► steps required to represent the *knot* as a polygon in the cubic lattice. Several lower bounds for the lattice step numbers of different knots have…
(more)

Subjects/Keywords: Knot theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wysong, Kimberly Ann, 1. (2008). Minimal Embeddings of Knots in the Cubic Lattice. (Thesis). Central Connecticut State University. Retrieved from http://content.library.ccsu.edu/u?/ccsutheses,1019

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wysong, Kimberly Ann, 1979-. “Minimal Embeddings of Knots in the Cubic Lattice.” 2008. Thesis, Central Connecticut State University. Accessed September 28, 2020. http://content.library.ccsu.edu/u?/ccsutheses,1019.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wysong, Kimberly Ann, 1979-. “Minimal Embeddings of Knots in the Cubic Lattice.” 2008. Web. 28 Sep 2020.

Vancouver:

Wysong, Kimberly Ann 1. Minimal Embeddings of Knots in the Cubic Lattice. [Internet] [Thesis]. Central Connecticut State University; 2008. [cited 2020 Sep 28]. Available from: http://content.library.ccsu.edu/u?/ccsutheses,1019.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wysong, Kimberly Ann 1. Minimal Embeddings of Knots in the Cubic Lattice. [Thesis]. Central Connecticut State University; 2008. Available from: http://content.library.ccsu.edu/u?/ccsutheses,1019

Not specified: Masters Thesis or Doctoral Dissertation

University of Illinois – Chicago

14. Simpson, David H. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.

Degree: 2019, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/23681

► We examine the relation between Ribbon Hopf Algebras and 1-1 Tangles – *knot* diagrams that are cut at a point with the ends pulled apart.…
(more)

Subjects/Keywords: Knot Invariants; Hopf Algebras

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Simpson, D. H. (2019). The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23681

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Simpson, David H. “The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.” 2019. Thesis, University of Illinois – Chicago. Accessed September 28, 2020. http://hdl.handle.net/10027/23681.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Simpson, David H. “The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.” 2019. Web. 28 Sep 2020.

Vancouver:

Simpson DH. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. [Internet] [Thesis]. University of Illinois – Chicago; 2019. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10027/23681.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Simpson DH. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. [Thesis]. University of Illinois – Chicago; 2019. Available from: http://hdl.handle.net/10027/23681

Not specified: Masters Thesis or Doctoral Dissertation

University of Texas – Austin

15.
Piccirillo, Lisa Marie.
* Knot* traces and the slice genus.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

URL: http://dx.doi.org/10.26153/tsw/2772

► *Knot* traces are elementary 4-manifolds built by attaching a single 2-handle to the 4-ball; these are the canonical examples 4-manifolds with non-trivial middle dimensional homology.…
(more)

Subjects/Keywords: 4-manifold topology; Knot concordance

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Piccirillo, L. M. (2019). Knot traces and the slice genus. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/2772

Chicago Manual of Style (16^{th} Edition):

Piccirillo, Lisa Marie. “Knot traces and the slice genus.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed September 28, 2020. http://dx.doi.org/10.26153/tsw/2772.

MLA Handbook (7^{th} Edition):

Piccirillo, Lisa Marie. “Knot traces and the slice genus.” 2019. Web. 28 Sep 2020.

Vancouver:

Piccirillo LM. Knot traces and the slice genus. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2020 Sep 28]. Available from: http://dx.doi.org/10.26153/tsw/2772.

Council of Science Editors:

Piccirillo LM. Knot traces and the slice genus. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/2772

Michigan State University

16. Lee, Christine Ruey Shan. Jones-type link invariants and applications to 3-manifold topology.

Degree: 2015, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:2912

►

"It is known that the Slope Conjecture is true for an adequate link, and that the colored Jones polynomial of a semi-adequate link has a… (more)

Subjects/Keywords: Polynomials; Knot theory; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lee, C. R. S. (2015). Jones-type link invariants and applications to 3-manifold topology. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:2912

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lee, Christine Ruey Shan. “Jones-type link invariants and applications to 3-manifold topology.” 2015. Thesis, Michigan State University. Accessed September 28, 2020. http://etd.lib.msu.edu/islandora/object/etd:2912.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lee, Christine Ruey Shan. “Jones-type link invariants and applications to 3-manifold topology.” 2015. Web. 28 Sep 2020.

Vancouver:

Lee CRS. Jones-type link invariants and applications to 3-manifold topology. [Internet] [Thesis]. Michigan State University; 2015. [cited 2020 Sep 28]. Available from: http://etd.lib.msu.edu/islandora/object/etd:2912.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lee CRS. Jones-type link invariants and applications to 3-manifold topology. [Thesis]. Michigan State University; 2015. Available from: http://etd.lib.msu.edu/islandora/object/etd:2912

Not specified: Masters Thesis or Doctoral Dissertation

Victoria University of Wellington

17. Le Gros, Giovanna. The Khovanov homology of knots.

Degree: 2015, Victoria University of Wellington

URL: http://hdl.handle.net/10063/4901

► The Khovanov homology is a *knot* invariant which first appeared in Khovanov's original paper of 1999, titled ``a categorification of the Jones polynomial.'' This thesis…
(more)

Subjects/Keywords: Knot invariant; Jones polynomial; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Le Gros, G. (2015). The Khovanov homology of knots. (Masters Thesis). Victoria University of Wellington. Retrieved from http://hdl.handle.net/10063/4901

Chicago Manual of Style (16^{th} Edition):

Le Gros, Giovanna. “The Khovanov homology of knots.” 2015. Masters Thesis, Victoria University of Wellington. Accessed September 28, 2020. http://hdl.handle.net/10063/4901.

MLA Handbook (7^{th} Edition):

Le Gros, Giovanna. “The Khovanov homology of knots.” 2015. Web. 28 Sep 2020.

Vancouver:

Le Gros G. The Khovanov homology of knots. [Internet] [Masters thesis]. Victoria University of Wellington; 2015. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10063/4901.

Council of Science Editors:

Le Gros G. The Khovanov homology of knots. [Masters Thesis]. Victoria University of Wellington; 2015. Available from: http://hdl.handle.net/10063/4901

University of Toronto

18. Halacheva, Iva. Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group.

Degree: PhD, 2016, University of Toronto

URL: http://hdl.handle.net/1807/76486

► This thesis consists of two parts, the first part is in the setting of algebraic *knot* theory while the second studies ideas in representation theory.…
(more)

Subjects/Keywords: Knot theory; Representation theory; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Halacheva, I. (2016). Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/76486

Chicago Manual of Style (16^{th} Edition):

Halacheva, Iva. “Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group.” 2016. Doctoral Dissertation, University of Toronto. Accessed September 28, 2020. http://hdl.handle.net/1807/76486.

MLA Handbook (7^{th} Edition):

Halacheva, Iva. “Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group.” 2016. Web. 28 Sep 2020.

Vancouver:

Halacheva I. Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group. [Internet] [Doctoral dissertation]. University of Toronto; 2016. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1807/76486.

Council of Science Editors:

Halacheva I. Alexander Type Invariants of Tangles, Skew Howe Duality for Crystals and The Cactus Group. [Doctoral Dissertation]. University of Toronto; 2016. Available from: http://hdl.handle.net/1807/76486

University of Arizona

19. Noel, Gregory Ross, 1947-. Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita .

Degree: 1972, University of Arizona

URL: http://hdl.handle.net/10150/554887

Subjects/Keywords: Root-knot.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Noel, Gregory Ross, 1. (1972). Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita . (Masters Thesis). University of Arizona. Retrieved from http://hdl.handle.net/10150/554887

Chicago Manual of Style (16^{th} Edition):

Noel, Gregory Ross, 1947-. “Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita .” 1972. Masters Thesis, University of Arizona. Accessed September 28, 2020. http://hdl.handle.net/10150/554887.

MLA Handbook (7^{th} Edition):

Noel, Gregory Ross, 1947-. “Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita .” 1972. Web. 28 Sep 2020.

Vancouver:

Noel, Gregory Ross 1. Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita . [Internet] [Masters thesis]. University of Arizona; 1972. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10150/554887.

Council of Science Editors:

Noel, Gregory Ross 1. Histochemistry and enzyme activity of resistant and susceptible cotton infected by Meloidogyne incognita . [Masters Thesis]. University of Arizona; 1972. Available from: http://hdl.handle.net/10150/554887

University of Ghana

20. Vigbedor , D.H. Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana .

Degree: 2019, University of Ghana

URL: http://ugspace.ug.edu.gh/handle/123456789/35183

► The pathogenicity of fungus, Fusarium oxysporum f. sp. lycopersici and nematode, Meloidogyne incognita on growth, yield and wilt severity was studied on two tomato varieties,…
(more)

Subjects/Keywords: Tomato; Ghana; Root-Knot Nematode

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vigbedor , D. H. (2019). Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana . (Masters Thesis). University of Ghana. Retrieved from http://ugspace.ug.edu.gh/handle/123456789/35183

Chicago Manual of Style (16^{th} Edition):

Vigbedor , D H. “Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana .” 2019. Masters Thesis, University of Ghana. Accessed September 28, 2020. http://ugspace.ug.edu.gh/handle/123456789/35183.

MLA Handbook (7^{th} Edition):

Vigbedor , D H. “Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana .” 2019. Web. 28 Sep 2020.

Vancouver:

Vigbedor DH. Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana . [Internet] [Masters thesis]. University of Ghana; 2019. [cited 2020 Sep 28]. Available from: http://ugspace.ug.edu.gh/handle/123456789/35183.

Council of Science Editors:

Vigbedor DH. Pathogenicity of Meloidogyne Incognita and Fusarium Oxysporum F. Sp. Lycopersici on Growth, Yield and Wilt Severity in Two Varieties of Tomato (Solanum Lycopersicum L.) in Ghana . [Masters Thesis]. University of Ghana; 2019. Available from: http://ugspace.ug.edu.gh/handle/123456789/35183

Louisiana State University

21. Cai, Xuanting. Skein theory and topological quantum field theory.

Degree: PhD, Applied Mathematics, 2013, Louisiana State University

URL: etd-04052013-164820 ; https://digitalcommons.lsu.edu/gradschool_dissertations/4070

► Skein modules arise naturally when mathematicians try to generalize the Jones polynomial of knots. In the first part of this work, we study properties of…
(more)

Subjects/Keywords: knot theory; TQFT; skein theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cai, X. (2013). Skein theory and topological quantum field theory. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-04052013-164820 ; https://digitalcommons.lsu.edu/gradschool_dissertations/4070

Chicago Manual of Style (16^{th} Edition):

Cai, Xuanting. “Skein theory and topological quantum field theory.” 2013. Doctoral Dissertation, Louisiana State University. Accessed September 28, 2020. etd-04052013-164820 ; https://digitalcommons.lsu.edu/gradschool_dissertations/4070.

MLA Handbook (7^{th} Edition):

Cai, Xuanting. “Skein theory and topological quantum field theory.” 2013. Web. 28 Sep 2020.

Vancouver:

Cai X. Skein theory and topological quantum field theory. [Internet] [Doctoral dissertation]. Louisiana State University; 2013. [cited 2020 Sep 28]. Available from: etd-04052013-164820 ; https://digitalcommons.lsu.edu/gradschool_dissertations/4070.

Council of Science Editors:

Cai X. Skein theory and topological quantum field theory. [Doctoral Dissertation]. Louisiana State University; 2013. Available from: etd-04052013-164820 ; https://digitalcommons.lsu.edu/gradschool_dissertations/4070

Oklahoma State University

22. Yang, Xiaowei. Integral graded homology of Reeb chord complex of Legendrian knots in R^3.

Degree: Mathematics, 2014, Oklahoma State University

URL: http://hdl.handle.net/11244/15211

► The main work of this thesis concerns the classification of Legendrian knots up to Legendrian isotopy in R^{3} with standard contact structure. In the thesis,…
(more)

Subjects/Keywords: legendrian knot; reeb chord

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yang, X. (2014). Integral graded homology of Reeb chord complex of Legendrian knots in R^3. (Thesis). Oklahoma State University. Retrieved from http://hdl.handle.net/11244/15211

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Yang, Xiaowei. “Integral graded homology of Reeb chord complex of Legendrian knots in R^3.” 2014. Thesis, Oklahoma State University. Accessed September 28, 2020. http://hdl.handle.net/11244/15211.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Yang, Xiaowei. “Integral graded homology of Reeb chord complex of Legendrian knots in R^3.” 2014. Web. 28 Sep 2020.

Vancouver:

Yang X. Integral graded homology of Reeb chord complex of Legendrian knots in R^3. [Internet] [Thesis]. Oklahoma State University; 2014. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/11244/15211.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yang X. Integral graded homology of Reeb chord complex of Legendrian knots in R^3. [Thesis]. Oklahoma State University; 2014. Available from: http://hdl.handle.net/11244/15211

Not specified: Masters Thesis or Doctoral Dissertation

McMaster University

23. White, Lindsay. Alexander Invariants of Periodic Virtual Knots.

Degree: PhD, 2017, McMaster University

URL: http://hdl.handle.net/11375/21006

►

In this thesis, we show that every periodic virtual *knot* can be realized as the closure of a periodic virtual braid. If K is a…
(more)

Subjects/Keywords: Knot Theory; Virtual Knots; Periodic Knots; Virtual Knot Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

White, L. (2017). Alexander Invariants of Periodic Virtual Knots. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/21006

Chicago Manual of Style (16^{th} Edition):

White, Lindsay. “Alexander Invariants of Periodic Virtual Knots.” 2017. Doctoral Dissertation, McMaster University. Accessed September 28, 2020. http://hdl.handle.net/11375/21006.

MLA Handbook (7^{th} Edition):

White, Lindsay. “Alexander Invariants of Periodic Virtual Knots.” 2017. Web. 28 Sep 2020.

Vancouver:

White L. Alexander Invariants of Periodic Virtual Knots. [Internet] [Doctoral dissertation]. McMaster University; 2017. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/11375/21006.

Council of Science Editors:

White L. Alexander Invariants of Periodic Virtual Knots. [Doctoral Dissertation]. McMaster University; 2017. Available from: http://hdl.handle.net/11375/21006

McMaster University

24. Chen, Jie. Unknotting operations for classical, virtual and welded knots.

Degree: MSc, 2019, McMaster University

URL: http://hdl.handle.net/11375/25082

►

This thesis is largely expository, and we provide a survey on unknotting operations. We examine these local transformations for classical, virtual and welded knots and… (more)

Subjects/Keywords: unknotting operation; virtual knot; unknotting number; welded knot

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, J. (2019). Unknotting operations for classical, virtual and welded knots. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/25082

Chicago Manual of Style (16^{th} Edition):

Chen, Jie. “Unknotting operations for classical, virtual and welded knots.” 2019. Masters Thesis, McMaster University. Accessed September 28, 2020. http://hdl.handle.net/11375/25082.

MLA Handbook (7^{th} Edition):

Chen, Jie. “Unknotting operations for classical, virtual and welded knots.” 2019. Web. 28 Sep 2020.

Vancouver:

Chen J. Unknotting operations for classical, virtual and welded knots. [Internet] [Masters thesis]. McMaster University; 2019. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/11375/25082.

Council of Science Editors:

Chen J. Unknotting operations for classical, virtual and welded knots. [Masters Thesis]. McMaster University; 2019. Available from: http://hdl.handle.net/11375/25082

Univerzitet u Beogradu

25. Zeković, Ana Z. 1982-. Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova.

Degree: Matematički fakultet, 2016, Univerzitet u Beogradu

URL: https://fedorabg.bg.ac.rs/fedora/get/o:11475/bdef:Content/get

►

Računarstvo - Teorija čvorova / Computer science - *Knot* theory

Glavni sadržaj ovog rada je konstrukcija novih metoda za određivanje različitih tipova rastojanja čvorova -… (more)

Subjects/Keywords: Conway notation; knot distance; unknotting number; knot minimization; Perko pair knots

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zeković, A. Z. 1. (2016). Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova. (Thesis). Univerzitet u Beogradu. Retrieved from https://fedorabg.bg.ac.rs/fedora/get/o:11475/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Zeković, Ana Z 1982-. “Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova.” 2016. Thesis, Univerzitet u Beogradu. Accessed September 28, 2020. https://fedorabg.bg.ac.rs/fedora/get/o:11475/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Zeković, Ana Z 1982-. “Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova.” 2016. Web. 28 Sep 2020.

Vancouver:

Zeković AZ1. Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova. [Internet] [Thesis]. Univerzitet u Beogradu; 2016. [cited 2020 Sep 28]. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11475/bdef:Content/get.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zeković AZ1. Konvejeva notacija u teoriji čvorova i njena primena u metodima za određivanje rastojanja čvorova. [Thesis]. Univerzitet u Beogradu; 2016. Available from: https://fedorabg.bg.ac.rs/fedora/get/o:11475/bdef:Content/get

Not specified: Masters Thesis or Doctoral Dissertation

Princeton University

26.
Truong, Linh My.
Applications of Heegaard Floer Homology to *Knot* Concordance
.

Degree: PhD, 2016, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp019880vt394

► We consider several applications of Heegaard Floer homology to the study of *knot* concordance. Using the techniques of bordered Heegaard Floer homology, we compute the…
(more)

Subjects/Keywords: heegaard floer homology; knot concordance; knot theory; low dimensional topology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Truong, L. M. (2016). Applications of Heegaard Floer Homology to Knot Concordance . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp019880vt394

Chicago Manual of Style (16^{th} Edition):

Truong, Linh My. “Applications of Heegaard Floer Homology to Knot Concordance .” 2016. Doctoral Dissertation, Princeton University. Accessed September 28, 2020. http://arks.princeton.edu/ark:/88435/dsp019880vt394.

MLA Handbook (7^{th} Edition):

Truong, Linh My. “Applications of Heegaard Floer Homology to Knot Concordance .” 2016. Web. 28 Sep 2020.

Vancouver:

Truong LM. Applications of Heegaard Floer Homology to Knot Concordance . [Internet] [Doctoral dissertation]. Princeton University; 2016. [cited 2020 Sep 28]. Available from: http://arks.princeton.edu/ark:/88435/dsp019880vt394.

Council of Science Editors:

Truong LM. Applications of Heegaard Floer Homology to Knot Concordance . [Doctoral Dissertation]. Princeton University; 2016. Available from: http://arks.princeton.edu/ark:/88435/dsp019880vt394

University of Iowa

27.
Honken, Annette Marie.
Mapping distance one neighborhoods within *knot* distance graphs.

Degree: PhD, Mathematics, 2015, University of Iowa

URL: https://ir.uiowa.edu/etd/1852

► A *knot* is an embedding of S1 in three-dimensional space. Generally, it can be thought of as a knotted piece of string with the…
(more)

Subjects/Keywords: publicabstract; graph theory; knot theory; rational knot; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Honken, A. M. (2015). Mapping distance one neighborhoods within knot distance graphs. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/1852

Chicago Manual of Style (16^{th} Edition):

Honken, Annette Marie. “Mapping distance one neighborhoods within knot distance graphs.” 2015. Doctoral Dissertation, University of Iowa. Accessed September 28, 2020. https://ir.uiowa.edu/etd/1852.

MLA Handbook (7^{th} Edition):

Honken, Annette Marie. “Mapping distance one neighborhoods within knot distance graphs.” 2015. Web. 28 Sep 2020.

Vancouver:

Honken AM. Mapping distance one neighborhoods within knot distance graphs. [Internet] [Doctoral dissertation]. University of Iowa; 2015. [cited 2020 Sep 28]. Available from: https://ir.uiowa.edu/etd/1852.

Council of Science Editors:

Honken AM. Mapping distance one neighborhoods within knot distance graphs. [Doctoral Dissertation]. University of Iowa; 2015. Available from: https://ir.uiowa.edu/etd/1852

University of Georgia

28. Mullikin, Chad A. S. On length minimizing curves with distortion thickness bounded below and distortion bounded above.

Degree: 2014, University of Georgia

URL: http://hdl.handle.net/10724/23475

► The distortion of a curve is the supremum, taken over distinct pairs of points of the curve, of the ratio of arclength to spatial distance…
(more)

Subjects/Keywords: Knot Theory; Knot Energy; Gromov\'s Distortion; Ropelength

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mullikin, C. A. S. (2014). On length minimizing curves with distortion thickness bounded below and distortion bounded above. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/23475

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mullikin, Chad A S. “On length minimizing curves with distortion thickness bounded below and distortion bounded above.” 2014. Thesis, University of Georgia. Accessed September 28, 2020. http://hdl.handle.net/10724/23475.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mullikin, Chad A S. “On length minimizing curves with distortion thickness bounded below and distortion bounded above.” 2014. Web. 28 Sep 2020.

Vancouver:

Mullikin CAS. On length minimizing curves with distortion thickness bounded below and distortion bounded above. [Internet] [Thesis]. University of Georgia; 2014. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10724/23475.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mullikin CAS. On length minimizing curves with distortion thickness bounded below and distortion bounded above. [Thesis]. University of Georgia; 2014. Available from: http://hdl.handle.net/10724/23475

Not specified: Masters Thesis or Doctoral Dissertation

29. Samson, Genevieve. Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots.

Degree: MS, Textile Engineering, 2009, North Carolina State University

URL: http://www.lib.ncsu.edu/resolver/1840.16/2783

► Despite the latest polymer materials and surgical suturing techniques, the *knot* will always be the weakest point of the tied suture loop. In theory, the…
(more)

Subjects/Keywords: knot security; knot reinforcement; surgical knot; suture

…5
2.2 *Knot* Definition… …8
2.4 *Knot* Challenges and Limitations… …10
2.5 *Knot* Performance… …11
2.5.1 *Knot* Mechanics… …11
2.5.2 Type of *Knot* Failure…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Samson, G. (2009). Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots. (Thesis). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/2783

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Samson, Genevieve. “Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots.” 2009. Thesis, North Carolina State University. Accessed September 28, 2020. http://www.lib.ncsu.edu/resolver/1840.16/2783.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Samson, Genevieve. “Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots.” 2009. Web. 28 Sep 2020.

Vancouver:

Samson G. Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots. [Internet] [Thesis]. North Carolina State University; 2009. [cited 2020 Sep 28]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/2783.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Samson G. Reinforcing Effect of a Cyanoacrylate Adhesive on Surgical Suture Knots. [Thesis]. North Carolina State University; 2009. Available from: http://www.lib.ncsu.edu/resolver/1840.16/2783

Not specified: Masters Thesis or Doctoral Dissertation

30. Padey, Ramesh Chandra. A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;.

Degree: Agriculture Botany, 2005, Chaudhary Charan Singh University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/20153

A Study On The Effect Of Botanical Pesticides To Control Root Knot_Nematode In Some Vegetable Crops

Subjects/Keywords: Botanical Pesticides; Root Knot; Nematode; Vegetable Crops

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Padey, R. C. (2005). A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;. (Thesis). Chaudhary Charan Singh University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/20153

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Padey, Ramesh Chandra. “A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;.” 2005. Thesis, Chaudhary Charan Singh University. Accessed September 28, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/20153.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Padey, Ramesh Chandra. “A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;.” 2005. Web. 28 Sep 2020.

Vancouver:

Padey RC. A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;. [Internet] [Thesis]. Chaudhary Charan Singh University; 2005. [cited 2020 Sep 28]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20153.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Padey RC. A Study On The Effect Of Botanical Pesticides To Control Root Knot_ Nematode In Some Vegetable Crops;. [Thesis]. Chaudhary Charan Singh University; 2005. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/20153

Not specified: Masters Thesis or Doctoral Dissertation