Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Knot Invariants). Showing records 1 – 15 of 15 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Illinois – Chicago

1. Simpson, David H. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.

Degree: 2019, University of Illinois – Chicago

 We examine the relation between Ribbon Hopf Algebras and 1-1 Tangles  – knot diagrams that are cut at a point with the ends pulled apart.… (more)

Subjects/Keywords: Knot Invariants; Hopf Algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Simpson, D. H. (2019). The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Simpson, David H. “The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.” 2019. Thesis, University of Illinois – Chicago. Accessed July 10, 2020. http://hdl.handle.net/10027/23681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Simpson, David H. “The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles.” 2019. Web. 10 Jul 2020.

Vancouver:

Simpson DH. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. [Internet] [Thesis]. University of Illinois – Chicago; 2019. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/10027/23681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Simpson DH. The Application of Ribbon Hopf Algebras to Invariants of 1-1 Tangles. [Thesis]. University of Illinois – Chicago; 2019. Available from: http://hdl.handle.net/10027/23681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Louisiana State University

2. Hajij, Mustafa. Knots, Skein Theory and q-Series.

Degree: PhD, Applied Mathematics, 2015, Louisiana State University

 The tail of a sequence {Pn(q)} of formal power series in Z[q-1][[q]], if it exists, is the formal power series whose first n coefficients agree… (more)

Subjects/Keywords: Knot Theory; q-series; Quantum Invariants; Volume Conjecture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hajij, M. (2015). Knots, Skein Theory and q-Series. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-06222015-181044 ; https://digitalcommons.lsu.edu/gradschool_dissertations/258

Chicago Manual of Style (16th Edition):

Hajij, Mustafa. “Knots, Skein Theory and q-Series.” 2015. Doctoral Dissertation, Louisiana State University. Accessed July 10, 2020. etd-06222015-181044 ; https://digitalcommons.lsu.edu/gradschool_dissertations/258.

MLA Handbook (7th Edition):

Hajij, Mustafa. “Knots, Skein Theory and q-Series.” 2015. Web. 10 Jul 2020.

Vancouver:

Hajij M. Knots, Skein Theory and q-Series. [Internet] [Doctoral dissertation]. Louisiana State University; 2015. [cited 2020 Jul 10]. Available from: etd-06222015-181044 ; https://digitalcommons.lsu.edu/gradschool_dissertations/258.

Council of Science Editors:

Hajij M. Knots, Skein Theory and q-Series. [Doctoral Dissertation]. Louisiana State University; 2015. Available from: etd-06222015-181044 ; https://digitalcommons.lsu.edu/gradschool_dissertations/258


Princeton University

3. Racz, Bela Andras. Geometry of (1,1)-Knots and Knot Floer Homology .

Degree: PhD, 2015, Princeton University

 We apply the technique of Heegaard Floer Homology to (1,1)-knots (1-bridge knots on the torus) to determine all (1,1)-knots of crossing number up to 12.… (more)

Subjects/Keywords: (1,1)-knots; grid diagrams; Heegaard Floer homology; knot invariants

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Racz, B. A. (2015). Geometry of (1,1)-Knots and Knot Floer Homology . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01ft848s85j

Chicago Manual of Style (16th Edition):

Racz, Bela Andras. “Geometry of (1,1)-Knots and Knot Floer Homology .” 2015. Doctoral Dissertation, Princeton University. Accessed July 10, 2020. http://arks.princeton.edu/ark:/88435/dsp01ft848s85j.

MLA Handbook (7th Edition):

Racz, Bela Andras. “Geometry of (1,1)-Knots and Knot Floer Homology .” 2015. Web. 10 Jul 2020.

Vancouver:

Racz BA. Geometry of (1,1)-Knots and Knot Floer Homology . [Internet] [Doctoral dissertation]. Princeton University; 2015. [cited 2020 Jul 10]. Available from: http://arks.princeton.edu/ark:/88435/dsp01ft848s85j.

Council of Science Editors:

Racz BA. Geometry of (1,1)-Knots and Knot Floer Homology . [Doctoral Dissertation]. Princeton University; 2015. Available from: http://arks.princeton.edu/ark:/88435/dsp01ft848s85j


Princeton University

4. Mikhaylov, Victor. Aspects Of Supergroup Chern-Simons Theories .

Degree: PhD, 2015, Princeton University

 The three-dimensional Chern-Simons gauge theory is a topological quantum field theory, whose correlation functions give metric-independent invariants of knots and three-manifolds. In this thesis, we… (more)

Subjects/Keywords: Chern-Simons Theory; Knot Invariants; Lie Supergroups; Topological Quantum Field Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mikhaylov, V. (2015). Aspects Of Supergroup Chern-Simons Theories . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01zw12z768m

Chicago Manual of Style (16th Edition):

Mikhaylov, Victor. “Aspects Of Supergroup Chern-Simons Theories .” 2015. Doctoral Dissertation, Princeton University. Accessed July 10, 2020. http://arks.princeton.edu/ark:/88435/dsp01zw12z768m.

MLA Handbook (7th Edition):

Mikhaylov, Victor. “Aspects Of Supergroup Chern-Simons Theories .” 2015. Web. 10 Jul 2020.

Vancouver:

Mikhaylov V. Aspects Of Supergroup Chern-Simons Theories . [Internet] [Doctoral dissertation]. Princeton University; 2015. [cited 2020 Jul 10]. Available from: http://arks.princeton.edu/ark:/88435/dsp01zw12z768m.

Council of Science Editors:

Mikhaylov V. Aspects Of Supergroup Chern-Simons Theories . [Doctoral Dissertation]. Princeton University; 2015. Available from: http://arks.princeton.edu/ark:/88435/dsp01zw12z768m


Rice University

5. Davis, Christopher. First Order Signatures and Knot Concordance.

Degree: PhD, Natural Sciences, 2012, Rice University

Invariants of knots coming from twisted signatures have played a central role in the study of knot concordance. Unfortunately, except in the simplest of cases,… (more)

Subjects/Keywords: Knot concordance; L2 Homology; Twisted signatures; Rho invariants

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Davis, C. (2012). First Order Signatures and Knot Concordance. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/64621

Chicago Manual of Style (16th Edition):

Davis, Christopher. “First Order Signatures and Knot Concordance.” 2012. Doctoral Dissertation, Rice University. Accessed July 10, 2020. http://hdl.handle.net/1911/64621.

MLA Handbook (7th Edition):

Davis, Christopher. “First Order Signatures and Knot Concordance.” 2012. Web. 10 Jul 2020.

Vancouver:

Davis C. First Order Signatures and Knot Concordance. [Internet] [Doctoral dissertation]. Rice University; 2012. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1911/64621.

Council of Science Editors:

Davis C. First Order Signatures and Knot Concordance. [Doctoral Dissertation]. Rice University; 2012. Available from: http://hdl.handle.net/1911/64621


University of Tennessee – Knoxville

6. Manathunga, Vajira Asanka. The Conway Polynomial and Amphicheiral Knots.

Degree: 2016, University of Tennessee – Knoxville

 The Conant's conjecture [7] which has foundation on the Conway polynomial and Vassiliev invariants is the main theme of this research. The Conant's conjecture claim… (more)

Subjects/Keywords: Knot theory; Amphicheiral knots; Conway polynomial; Vassiliev invariants; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Manathunga, V. A. (2016). The Conway Polynomial and Amphicheiral Knots. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/3721

Chicago Manual of Style (16th Edition):

Manathunga, Vajira Asanka. “The Conway Polynomial and Amphicheiral Knots.” 2016. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed July 10, 2020. https://trace.tennessee.edu/utk_graddiss/3721.

MLA Handbook (7th Edition):

Manathunga, Vajira Asanka. “The Conway Polynomial and Amphicheiral Knots.” 2016. Web. 10 Jul 2020.

Vancouver:

Manathunga VA. The Conway Polynomial and Amphicheiral Knots. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2016. [cited 2020 Jul 10]. Available from: https://trace.tennessee.edu/utk_graddiss/3721.

Council of Science Editors:

Manathunga VA. The Conway Polynomial and Amphicheiral Knots. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2016. Available from: https://trace.tennessee.edu/utk_graddiss/3721


University of Iowa

7. Yildirim, Tuna. Topologically massive Yang-Mills theory and link invariants.

Degree: PhD, Physics, 2014, University of Iowa

  In this thesis, topologically massive Yang-Mills theory is studied in the framework of geometric quantization. This theory has a mass gap that is proportional… (more)

Subjects/Keywords: publicabstract; Chern Simons; Geometric Quantization; Knot Theory; Link Invariants; Topological Field Theory; Yang Mills; Physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yildirim, T. (2014). Topologically massive Yang-Mills theory and link invariants. (Doctoral Dissertation). University of Iowa. Retrieved from https://ir.uiowa.edu/etd/1519

Chicago Manual of Style (16th Edition):

Yildirim, Tuna. “Topologically massive Yang-Mills theory and link invariants.” 2014. Doctoral Dissertation, University of Iowa. Accessed July 10, 2020. https://ir.uiowa.edu/etd/1519.

MLA Handbook (7th Edition):

Yildirim, Tuna. “Topologically massive Yang-Mills theory and link invariants.” 2014. Web. 10 Jul 2020.

Vancouver:

Yildirim T. Topologically massive Yang-Mills theory and link invariants. [Internet] [Doctoral dissertation]. University of Iowa; 2014. [cited 2020 Jul 10]. Available from: https://ir.uiowa.edu/etd/1519.

Council of Science Editors:

Yildirim T. Topologically massive Yang-Mills theory and link invariants. [Doctoral Dissertation]. University of Iowa; 2014. Available from: https://ir.uiowa.edu/etd/1519

8. Kohli, Ben-Michael. Les invariants de Links-Gould comme généralisations du polynôme d’Alexander : The Links-Gould invariants as generalizations of the Alexander polynomial.

Degree: Docteur es, Mathématiques, 2016, Université de Bourgogne

On s’intéresse dans cette thèse aux rapports qui existent entre deux invariants d’entrelacs. D’une part l’invariant d’Alexander ∆ qui est l’invariant de nœuds le plus… (more)

Subjects/Keywords: Nœud; Entrelacs; Polynôme d’Alexander; Invariants de Links-Gould; Algèbre de Hopf; R-matrice; Genre; Nœud fibré; Knot; Link; Alexander polynomial; Links-Gould invariants; Hopf algebra; R- matrix; Genus; Fiberedness; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kohli, B. (2016). Les invariants de Links-Gould comme généralisations du polynôme d’Alexander : The Links-Gould invariants as generalizations of the Alexander polynomial. (Doctoral Dissertation). Université de Bourgogne. Retrieved from http://www.theses.fr/2016DIJOS062

Chicago Manual of Style (16th Edition):

Kohli, Ben-Michael. “Les invariants de Links-Gould comme généralisations du polynôme d’Alexander : The Links-Gould invariants as generalizations of the Alexander polynomial.” 2016. Doctoral Dissertation, Université de Bourgogne. Accessed July 10, 2020. http://www.theses.fr/2016DIJOS062.

MLA Handbook (7th Edition):

Kohli, Ben-Michael. “Les invariants de Links-Gould comme généralisations du polynôme d’Alexander : The Links-Gould invariants as generalizations of the Alexander polynomial.” 2016. Web. 10 Jul 2020.

Vancouver:

Kohli B. Les invariants de Links-Gould comme généralisations du polynôme d’Alexander : The Links-Gould invariants as generalizations of the Alexander polynomial. [Internet] [Doctoral dissertation]. Université de Bourgogne; 2016. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2016DIJOS062.

Council of Science Editors:

Kohli B. Les invariants de Links-Gould comme généralisations du polynôme d’Alexander : The Links-Gould invariants as generalizations of the Alexander polynomial. [Doctoral Dissertation]. Université de Bourgogne; 2016. Available from: http://www.theses.fr/2016DIJOS062

9. Corbineau, Kévin. Sur une anomalie du développement perturbatif de la théorie de Chern-Simons : On an anomaly of the perturbative expansion of Chern-Simons theory.

Degree: Docteur es, Mathématiques, 2016, Université Grenoble Alpes (ComUE)

Maxim Kontsevich a défini un invariant Z des sphères d'homologie rationnelle orientées de dimension 3 en 1992, en poursuivant l'étude initiée par Edward Witten du… (more)

Subjects/Keywords: Espaces de configurations; Sphère d'homologie rationnelle; Invariants de noeud; Anomalie; Développement perturbatif de la théorie de Chern-Simons; Configuration space; Rational homology sphere; Knot invariants; Anomaly; Perturbative expansion of Chern-Simons theory; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Corbineau, K. (2016). Sur une anomalie du développement perturbatif de la théorie de Chern-Simons : On an anomaly of the perturbative expansion of Chern-Simons theory. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2016GREAM038

Chicago Manual of Style (16th Edition):

Corbineau, Kévin. “Sur une anomalie du développement perturbatif de la théorie de Chern-Simons : On an anomaly of the perturbative expansion of Chern-Simons theory.” 2016. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed July 10, 2020. http://www.theses.fr/2016GREAM038.

MLA Handbook (7th Edition):

Corbineau, Kévin. “Sur une anomalie du développement perturbatif de la théorie de Chern-Simons : On an anomaly of the perturbative expansion of Chern-Simons theory.” 2016. Web. 10 Jul 2020.

Vancouver:

Corbineau K. Sur une anomalie du développement perturbatif de la théorie de Chern-Simons : On an anomaly of the perturbative expansion of Chern-Simons theory. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2016. [cited 2020 Jul 10]. Available from: http://www.theses.fr/2016GREAM038.

Council of Science Editors:

Corbineau K. Sur une anomalie du développement perturbatif de la théorie de Chern-Simons : On an anomaly of the perturbative expansion of Chern-Simons theory. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2016. Available from: http://www.theses.fr/2016GREAM038

10. Chu, Karene Kayin. Flat Virtual Pure Tangles.

Degree: 2012, University of Toronto

Virtual knot theory, introduced by Kauffman, is a generalization of classical knot theory of interest because its finite-type invariant theory is potentially a topological interpretation… (more)

Subjects/Keywords: virtual knot; flat virtual knot; finite-type invariants; R-matrix; quantum invariant; immersed curves; 0405

…knots, where “long” simply refers to the skeleton of the knot being a long line, and the… …skeleton” is the union of lines and/or circles obtained from tracing the knot diagram along the… …a canonical representative for each equivalent class of descending virtual long knot… …long knot diagram whose skeleton strand has a point before which it is the over strand in any… …virtual long knot. There is a point on the skeleton before which it is the over strand in all… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chu, K. K. (2012). Flat Virtual Pure Tangles. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/33962

Chicago Manual of Style (16th Edition):

Chu, Karene Kayin. “Flat Virtual Pure Tangles.” 2012. Doctoral Dissertation, University of Toronto. Accessed July 10, 2020. http://hdl.handle.net/1807/33962.

MLA Handbook (7th Edition):

Chu, Karene Kayin. “Flat Virtual Pure Tangles.” 2012. Web. 10 Jul 2020.

Vancouver:

Chu KK. Flat Virtual Pure Tangles. [Internet] [Doctoral dissertation]. University of Toronto; 2012. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1807/33962.

Council of Science Editors:

Chu KK. Flat Virtual Pure Tangles. [Doctoral Dissertation]. University of Toronto; 2012. Available from: http://hdl.handle.net/1807/33962


California State University – San Bernardino

11. Wheeler, Russell Clark. Using symbolic dynamical systems: A search for knot invariants.

Degree: MAin Mathematics, Mathematics, 1998, California State University – San Bernardino

Subjects/Keywords: Knot theory; Three-manifolds (Topology); Invariants; Quantum field theory; Mathematical physics; Braid theory; Braid theory; Invariants; Knot theory; Mathematical physics; Quantum field theory; Three-manifolds (Topology); Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wheeler, R. C. (1998). Using symbolic dynamical systems: A search for knot invariants. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/3033

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wheeler, Russell Clark. “Using symbolic dynamical systems: A search for knot invariants.” 1998. Thesis, California State University – San Bernardino. Accessed July 10, 2020. https://scholarworks.lib.csusb.edu/etd-project/3033.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wheeler, Russell Clark. “Using symbolic dynamical systems: A search for knot invariants.” 1998. Web. 10 Jul 2020.

Vancouver:

Wheeler RC. Using symbolic dynamical systems: A search for knot invariants. [Internet] [Thesis]. California State University – San Bernardino; 1998. [cited 2020 Jul 10]. Available from: https://scholarworks.lib.csusb.edu/etd-project/3033.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wheeler RC. Using symbolic dynamical systems: A search for knot invariants. [Thesis]. California State University – San Bernardino; 1998. Available from: https://scholarworks.lib.csusb.edu/etd-project/3033

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


California State University – San Bernardino

12. Wheeler, Russell Clark. Using symbolic dynamical systems: A search for knot invariants.

Degree: MAin Mathematics, Mathematics, 1998, California State University – San Bernardino

Subjects/Keywords: Knot theory; Three-manifolds (Topology); Invariants; Quantum field theory; Mathematical physics; Braid theory; Braid theory; Invariants; Knot theory; Mathematical physics; Quantum field theory; Three-manifolds (Topology); Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wheeler, R. C. (1998). Using symbolic dynamical systems: A search for knot invariants. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/3165

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wheeler, Russell Clark. “Using symbolic dynamical systems: A search for knot invariants.” 1998. Thesis, California State University – San Bernardino. Accessed July 10, 2020. https://scholarworks.lib.csusb.edu/etd-project/3165.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wheeler, Russell Clark. “Using symbolic dynamical systems: A search for knot invariants.” 1998. Web. 10 Jul 2020.

Vancouver:

Wheeler RC. Using symbolic dynamical systems: A search for knot invariants. [Internet] [Thesis]. California State University – San Bernardino; 1998. [cited 2020 Jul 10]. Available from: https://scholarworks.lib.csusb.edu/etd-project/3165.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wheeler RC. Using symbolic dynamical systems: A search for knot invariants. [Thesis]. California State University – San Bernardino; 1998. Available from: https://scholarworks.lib.csusb.edu/etd-project/3165

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Martin, Taylor. Lower order solvability of links.

Degree: PhD, Natural Sciences, 2013, Rice University

 The n-solvable filtration of the link concordance group, defined by Cochran, Orr, and Teichner in 2003, is a tool for studying smooth knot and link… (more)

Subjects/Keywords: Knot theory; Link concordance; N-solvable filtration; Band-pass equivalence; Milnor's invariants

…oriented circles into the three-sphere. A knot is a link with only one component. Two links are… …form an abelian group under an operation called connected sum, called the knot concordance… …is the equivalence class of the trivial knot. Any knot in this class is called slice. The… …knot concordance group has been well-studied since its introduction, but its structure is… …concordance group, C m , where m is the number of link components; when m = 1, this is the knot… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martin, T. (2013). Lower order solvability of links. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/71998

Chicago Manual of Style (16th Edition):

Martin, Taylor. “Lower order solvability of links.” 2013. Doctoral Dissertation, Rice University. Accessed July 10, 2020. http://hdl.handle.net/1911/71998.

MLA Handbook (7th Edition):

Martin, Taylor. “Lower order solvability of links.” 2013. Web. 10 Jul 2020.

Vancouver:

Martin T. Lower order solvability of links. [Internet] [Doctoral dissertation]. Rice University; 2013. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1911/71998.

Council of Science Editors:

Martin T. Lower order solvability of links. [Doctoral Dissertation]. Rice University; 2013. Available from: http://hdl.handle.net/1911/71998

14. Kuzbary, Miriam. Link Concordance and Groups.

Degree: PhD, Natural Sciences, 2019, Rice University

 This work concerns the study of link concordance using groups, both extracting concordance data from group theoretic invariants and determining the properties of group structures… (more)

Subjects/Keywords: low dimensional topology; geometric topology; link concordance; knot concordance; group theory; nilpotent groups; Milnor's invariants; Heegaard Floer homology

…the connected sum of two knots. . . . . . . . . The so-called Borromean knot B ⊂ #2 S 2 × S… …nullhomologous knot in S 1 × S 2 . . . . . . . . . . . . . . . . J3 ⊂ #2 S 2 × S 1 and J4 ⊂ #3 S 2 × S… …to better understanding the world around us. It is perhaps a surprising fact that knot… …theory provides a useful tool for studying 3- and 4-dimensional spaces. A knot is a smooth… …other as in Figure 1. z z y x y x (a) A knot. (b) A 2-component… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kuzbary, M. (2019). Link Concordance and Groups. (Doctoral Dissertation). Rice University. Retrieved from http://hdl.handle.net/1911/105956

Chicago Manual of Style (16th Edition):

Kuzbary, Miriam. “Link Concordance and Groups.” 2019. Doctoral Dissertation, Rice University. Accessed July 10, 2020. http://hdl.handle.net/1911/105956.

MLA Handbook (7th Edition):

Kuzbary, Miriam. “Link Concordance and Groups.” 2019. Web. 10 Jul 2020.

Vancouver:

Kuzbary M. Link Concordance and Groups. [Internet] [Doctoral dissertation]. Rice University; 2019. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1911/105956.

Council of Science Editors:

Kuzbary M. Link Concordance and Groups. [Doctoral Dissertation]. Rice University; 2019. Available from: http://hdl.handle.net/1911/105956

15. Tran, Anh Tuan. The volume conjecture, the aj conjectures and skein modules.

Degree: PhD, Mathematics, 2012, Georgia Tech

 This dissertation studies quantum invariants of knots and links, particularly the colored Jones polynomials, and their relationships with classical invariants like the hyperbolic volume and… (more)

Subjects/Keywords: Volume conjecture; AJ conjecture; Skein module; Colored Jones polynomial; A-polynomial; Knot theory; Symmetry (Mathematics); Invariants; Invariant manifolds; Hyperbolic spaces

…SUMMARY This dissertation studies quantum invariants of knots and links, particularly… …the colored Jones polynomials, and their relationships with classical invariants like the… …conjecture for (m, 2)-cables of the figure 8 knot, when m is odd. For (m, 2)… …when the volume conjecture for cables of the figure 8 knot is false if one considers all the… …relations of the colored Jones polynomials and the A-polynomial of a knot, using skein theory. We… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tran, A. T. (2012). The volume conjecture, the aj conjectures and skein modules. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/44811

Chicago Manual of Style (16th Edition):

Tran, Anh Tuan. “The volume conjecture, the aj conjectures and skein modules.” 2012. Doctoral Dissertation, Georgia Tech. Accessed July 10, 2020. http://hdl.handle.net/1853/44811.

MLA Handbook (7th Edition):

Tran, Anh Tuan. “The volume conjecture, the aj conjectures and skein modules.” 2012. Web. 10 Jul 2020.

Vancouver:

Tran AT. The volume conjecture, the aj conjectures and skein modules. [Internet] [Doctoral dissertation]. Georgia Tech; 2012. [cited 2020 Jul 10]. Available from: http://hdl.handle.net/1853/44811.

Council of Science Editors:

Tran AT. The volume conjecture, the aj conjectures and skein modules. [Doctoral Dissertation]. Georgia Tech; 2012. Available from: http://hdl.handle.net/1853/44811

.