Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Kazhdan Lusztig polynomials ). Showing records 1 – 30 of 904 total matches.

[1] [2] [3] [4] [5] … [31]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


University of Colorado

1. Gern, Tyson Charles. Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D.

Degree: PhD, Mathematics, 2013, University of Colorado

  Kazhdan–Lusztig polynomials arise in the context of Hecke algebras associated to Coxeter groups. The computation of these polynomials is very difficult for examples of… (more)

Subjects/Keywords: Algebraic Combinatorics; Coxeter Groups; Domino Tableaux; Kazhdan-Lusztig Cells; Kazhdan-Lusztig Polynomials; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gern, T. C. (2013). Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/26

Chicago Manual of Style (16th Edition):

Gern, Tyson Charles. “Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D.” 2013. Doctoral Dissertation, University of Colorado. Accessed December 03, 2020. https://scholar.colorado.edu/math_gradetds/26.

MLA Handbook (7th Edition):

Gern, Tyson Charles. “Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D.” 2013. Web. 03 Dec 2020.

Vancouver:

Gern TC. Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D. [Internet] [Doctoral dissertation]. University of Colorado; 2013. [cited 2020 Dec 03]. Available from: https://scholar.colorado.edu/math_gradetds/26.

Council of Science Editors:

Gern TC. Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D. [Doctoral Dissertation]. University of Colorado; 2013. Available from: https://scholar.colorado.edu/math_gradetds/26

2. Deng, Taiwang. Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n).

Degree: Docteur es, Mathématiques, 2016, Sorbonne Paris Cité

Orbitales, ont démontré que les multiplicités dans une representation induitetotale sont données par les valeurs en q = 1 des polynômes de Kazhdan-Lusztig associés aux… (more)

Subjects/Keywords: Variété de Schubert; Polynôme de Kazhdan-Lusztig; Théorie de représentation d’un groupe p-adique; Théorie de nombre; The total parabolic induction; Kazhdan-Lusztig Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Deng, T. (2016). Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n). (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2016USPCD070

Chicago Manual of Style (16th Edition):

Deng, Taiwang. “Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n).” 2016. Doctoral Dissertation, Sorbonne Paris Cité. Accessed December 03, 2020. http://www.theses.fr/2016USPCD070.

MLA Handbook (7th Edition):

Deng, Taiwang. “Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n).” 2016. Web. 03 Dec 2020.

Vancouver:

Deng T. Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n). [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2016. [cited 2020 Dec 03]. Available from: http://www.theses.fr/2016USPCD070.

Council of Science Editors:

Deng T. Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n). [Doctoral Dissertation]. Sorbonne Paris Cité; 2016. Available from: http://www.theses.fr/2016USPCD070

3. Gedeon, Katie. Kazhdan-Lusztig Polynomials of Matroids and Their Roots.

Degree: PhD, Department of Mathematics, 2018, University of Oregon

 The Kazhdan-Lusztig polynomial of a matroid M, denoted PM( t ), was recently defined by Elias, Proudfoot, and Wakefield. These polynomials are analogous to the… (more)

Subjects/Keywords: Kazhdan-Lusztig polynomials; Matroid theory; real-rootedness

…Matroids and Their Kazhdan-Lusztig Polynomials . . . . . . . 5 2.2. Equivariant Matroids and… …30 ROOTS OF KAZHDAN-LUSZTIG POLYNOMIALS OF MATROIDS… …xii LIST OF TABLES Table Page 4.1. Kazhdan-Lusztig polynomials of some uniform matroids… …A.1 Kazhdan-Lusztig polynomials for the thagomizer matroid τn . . . . . 46 A.2 Kazhdan… …Kazhdan-Lusztig polynomials of matroids were first studied in [EPW] where the authors… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gedeon, K. (2018). Kazhdan-Lusztig Polynomials of Matroids and Their Roots. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/23913

Chicago Manual of Style (16th Edition):

Gedeon, Katie. “Kazhdan-Lusztig Polynomials of Matroids and Their Roots.” 2018. Doctoral Dissertation, University of Oregon. Accessed December 03, 2020. http://hdl.handle.net/1794/23913.

MLA Handbook (7th Edition):

Gedeon, Katie. “Kazhdan-Lusztig Polynomials of Matroids and Their Roots.” 2018. Web. 03 Dec 2020.

Vancouver:

Gedeon K. Kazhdan-Lusztig Polynomials of Matroids and Their Roots. [Internet] [Doctoral dissertation]. University of Oregon; 2018. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1794/23913.

Council of Science Editors:

Gedeon K. Kazhdan-Lusztig Polynomials of Matroids and Their Roots. [Doctoral Dissertation]. University of Oregon; 2018. Available from: http://hdl.handle.net/1794/23913


University of North Texas

4. Alhaddad, Shemsi I. Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups.

Degree: 2006, University of North Texas

 The Iwahori-Hecke algebras of Coxeter groups play a central role in the study of representations of semisimple Lie-type groups. An important tool is the combinatorial… (more)

Subjects/Keywords: Hecke algebras.; Kazhdan-Lusztig polynomials.; Coxeter groups.; Hecke algebra; Kazhdan-Lusztig theory; monomial groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alhaddad, S. I. (2006). Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc5235/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Alhaddad, Shemsi I. “Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups.” 2006. Thesis, University of North Texas. Accessed December 03, 2020. https://digital.library.unt.edu/ark:/67531/metadc5235/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Alhaddad, Shemsi I. “Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups.” 2006. Web. 03 Dec 2020.

Vancouver:

Alhaddad SI. Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups. [Internet] [Thesis]. University of North Texas; 2006. [cited 2020 Dec 03]. Available from: https://digital.library.unt.edu/ark:/67531/metadc5235/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Alhaddad SI. Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups. [Thesis]. University of North Texas; 2006. Available from: https://digital.library.unt.edu/ark:/67531/metadc5235/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Lehigh University

5. Lambright, Justin Jay. A generalization of Kazhdan and Lusztig's R-polynomials.

Degree: PhD, Mathematics, 2011, Lehigh University

Subjects/Keywords: algebraic combinatorics; Bruhat order; dual canonical basis; Hecke algebra; Kazhdan-Lusztig R-polynomials; quantum polynomial ring; Physical Sciences and Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lambright, J. J. (2011). A generalization of Kazhdan and Lusztig's R-polynomials. (Doctoral Dissertation). Lehigh University. Retrieved from https://preserve.lehigh.edu/etd/1081

Chicago Manual of Style (16th Edition):

Lambright, Justin Jay. “A generalization of Kazhdan and Lusztig's R-polynomials.” 2011. Doctoral Dissertation, Lehigh University. Accessed December 03, 2020. https://preserve.lehigh.edu/etd/1081.

MLA Handbook (7th Edition):

Lambright, Justin Jay. “A generalization of Kazhdan and Lusztig's R-polynomials.” 2011. Web. 03 Dec 2020.

Vancouver:

Lambright JJ. A generalization of Kazhdan and Lusztig's R-polynomials. [Internet] [Doctoral dissertation]. Lehigh University; 2011. [cited 2020 Dec 03]. Available from: https://preserve.lehigh.edu/etd/1081.

Council of Science Editors:

Lambright JJ. A generalization of Kazhdan and Lusztig's R-polynomials. [Doctoral Dissertation]. Lehigh University; 2011. Available from: https://preserve.lehigh.edu/etd/1081

6. Koonz, Jennifer. Properties of Singular Schubert Varieties.

Degree: PhD, Mathematics, 2013, U of Massachusetts : PhD

  This thesis deals with the study of Schubert varieties, which are subsets of flag varieties indexed by elements of Weyl groups. We start by… (more)

Subjects/Keywords: Combinatorics; Hecke Algebra; Intersection Cohomology; Kazhdan-Lusztig Polynomials; Schubert Varieties; Mathematics

…are equivalent in definition to Kazhdan-Lusztig polynomials) and the intersection… …Lusztig polynomials) in a combinatorial and efficient manner. The Kazhdan-Lusztig basis… …are equivalent to the definition of Kazhdan-Lusztig polynomials, was developed by Kazhdan… …Kazhdan-Lusztig polynomials, and they are completely characterized by the following three… …1) whenever x < w. 2 Theorem 2.3. [18] The Kazhdan-Lusztig polynomials Px,w… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Koonz, J. (2013). Properties of Singular Schubert Varieties. (Doctoral Dissertation). U of Massachusetts : PhD. Retrieved from https://scholarworks.umass.edu/open_access_dissertations/839

Chicago Manual of Style (16th Edition):

Koonz, Jennifer. “Properties of Singular Schubert Varieties.” 2013. Doctoral Dissertation, U of Massachusetts : PhD. Accessed December 03, 2020. https://scholarworks.umass.edu/open_access_dissertations/839.

MLA Handbook (7th Edition):

Koonz, Jennifer. “Properties of Singular Schubert Varieties.” 2013. Web. 03 Dec 2020.

Vancouver:

Koonz J. Properties of Singular Schubert Varieties. [Internet] [Doctoral dissertation]. U of Massachusetts : PhD; 2013. [cited 2020 Dec 03]. Available from: https://scholarworks.umass.edu/open_access_dissertations/839.

Council of Science Editors:

Koonz J. Properties of Singular Schubert Varieties. [Doctoral Dissertation]. U of Massachusetts : PhD; 2013. Available from: https://scholarworks.umass.edu/open_access_dissertations/839


Université du Québec à Montréal

7. Ghowil, Amir. Base canonique des algèbres de Hecke.

Degree: 2018, Université du Québec à Montréal

 Cette recherche discute l'algèbre de Hecke, et plus spécifiquement l'algèbre de Hecke associée aux groupes de réflexions, comme le groupe symétrique, par exemple. Lors de… (more)

Subjects/Keywords: Algèbres de Hecke; Groupes de réflexions; Groupes linéaires algébriques; Groupes symétriques; Polynômes de Kazhdan-Lusztig

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ghowil, A. (2018). Base canonique des algèbres de Hecke. (Thesis). Université du Québec à Montréal. Retrieved from http://archipel.uqam.ca/11814/1/M15647.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ghowil, Amir. “Base canonique des algèbres de Hecke.” 2018. Thesis, Université du Québec à Montréal. Accessed December 03, 2020. http://archipel.uqam.ca/11814/1/M15647.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ghowil, Amir. “Base canonique des algèbres de Hecke.” 2018. Web. 03 Dec 2020.

Vancouver:

Ghowil A. Base canonique des algèbres de Hecke. [Internet] [Thesis]. Université du Québec à Montréal; 2018. [cited 2020 Dec 03]. Available from: http://archipel.uqam.ca/11814/1/M15647.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ghowil A. Base canonique des algèbres de Hecke. [Thesis]. Université du Québec à Montréal; 2018. Available from: http://archipel.uqam.ca/11814/1/M15647.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Da Silva, Sergio Mathew Luis. ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS.

Degree: PhD, Mathematics, 2018, Cornell University

 We will describe a one-step “Gorensteinization” process for a Schubert variety by blowing-up along its boundary divisor. The local question involves Kazhdan-Lusztig varieties which can… (more)

Subjects/Keywords: Algebraic Geometry; Mathematics; toric variety; Gorenstein Variety; Kazhdan-Lusztig Variety; Schubert Variety

…1 Introduction 2 Preliminaries 2.1 Kazhdan-Lusztig varieties . . . . . . . . 2.2 The… …can localize our question and reduce to blowing-up a Kazhdan-Lusztig variety X w ∩ Xvo along… …this generalized version – see Section 5), the blow-up of the Kazhdan-Lusztig variety is… …transform of the Kazhdan-Lusztig variety to the total transform of the degeneration. Blow-ups… …1.0.4. A Kazhdan-Lusztig variety, its degeneration to a Stanley-Reisner scheme, and the blow… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Da Silva, S. M. L. (2018). ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/59491

Chicago Manual of Style (16th Edition):

Da Silva, Sergio Mathew Luis. “ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS.” 2018. Doctoral Dissertation, Cornell University. Accessed December 03, 2020. http://hdl.handle.net/1813/59491.

MLA Handbook (7th Edition):

Da Silva, Sergio Mathew Luis. “ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS.” 2018. Web. 03 Dec 2020.

Vancouver:

Da Silva SML. ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS. [Internet] [Doctoral dissertation]. Cornell University; 2018. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1813/59491.

Council of Science Editors:

Da Silva SML. ON THE GORENSTEINIZATION OF SCHUBERT VARIETIES VIA BOUNDARY DIVISORS. [Doctoral Dissertation]. Cornell University; 2018. Available from: http://hdl.handle.net/1813/59491

9. Xu, Tianyuan. On the Subregular J-ring of Coxeter Systems.

Degree: PhD, Department of Mathematics, 2017, University of Oregon

 Let (W, S) be an arbitrary Coxeter system, and let J be the asymptotic Hecke algebra associated to (W, S) via Kazhdan-Lusztig polynomials by Lusztig.… (more)

Subjects/Keywords: Coxeter groups; Fusion categories; Hecke algebras; Kazhdan-Lusztig theory; Partition quantum groups; Tensor categories

Kazhdan-Lusztig polynomials, Lusztig constructed the asymptotic Hecke algebra J of (W, S… …without reference to Kazhdan-Lusztig polynomials. This is desirable since a main obstacle in… …transition matrices between the two bases give rise to the Kazhdan-Lusztig polynomials. By… …8 8 12 15 17 III. HECKE ALGEBRAS 25 3.1. Hecke Algebras and Their Kazhdan-Lusztig Bases… …25 3.2. Kazhdan-Lusztig Cells . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. The… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xu, T. (2017). On the Subregular J-ring of Coxeter Systems. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/22741

Chicago Manual of Style (16th Edition):

Xu, Tianyuan. “On the Subregular J-ring of Coxeter Systems.” 2017. Doctoral Dissertation, University of Oregon. Accessed December 03, 2020. http://hdl.handle.net/1794/22741.

MLA Handbook (7th Edition):

Xu, Tianyuan. “On the Subregular J-ring of Coxeter Systems.” 2017. Web. 03 Dec 2020.

Vancouver:

Xu T. On the Subregular J-ring of Coxeter Systems. [Internet] [Doctoral dissertation]. University of Oregon; 2017. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1794/22741.

Council of Science Editors:

Xu T. On the Subregular J-ring of Coxeter Systems. [Doctoral Dissertation]. University of Oregon; 2017. Available from: http://hdl.handle.net/1794/22741


Université de Montréal

10. Chênevert, Gabriel. Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeaux.

Degree: 2003, Université de Montréal

Subjects/Keywords: Polynômes de Kazhdan-Lusztig; Algèbres de Hecke; Variétés de drapeaux; Variétés de Schubert; Cohomologie d'intersection; Faisceaux pervers; Convolution; Théorie de la représentation; Modules de Verma

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chênevert, G. (2003). Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeaux. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/14614

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chênevert, Gabriel. “Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeaux.” 2003. Thesis, Université de Montréal. Accessed December 03, 2020. http://hdl.handle.net/1866/14614.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chênevert, Gabriel. “Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeaux.” 2003. Web. 03 Dec 2020.

Vancouver:

Chênevert G. Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeaux. [Internet] [Thesis]. Université de Montréal; 2003. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1866/14614.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chênevert G. Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeaux. [Thesis]. Université de Montréal; 2003. Available from: http://hdl.handle.net/1866/14614

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Gaborieau, Alice. Représentation de Weil d'une paire duale de groupes de similitudes : Weil representation of dual pairs of similitude groups over a finite field.

Degree: Docteur es, Mathématiques, 2015, Poitiers

Soit F une extension finie du corps des nombres p-adiques, de corps résiduel Fq. Pour un groupe réductif G sur F, les conjectures de Langlands… (more)

Subjects/Keywords: Représentation de Weil; Groupes de similitudes; Caractères de Deligne-Lusztig; Weil representation; Similitude groups; Deligne-Lusztig characters; 512.22

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gaborieau, A. (2015). Représentation de Weil d'une paire duale de groupes de similitudes : Weil representation of dual pairs of similitude groups over a finite field. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2015POIT2273

Chicago Manual of Style (16th Edition):

Gaborieau, Alice. “Représentation de Weil d'une paire duale de groupes de similitudes : Weil representation of dual pairs of similitude groups over a finite field.” 2015. Doctoral Dissertation, Poitiers. Accessed December 03, 2020. http://www.theses.fr/2015POIT2273.

MLA Handbook (7th Edition):

Gaborieau, Alice. “Représentation de Weil d'une paire duale de groupes de similitudes : Weil representation of dual pairs of similitude groups over a finite field.” 2015. Web. 03 Dec 2020.

Vancouver:

Gaborieau A. Représentation de Weil d'une paire duale de groupes de similitudes : Weil representation of dual pairs of similitude groups over a finite field. [Internet] [Doctoral dissertation]. Poitiers; 2015. [cited 2020 Dec 03]. Available from: http://www.theses.fr/2015POIT2273.

Council of Science Editors:

Gaborieau A. Représentation de Weil d'une paire duale de groupes de similitudes : Weil representation of dual pairs of similitude groups over a finite field. [Doctoral Dissertation]. Poitiers; 2015. Available from: http://www.theses.fr/2015POIT2273

12. Nguyen, Tuong-Huy. Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification : Cohomology of Coxeter varieties for linear groups : endomorphisms algebra, compactification.

Degree: Docteur es, Mathématiques et modélisation, 2015, Montpellier

Les variétés de Deligne-Lusztig associées à un élément de Coxeter, dites variétés de Coxeter et notées YY(dot{c}), sont des variétés candidates à réaliser l'équivalence dérivée… (more)

Subjects/Keywords: Théorie de Deligne-Lusztig; Représentations des groupes réductifs finis; Groupes finis; Deligne-Lusztig theory; Representations of finite reductive groups; Finite groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen, T. (2015). Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification : Cohomology of Coxeter varieties for linear groups : endomorphisms algebra, compactification. (Doctoral Dissertation). Montpellier. Retrieved from http://www.theses.fr/2015MONTS031

Chicago Manual of Style (16th Edition):

Nguyen, Tuong-Huy. “Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification : Cohomology of Coxeter varieties for linear groups : endomorphisms algebra, compactification.” 2015. Doctoral Dissertation, Montpellier. Accessed December 03, 2020. http://www.theses.fr/2015MONTS031.

MLA Handbook (7th Edition):

Nguyen, Tuong-Huy. “Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification : Cohomology of Coxeter varieties for linear groups : endomorphisms algebra, compactification.” 2015. Web. 03 Dec 2020.

Vancouver:

Nguyen T. Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification : Cohomology of Coxeter varieties for linear groups : endomorphisms algebra, compactification. [Internet] [Doctoral dissertation]. Montpellier; 2015. [cited 2020 Dec 03]. Available from: http://www.theses.fr/2015MONTS031.

Council of Science Editors:

Nguyen T. Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification : Cohomology of Coxeter varieties for linear groups : endomorphisms algebra, compactification. [Doctoral Dissertation]. Montpellier; 2015. Available from: http://www.theses.fr/2015MONTS031


Oregon State University

13. Pomeroy, C. David. Orthogonal polynomials.

Degree: MA, Mathematics, 1944, Oregon State University

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pomeroy, C. D. (1944). Orthogonal polynomials. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/53444

Chicago Manual of Style (16th Edition):

Pomeroy, C David. “Orthogonal polynomials.” 1944. Masters Thesis, Oregon State University. Accessed December 03, 2020. http://hdl.handle.net/1957/53444.

MLA Handbook (7th Edition):

Pomeroy, C David. “Orthogonal polynomials.” 1944. Web. 03 Dec 2020.

Vancouver:

Pomeroy CD. Orthogonal polynomials. [Internet] [Masters thesis]. Oregon State University; 1944. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1957/53444.

Council of Science Editors:

Pomeroy CD. Orthogonal polynomials. [Masters Thesis]. Oregon State University; 1944. Available from: http://hdl.handle.net/1957/53444


University of Tasmania

14. Matthews, RW. Permutation polynomials in one and several variables.

Degree: 1982, University of Tasmania

 Various authors have dealt with problems relating to permutation polynomials over finite systems ([4], [8], [10], [18], [20]-[25],[29]-[33], etc.). In this thesis various known results… (more)

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Matthews, R. (1982). Permutation polynomials in one and several variables. (Thesis). University of Tasmania. Retrieved from https://eprints.utas.edu.au/20101/1/whole_MatthewsRexWilliam1984_thesis.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Matthews, RW. “Permutation polynomials in one and several variables.” 1982. Thesis, University of Tasmania. Accessed December 03, 2020. https://eprints.utas.edu.au/20101/1/whole_MatthewsRexWilliam1984_thesis.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Matthews, RW. “Permutation polynomials in one and several variables.” 1982. Web. 03 Dec 2020.

Vancouver:

Matthews R. Permutation polynomials in one and several variables. [Internet] [Thesis]. University of Tasmania; 1982. [cited 2020 Dec 03]. Available from: https://eprints.utas.edu.au/20101/1/whole_MatthewsRexWilliam1984_thesis.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Matthews R. Permutation polynomials in one and several variables. [Thesis]. University of Tasmania; 1982. Available from: https://eprints.utas.edu.au/20101/1/whole_MatthewsRexWilliam1984_thesis.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

15. Tripathi, Ila. Simultaneous fourier series equation involving polynomials; -.

Degree: Mathematics, 2005, Bundelkhand University

None

Bibliography p.187 -201

Advisors/Committee Members: Dwiwedi, AP, Chandel RCS.

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tripathi, I. (2005). Simultaneous fourier series equation involving polynomials; -. (Thesis). Bundelkhand University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/11848

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Tripathi, Ila. “Simultaneous fourier series equation involving polynomials; -.” 2005. Thesis, Bundelkhand University. Accessed December 03, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/11848.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Tripathi, Ila. “Simultaneous fourier series equation involving polynomials; -.” 2005. Web. 03 Dec 2020.

Vancouver:

Tripathi I. Simultaneous fourier series equation involving polynomials; -. [Internet] [Thesis]. Bundelkhand University; 2005. [cited 2020 Dec 03]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/11848.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Tripathi I. Simultaneous fourier series equation involving polynomials; -. [Thesis]. Bundelkhand University; 2005. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/11848

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Florida State University

16. Leduc, Albert L. On certain sequences of polynomials having zeros in a half-plane.

Degree: 1960, Florida State University

The main result of this paper is due to Albert Edrei and is concerned with power series having partial sums with zeros in a half-pane.… (more)

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leduc, A. L. (1960). On certain sequences of polynomials having zeros in a half-plane. (Masters Thesis). Florida State University. Retrieved from http://purl.flvc.org/fsu/fd/FSU_historic_akx0565 ;

Chicago Manual of Style (16th Edition):

Leduc, Albert L. “On certain sequences of polynomials having zeros in a half-plane.” 1960. Masters Thesis, Florida State University. Accessed December 03, 2020. http://purl.flvc.org/fsu/fd/FSU_historic_akx0565 ;.

MLA Handbook (7th Edition):

Leduc, Albert L. “On certain sequences of polynomials having zeros in a half-plane.” 1960. Web. 03 Dec 2020.

Vancouver:

Leduc AL. On certain sequences of polynomials having zeros in a half-plane. [Internet] [Masters thesis]. Florida State University; 1960. [cited 2020 Dec 03]. Available from: http://purl.flvc.org/fsu/fd/FSU_historic_akx0565 ;.

Council of Science Editors:

Leduc AL. On certain sequences of polynomials having zeros in a half-plane. [Masters Thesis]. Florida State University; 1960. Available from: http://purl.flvc.org/fsu/fd/FSU_historic_akx0565 ;


Oregon State University

17. Paik, Young Hyun. On the calculations of the coefficients of cyclotomic polynomials.

Degree: MS, Mathematics, 1969, Oregon State University

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Paik, Y. H. (1969). On the calculations of the coefficients of cyclotomic polynomials. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/46440

Chicago Manual of Style (16th Edition):

Paik, Young Hyun. “On the calculations of the coefficients of cyclotomic polynomials.” 1969. Masters Thesis, Oregon State University. Accessed December 03, 2020. http://hdl.handle.net/1957/46440.

MLA Handbook (7th Edition):

Paik, Young Hyun. “On the calculations of the coefficients of cyclotomic polynomials.” 1969. Web. 03 Dec 2020.

Vancouver:

Paik YH. On the calculations of the coefficients of cyclotomic polynomials. [Internet] [Masters thesis]. Oregon State University; 1969. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1957/46440.

Council of Science Editors:

Paik YH. On the calculations of the coefficients of cyclotomic polynomials. [Masters Thesis]. Oregon State University; 1969. Available from: http://hdl.handle.net/1957/46440


Oregon State University

18. Park, Young Kou. On perturbation and location of roots of polynomials by Newton's interpolation formula.

Degree: PhD, Mathematics, 1993, Oregon State University

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Park, Y. K. (1993). On perturbation and location of roots of polynomials by Newton's interpolation formula. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/15878

Chicago Manual of Style (16th Edition):

Park, Young Kou. “On perturbation and location of roots of polynomials by Newton's interpolation formula.” 1993. Doctoral Dissertation, Oregon State University. Accessed December 03, 2020. http://hdl.handle.net/1957/15878.

MLA Handbook (7th Edition):

Park, Young Kou. “On perturbation and location of roots of polynomials by Newton's interpolation formula.” 1993. Web. 03 Dec 2020.

Vancouver:

Park YK. On perturbation and location of roots of polynomials by Newton's interpolation formula. [Internet] [Doctoral dissertation]. Oregon State University; 1993. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1957/15878.

Council of Science Editors:

Park YK. On perturbation and location of roots of polynomials by Newton's interpolation formula. [Doctoral Dissertation]. Oregon State University; 1993. Available from: http://hdl.handle.net/1957/15878


Oregon State University

19. Maloof, Giles Wilson. Differential changes in the zeros of polynomial operators.

Degree: PhD, Mathematics, 1962, Oregon State University

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maloof, G. W. (1962). Differential changes in the zeros of polynomial operators. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17413

Chicago Manual of Style (16th Edition):

Maloof, Giles Wilson. “Differential changes in the zeros of polynomial operators.” 1962. Doctoral Dissertation, Oregon State University. Accessed December 03, 2020. http://hdl.handle.net/1957/17413.

MLA Handbook (7th Edition):

Maloof, Giles Wilson. “Differential changes in the zeros of polynomial operators.” 1962. Web. 03 Dec 2020.

Vancouver:

Maloof GW. Differential changes in the zeros of polynomial operators. [Internet] [Doctoral dissertation]. Oregon State University; 1962. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1957/17413.

Council of Science Editors:

Maloof GW. Differential changes in the zeros of polynomial operators. [Doctoral Dissertation]. Oregon State University; 1962. Available from: http://hdl.handle.net/1957/17413


Oregon State University

20. Ng, Mary Jeanne Pe. The Zp (t)-adequacy of pure plynomials.

Degree: PhD, Mathematics, 1976, Oregon State University

See pdf. Advisors/Committee Members: Fein, Burton I. (advisor).

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ng, M. J. P. (1976). The Zp (t)-adequacy of pure plynomials. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17552

Chicago Manual of Style (16th Edition):

Ng, Mary Jeanne Pe. “The Zp (t)-adequacy of pure plynomials.” 1976. Doctoral Dissertation, Oregon State University. Accessed December 03, 2020. http://hdl.handle.net/1957/17552.

MLA Handbook (7th Edition):

Ng, Mary Jeanne Pe. “The Zp (t)-adequacy of pure plynomials.” 1976. Web. 03 Dec 2020.

Vancouver:

Ng MJP. The Zp (t)-adequacy of pure plynomials. [Internet] [Doctoral dissertation]. Oregon State University; 1976. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1957/17552.

Council of Science Editors:

Ng MJP. The Zp (t)-adequacy of pure plynomials. [Doctoral Dissertation]. Oregon State University; 1976. Available from: http://hdl.handle.net/1957/17552


Oregon State University

21. Price, James Ferris. Orthogonal polynomials for curve fitting.

Degree: MA, Mathematics, 1940, Oregon State University

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Price, J. F. (1940). Orthogonal polynomials for curve fitting. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/51936

Chicago Manual of Style (16th Edition):

Price, James Ferris. “Orthogonal polynomials for curve fitting.” 1940. Masters Thesis, Oregon State University. Accessed December 03, 2020. http://hdl.handle.net/1957/51936.

MLA Handbook (7th Edition):

Price, James Ferris. “Orthogonal polynomials for curve fitting.” 1940. Web. 03 Dec 2020.

Vancouver:

Price JF. Orthogonal polynomials for curve fitting. [Internet] [Masters thesis]. Oregon State University; 1940. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1957/51936.

Council of Science Editors:

Price JF. Orthogonal polynomials for curve fitting. [Masters Thesis]. Oregon State University; 1940. Available from: http://hdl.handle.net/1957/51936


University of Manitoba

22. Klurman, Oleksiy. On constrained Markov-Nikolskii and Bernstein type inequalities.

Degree: Mathematics, 2011, University of Manitoba

 This thesis is devoted to polynomial inequalities with constraints. We present a history of the development of this subject together with recent progress. In the… (more)

Subjects/Keywords: Approximation; Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Klurman, O. (2011). On constrained Markov-Nikolskii and Bernstein type inequalities. (Masters Thesis). University of Manitoba. Retrieved from http://hdl.handle.net/1993/4820

Chicago Manual of Style (16th Edition):

Klurman, Oleksiy. “On constrained Markov-Nikolskii and Bernstein type inequalities.” 2011. Masters Thesis, University of Manitoba. Accessed December 03, 2020. http://hdl.handle.net/1993/4820.

MLA Handbook (7th Edition):

Klurman, Oleksiy. “On constrained Markov-Nikolskii and Bernstein type inequalities.” 2011. Web. 03 Dec 2020.

Vancouver:

Klurman O. On constrained Markov-Nikolskii and Bernstein type inequalities. [Internet] [Masters thesis]. University of Manitoba; 2011. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/1993/4820.

Council of Science Editors:

Klurman O. On constrained Markov-Nikolskii and Bernstein type inequalities. [Masters Thesis]. University of Manitoba; 2011. Available from: http://hdl.handle.net/1993/4820


Boston University

23. Poros, Demetrios J. Some recurrence relations for the Bessel polynomials.

Degree: MA, Mathematics, 1961, Boston University

 Solution of the spherical wave equation for traveling waves leads to the equation of Bessel polynomials. A relation of these polynomials to the Bessel function… (more)

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Poros, D. J. (1961). Some recurrence relations for the Bessel polynomials. (Masters Thesis). Boston University. Retrieved from http://hdl.handle.net/2144/24549

Chicago Manual of Style (16th Edition):

Poros, Demetrios J. “Some recurrence relations for the Bessel polynomials.” 1961. Masters Thesis, Boston University. Accessed December 03, 2020. http://hdl.handle.net/2144/24549.

MLA Handbook (7th Edition):

Poros, Demetrios J. “Some recurrence relations for the Bessel polynomials.” 1961. Web. 03 Dec 2020.

Vancouver:

Poros DJ. Some recurrence relations for the Bessel polynomials. [Internet] [Masters thesis]. Boston University; 1961. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2144/24549.

Council of Science Editors:

Poros DJ. Some recurrence relations for the Bessel polynomials. [Masters Thesis]. Boston University; 1961. Available from: http://hdl.handle.net/2144/24549


Texas Tech University

24. Cross, James Hollie. Location of zeros of polynomials.

Degree: Mathematics, 1931, Texas Tech University

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cross, J. H. (1931). Location of zeros of polynomials. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/16447

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cross, James Hollie. “Location of zeros of polynomials.” 1931. Thesis, Texas Tech University. Accessed December 03, 2020. http://hdl.handle.net/2346/16447.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cross, James Hollie. “Location of zeros of polynomials.” 1931. Web. 03 Dec 2020.

Vancouver:

Cross JH. Location of zeros of polynomials. [Internet] [Thesis]. Texas Tech University; 1931. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2346/16447.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cross JH. Location of zeros of polynomials. [Thesis]. Texas Tech University; 1931. Available from: http://hdl.handle.net/2346/16447

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas Tech University

25. McClain, Elmer Carl. A group of families of polynomials with imaginary zeros.

Degree: Mathematics, 1938, Texas Tech University

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McClain, E. C. (1938). A group of families of polynomials with imaginary zeros. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/20722

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McClain, Elmer Carl. “A group of families of polynomials with imaginary zeros.” 1938. Thesis, Texas Tech University. Accessed December 03, 2020. http://hdl.handle.net/2346/20722.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McClain, Elmer Carl. “A group of families of polynomials with imaginary zeros.” 1938. Web. 03 Dec 2020.

Vancouver:

McClain EC. A group of families of polynomials with imaginary zeros. [Internet] [Thesis]. Texas Tech University; 1938. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2346/20722.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McClain EC. A group of families of polynomials with imaginary zeros. [Thesis]. Texas Tech University; 1938. Available from: http://hdl.handle.net/2346/20722

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas Tech University

26. Price, Merritt D. The evaluation of smoothing coefficients.

Degree: Mathematics, 1962, Texas Tech University

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Price, M. D. (1962). The evaluation of smoothing coefficients. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/8580

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Price, Merritt D. “The evaluation of smoothing coefficients.” 1962. Thesis, Texas Tech University. Accessed December 03, 2020. http://hdl.handle.net/2346/8580.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Price, Merritt D. “The evaluation of smoothing coefficients.” 1962. Web. 03 Dec 2020.

Vancouver:

Price MD. The evaluation of smoothing coefficients. [Internet] [Thesis]. Texas Tech University; 1962. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/2346/8580.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Price MD. The evaluation of smoothing coefficients. [Thesis]. Texas Tech University; 1962. Available from: http://hdl.handle.net/2346/8580

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Arizona

27. Webb, Donald Loomis, 1907-. Criteria for the irreducibility of a polynomial into linear factors with an application to Fermat's last theorem .

Degree: 1933, University of Arizona

Subjects/Keywords: Polynomials.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Webb, Donald Loomis, 1. (1933). Criteria for the irreducibility of a polynomial into linear factors with an application to Fermat's last theorem . (Masters Thesis). University of Arizona. Retrieved from http://hdl.handle.net/10150/553218

Chicago Manual of Style (16th Edition):

Webb, Donald Loomis, 1907-. “Criteria for the irreducibility of a polynomial into linear factors with an application to Fermat's last theorem .” 1933. Masters Thesis, University of Arizona. Accessed December 03, 2020. http://hdl.handle.net/10150/553218.

MLA Handbook (7th Edition):

Webb, Donald Loomis, 1907-. “Criteria for the irreducibility of a polynomial into linear factors with an application to Fermat's last theorem .” 1933. Web. 03 Dec 2020.

Vancouver:

Webb, Donald Loomis 1. Criteria for the irreducibility of a polynomial into linear factors with an application to Fermat's last theorem . [Internet] [Masters thesis]. University of Arizona; 1933. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10150/553218.

Council of Science Editors:

Webb, Donald Loomis 1. Criteria for the irreducibility of a polynomial into linear factors with an application to Fermat's last theorem . [Masters Thesis]. University of Arizona; 1933. Available from: http://hdl.handle.net/10150/553218


University of Hong Kong

28. Chu, Wai-man. Iterated construction of irreducible polynomials over a finite field.

Degree: 1994, University of Hong Kong

Subjects/Keywords: Polynomials.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chu, W. (1994). Iterated construction of irreducible polynomials over a finite field. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/32398

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chu, Wai-man. “Iterated construction of irreducible polynomials over a finite field.” 1994. Thesis, University of Hong Kong. Accessed December 03, 2020. http://hdl.handle.net/10722/32398.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chu, Wai-man. “Iterated construction of irreducible polynomials over a finite field.” 1994. Web. 03 Dec 2020.

Vancouver:

Chu W. Iterated construction of irreducible polynomials over a finite field. [Internet] [Thesis]. University of Hong Kong; 1994. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10722/32398.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chu W. Iterated construction of irreducible polynomials over a finite field. [Thesis]. University of Hong Kong; 1994. Available from: http://hdl.handle.net/10722/32398

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Hong Kong

29. 張伯亮. Zero distribution of polynomials and polynomial systems.

Degree: 2014, University of Hong Kong

 The new framework of random polynomials developed by R. Pemantle, I. Rivin and the late O. Schramm has been studied in this thesis. The strong… (more)

Subjects/Keywords: Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

張伯亮. (2014). Zero distribution of polynomials and polynomial systems. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/206332

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

張伯亮. “Zero distribution of polynomials and polynomial systems.” 2014. Thesis, University of Hong Kong. Accessed December 03, 2020. http://hdl.handle.net/10722/206332.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

張伯亮. “Zero distribution of polynomials and polynomial systems.” 2014. Web. 03 Dec 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

張伯亮. Zero distribution of polynomials and polynomial systems. [Internet] [Thesis]. University of Hong Kong; 2014. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10722/206332.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

張伯亮. Zero distribution of polynomials and polynomial systems. [Thesis]. University of Hong Kong; 2014. Available from: http://hdl.handle.net/10722/206332

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation


University of Hong Kong

30. 馬少麟. Polynomial addition sets.

Degree: 1985, University of Hong Kong

Subjects/Keywords: Polynomials.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

馬少麟. (1985). Polynomial addition sets. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/34236

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

馬少麟. “Polynomial addition sets.” 1985. Thesis, University of Hong Kong. Accessed December 03, 2020. http://hdl.handle.net/10722/34236.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

馬少麟. “Polynomial addition sets.” 1985. Web. 03 Dec 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

馬少麟. Polynomial addition sets. [Internet] [Thesis]. University of Hong Kong; 1985. [cited 2020 Dec 03]. Available from: http://hdl.handle.net/10722/34236.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

馬少麟. Polynomial addition sets. [Thesis]. University of Hong Kong; 1985. Available from: http://hdl.handle.net/10722/34236

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5] … [31]

.