Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Kazhdan Lusztig Polynomials). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Colorado

1. Gern, Tyson Charles. Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D.

Degree: PhD, Mathematics, 2013, University of Colorado

  Kazhdan–Lusztig polynomials arise in the context of Hecke algebras associated to Coxeter groups. The computation of these polynomials is very difficult for examples of… (more)

Subjects/Keywords: Algebraic Combinatorics; Coxeter Groups; Domino Tableaux; Kazhdan-Lusztig Cells; Kazhdan-Lusztig Polynomials; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gern, T. C. (2013). Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/26

Chicago Manual of Style (16th Edition):

Gern, Tyson Charles. “Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D.” 2013. Doctoral Dissertation, University of Colorado. Accessed October 26, 2020. https://scholar.colorado.edu/math_gradetds/26.

MLA Handbook (7th Edition):

Gern, Tyson Charles. “Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D.” 2013. Web. 26 Oct 2020.

Vancouver:

Gern TC. Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D. [Internet] [Doctoral dissertation]. University of Colorado; 2013. [cited 2020 Oct 26]. Available from: https://scholar.colorado.edu/math_gradetds/26.

Council of Science Editors:

Gern TC. Leading Coefficients of Kazhdan–Lusztig Polynomials in Type D. [Doctoral Dissertation]. University of Colorado; 2013. Available from: https://scholar.colorado.edu/math_gradetds/26

2. Deng, Taiwang. Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n).

Degree: Docteur es, Mathématiques, 2016, Sorbonne Paris Cité

Orbitales, ont démontré que les multiplicités dans une representation induitetotale sont données par les valeurs en q = 1 des polynômes de Kazhdan-Lusztig associés aux… (more)

Subjects/Keywords: Variété de Schubert; Polynôme de Kazhdan-Lusztig; Théorie de représentation d’un groupe p-adique; Théorie de nombre; The total parabolic induction; Kazhdan-Lusztig Polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Deng, T. (2016). Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n). (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2016USPCD070

Chicago Manual of Style (16th Edition):

Deng, Taiwang. “Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n).” 2016. Doctoral Dissertation, Sorbonne Paris Cité. Accessed October 26, 2020. http://www.theses.fr/2016USPCD070.

MLA Handbook (7th Edition):

Deng, Taiwang. “Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n).” 2016. Web. 26 Oct 2020.

Vancouver:

Deng T. Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n). [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2016. [cited 2020 Oct 26]. Available from: http://www.theses.fr/2016USPCD070.

Council of Science Editors:

Deng T. Induction parabolique et géométrie des variétés orbitales pour GLn : Parabolic Induction and Geometry of Orbital Varieties for GL(n). [Doctoral Dissertation]. Sorbonne Paris Cité; 2016. Available from: http://www.theses.fr/2016USPCD070

3. Gedeon, Katie. Kazhdan-Lusztig Polynomials of Matroids and Their Roots.

Degree: PhD, Department of Mathematics, 2018, University of Oregon

 The Kazhdan-Lusztig polynomial of a matroid M, denoted PM( t ), was recently defined by Elias, Proudfoot, and Wakefield. These polynomials are analogous to the… (more)

Subjects/Keywords: Kazhdan-Lusztig polynomials; Matroid theory; real-rootedness

…Matroids and Their Kazhdan-Lusztig Polynomials . . . . . . . 5 2.2. Equivariant Matroids and… …30 ROOTS OF KAZHDAN-LUSZTIG POLYNOMIALS OF MATROIDS… …xii LIST OF TABLES Table Page 4.1. Kazhdan-Lusztig polynomials of some uniform matroids… …A.1 Kazhdan-Lusztig polynomials for the thagomizer matroid τn . . . . . 46 A.2 Kazhdan… …Kazhdan-Lusztig polynomials of matroids were first studied in [EPW] where the authors… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gedeon, K. (2018). Kazhdan-Lusztig Polynomials of Matroids and Their Roots. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/23913

Chicago Manual of Style (16th Edition):

Gedeon, Katie. “Kazhdan-Lusztig Polynomials of Matroids and Their Roots.” 2018. Doctoral Dissertation, University of Oregon. Accessed October 26, 2020. http://hdl.handle.net/1794/23913.

MLA Handbook (7th Edition):

Gedeon, Katie. “Kazhdan-Lusztig Polynomials of Matroids and Their Roots.” 2018. Web. 26 Oct 2020.

Vancouver:

Gedeon K. Kazhdan-Lusztig Polynomials of Matroids and Their Roots. [Internet] [Doctoral dissertation]. University of Oregon; 2018. [cited 2020 Oct 26]. Available from: http://hdl.handle.net/1794/23913.

Council of Science Editors:

Gedeon K. Kazhdan-Lusztig Polynomials of Matroids and Their Roots. [Doctoral Dissertation]. University of Oregon; 2018. Available from: http://hdl.handle.net/1794/23913


University of North Texas

4. Alhaddad, Shemsi I. Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups.

Degree: 2006, University of North Texas

 The Iwahori-Hecke algebras of Coxeter groups play a central role in the study of representations of semisimple Lie-type groups. An important tool is the combinatorial… (more)

Subjects/Keywords: Hecke algebras.; Kazhdan-Lusztig polynomials.; Coxeter groups.; Hecke algebra; Kazhdan-Lusztig theory; monomial groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alhaddad, S. I. (2006). Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc5235/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Alhaddad, Shemsi I. “Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups.” 2006. Thesis, University of North Texas. Accessed October 26, 2020. https://digital.library.unt.edu/ark:/67531/metadc5235/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Alhaddad, Shemsi I. “Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups.” 2006. Web. 26 Oct 2020.

Vancouver:

Alhaddad SI. Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups. [Internet] [Thesis]. University of North Texas; 2006. [cited 2020 Oct 26]. Available from: https://digital.library.unt.edu/ark:/67531/metadc5235/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Alhaddad SI. Generic Algebras and Kazhdan-Lusztig Theory for Monomial Groups. [Thesis]. University of North Texas; 2006. Available from: https://digital.library.unt.edu/ark:/67531/metadc5235/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Lehigh University

5. Lambright, Justin Jay. A generalization of Kazhdan and Lusztig's R-polynomials.

Degree: PhD, Mathematics, 2011, Lehigh University

Subjects/Keywords: algebraic combinatorics; Bruhat order; dual canonical basis; Hecke algebra; Kazhdan-Lusztig R-polynomials; quantum polynomial ring; Physical Sciences and Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lambright, J. J. (2011). A generalization of Kazhdan and Lusztig's R-polynomials. (Doctoral Dissertation). Lehigh University. Retrieved from https://preserve.lehigh.edu/etd/1081

Chicago Manual of Style (16th Edition):

Lambright, Justin Jay. “A generalization of Kazhdan and Lusztig's R-polynomials.” 2011. Doctoral Dissertation, Lehigh University. Accessed October 26, 2020. https://preserve.lehigh.edu/etd/1081.

MLA Handbook (7th Edition):

Lambright, Justin Jay. “A generalization of Kazhdan and Lusztig's R-polynomials.” 2011. Web. 26 Oct 2020.

Vancouver:

Lambright JJ. A generalization of Kazhdan and Lusztig's R-polynomials. [Internet] [Doctoral dissertation]. Lehigh University; 2011. [cited 2020 Oct 26]. Available from: https://preserve.lehigh.edu/etd/1081.

Council of Science Editors:

Lambright JJ. A generalization of Kazhdan and Lusztig's R-polynomials. [Doctoral Dissertation]. Lehigh University; 2011. Available from: https://preserve.lehigh.edu/etd/1081

6. Koonz, Jennifer. Properties of Singular Schubert Varieties.

Degree: PhD, Mathematics, 2013, U of Massachusetts : PhD

  This thesis deals with the study of Schubert varieties, which are subsets of flag varieties indexed by elements of Weyl groups. We start by… (more)

Subjects/Keywords: Combinatorics; Hecke Algebra; Intersection Cohomology; Kazhdan-Lusztig Polynomials; Schubert Varieties; Mathematics

…are equivalent in definition to Kazhdan-Lusztig polynomials) and the intersection… …Lusztig polynomials) in a combinatorial and efficient manner. The Kazhdan-Lusztig basis… …are equivalent to the definition of Kazhdan-Lusztig polynomials, was developed by Kazhdan… …Kazhdan-Lusztig polynomials, and they are completely characterized by the following three… …1) whenever x < w. 2 Theorem 2.3. [18] The Kazhdan-Lusztig polynomials Px,w… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Koonz, J. (2013). Properties of Singular Schubert Varieties. (Doctoral Dissertation). U of Massachusetts : PhD. Retrieved from https://scholarworks.umass.edu/open_access_dissertations/839

Chicago Manual of Style (16th Edition):

Koonz, Jennifer. “Properties of Singular Schubert Varieties.” 2013. Doctoral Dissertation, U of Massachusetts : PhD. Accessed October 26, 2020. https://scholarworks.umass.edu/open_access_dissertations/839.

MLA Handbook (7th Edition):

Koonz, Jennifer. “Properties of Singular Schubert Varieties.” 2013. Web. 26 Oct 2020.

Vancouver:

Koonz J. Properties of Singular Schubert Varieties. [Internet] [Doctoral dissertation]. U of Massachusetts : PhD; 2013. [cited 2020 Oct 26]. Available from: https://scholarworks.umass.edu/open_access_dissertations/839.

Council of Science Editors:

Koonz J. Properties of Singular Schubert Varieties. [Doctoral Dissertation]. U of Massachusetts : PhD; 2013. Available from: https://scholarworks.umass.edu/open_access_dissertations/839

.