Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(KONVEXE POLYGONE KONVEXE POLYTOPE GEOMETRIE ). Showing records 1 – 30 of 468 total matches.

[1] [2] [3] [4] [5] … [16]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


ETH Zürich

1. Schurr, Ingo A. Unique sink orientations of cubes.

Degree: 2004, ETH Zürich

Subjects/Keywords: CONVEX POLYGONS + CONVEX POLYTOPES (GEOMETRY); KONVEXE POLYGONE + KONVEXE POLYTOPE (GEOMETRIE); DIRECTED GRAPHS (GRAPH THEORY); ALGORITHMISCHE KOMPLEXITÄT (MATHEMATIK); LINEARE OPTIMIERUNG (OPERATIONS RESEARCH); ALGORITHMIC COMPLEXITY (MATHEMATICS); LINEAR PROGRAMMING (OPERATIONS RESEARCH); GERICHTETE GRAPHEN (GRAPHENTHEORIE); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schurr, I. A. (2004). Unique sink orientations of cubes. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/72738

Chicago Manual of Style (16th Edition):

Schurr, Ingo A. “Unique sink orientations of cubes.” 2004. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/72738.

MLA Handbook (7th Edition):

Schurr, Ingo A. “Unique sink orientations of cubes.” 2004. Web. 07 Dec 2019.

Vancouver:

Schurr IA. Unique sink orientations of cubes. [Internet] [Doctoral dissertation]. ETH Zürich; 2004. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/72738.

Council of Science Editors:

Schurr IA. Unique sink orientations of cubes. [Doctoral Dissertation]. ETH Zürich; 2004. Available from: http://hdl.handle.net/20.500.11850/72738


ETH Zürich

2. Tschirschnitz, Falk E. LP-related properties of polytopes with few facets.

Degree: 2003, ETH Zürich

Subjects/Keywords: CONVEX POLYGONS + CONVEX POLYTOPES (GEOMETRY); KONVEXE POLYGONE + KONVEXE POLYTOPE (GEOMETRIE); SIMPLEXMETHODE (LINEARE OPTIMIERUNG); SIMPLEX METHOD (LINEAR PROGRAMMING); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tschirschnitz, F. E. (2003). LP-related properties of polytopes with few facets. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/72792

Chicago Manual of Style (16th Edition):

Tschirschnitz, Falk E. “LP-related properties of polytopes with few facets.” 2003. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/72792.

MLA Handbook (7th Edition):

Tschirschnitz, Falk E. “LP-related properties of polytopes with few facets.” 2003. Web. 07 Dec 2019.

Vancouver:

Tschirschnitz FE. LP-related properties of polytopes with few facets. [Internet] [Doctoral dissertation]. ETH Zürich; 2003. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/72792.

Council of Science Editors:

Tschirschnitz FE. LP-related properties of polytopes with few facets. [Doctoral Dissertation]. ETH Zürich; 2003. Available from: http://hdl.handle.net/20.500.11850/72792


ETH Zürich

3. Katz, Gabriel. Tropical convexity, halfspace arrangements and optimization.

Degree: 2008, ETH Zürich

Subjects/Keywords: ANORDNUNGEN GEOMETRISCHER GEBILDE (GEOMETRIE); KONVEXE POLYGONE + KONVEXE POLYTOPE (GEOMETRIE); LINEARE OPTIMIERUNG (OPERATIONS RESEARCH); EXAMENSARBEITEN + DIPLOMARBEITEN (HOCHSCHULWESEN); ARRANGEMENTS OF GEOMETRIC FIGURES (GEOMETRY); CONVEX POLYGONS + CONVEX POLYTOPES (GEOMETRY); LINEAR PROGRAMMING (OPERATIONS RESEARCH); EXAMINATION PAPERS + DIPLOMA PAPERS (HIGHER EDUCATION); info:eu-repo/classification/ddc/004; info:eu-repo/classification/ddc/510; Data processing, computer science; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Katz, G. (2008). Tropical convexity, halfspace arrangements and optimization. (Thesis). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/150619

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Katz, Gabriel. “Tropical convexity, halfspace arrangements and optimization.” 2008. Thesis, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/150619.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Katz, Gabriel. “Tropical convexity, halfspace arrangements and optimization.” 2008. Web. 07 Dec 2019.

Vancouver:

Katz G. Tropical convexity, halfspace arrangements and optimization. [Internet] [Thesis]. ETH Zürich; 2008. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/150619.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Katz G. Tropical convexity, halfspace arrangements and optimization. [Thesis]. ETH Zürich; 2008. Available from: http://hdl.handle.net/20.500.11850/150619

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

4. Müller, Irene. Corner cuts and corner cut polytopes.

Degree: 2001, ETH Zürich

Subjects/Keywords: POLYTOPE + POLYEDER (GEOMETRIE); KONVEXE MENGEN (GEOMETRIE); POLYTOPES + POLYHEDRA (GEOMETRY); CONVEX SETS (GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Müller, I. (2001). Corner cuts and corner cut polytopes. (Thesis). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146026

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Müller, Irene. “Corner cuts and corner cut polytopes.” 2001. Thesis, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/146026.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Müller, Irene. “Corner cuts and corner cut polytopes.” 2001. Web. 07 Dec 2019.

Vancouver:

Müller I. Corner cuts and corner cut polytopes. [Internet] [Thesis]. ETH Zürich; 2001. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/146026.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Müller I. Corner cuts and corner cut polytopes. [Thesis]. ETH Zürich; 2001. Available from: http://hdl.handle.net/20.500.11850/146026

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Pavón, Maël. Geometry and structure of metric injective hulls.

Degree: 2016, ETH Zürich

Subjects/Keywords: METRISCHE RÄUME (TOPOLOGIE); KONVEXE KÖRPER (GEOMETRIE); POLYTOPE + POLYEDER (GEOMETRIE); GEOMETRISCHE UNGLEICHUNGEN; METRIC SPACES (TOPOLOGY); CONVEX BODIES (GEOMETRY); POLYTOPES + POLYHEDRA (GEOMETRY); GEOMETRIC INEQUALITIES; info:eu-repo/classification/ddc/510; Mathematics

Page 1 Page 2 Page 3 Page 4

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pavón, M. (2016). Geometry and structure of metric injective hulls. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155566

Chicago Manual of Style (16th Edition):

Pavón, Maël. “Geometry and structure of metric injective hulls.” 2016. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/155566.

MLA Handbook (7th Edition):

Pavón, Maël. “Geometry and structure of metric injective hulls.” 2016. Web. 07 Dec 2019.

Vancouver:

Pavón M. Geometry and structure of metric injective hulls. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/155566.

Council of Science Editors:

Pavón M. Geometry and structure of metric injective hulls. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/155566


University of Vienna

6. Dong, Guozhi. Regularization and imaging methods for solving inverse problems with solutions on surfaces.

Degree: 2017, University of Vienna

 Regularisierungsmethoden sind Standardansätze zur Lösung von schlecht gestellte Probleme mit unvollständigen und verrauschten Messungen. Die meisten inversen und bildgebenden Probleme sind schlecht gestellt. Einige neuere… (more)

Subjects/Keywords: 31.40 Analysis: Allgemeines; 31.80 Angewandte Mathematik; 31.76 Numerische Mathematik; 31.50 Geometrie: Allgemeines; 31.46 Funktionalanalysis; Regularisierungsmethoden / schlecht gestellte Probleme / inversen und bildgebenden Probleme / nicht-konvexe Regularisierungen / Vektorfelder / Oberflächen / nichtlineare Flüsse

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dong, G. (2017). Regularization and imaging methods for solving inverse problems with solutions on surfaces. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/45836/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dong, Guozhi. “Regularization and imaging methods for solving inverse problems with solutions on surfaces.” 2017. Thesis, University of Vienna. Accessed December 07, 2019. http://othes.univie.ac.at/45836/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dong, Guozhi. “Regularization and imaging methods for solving inverse problems with solutions on surfaces.” 2017. Web. 07 Dec 2019.

Vancouver:

Dong G. Regularization and imaging methods for solving inverse problems with solutions on surfaces. [Internet] [Thesis]. University of Vienna; 2017. [cited 2019 Dec 07]. Available from: http://othes.univie.ac.at/45836/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dong G. Regularization and imaging methods for solving inverse problems with solutions on surfaces. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/45836/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

7. Stoll, August. Ueber den Kappenkörper eines konvexen Körpers.

Degree: 1930, ETH Zürich

Subjects/Keywords: KONVEXE KÖRPER (GEOMETRIE); CONVEX BODIES (GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stoll, A. (1930). Ueber den Kappenkörper eines konvexen Körpers. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135293

Chicago Manual of Style (16th Edition):

Stoll, August. “Ueber den Kappenkörper eines konvexen Körpers.” 1930. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/135293.

MLA Handbook (7th Edition):

Stoll, August. “Ueber den Kappenkörper eines konvexen Körpers.” 1930. Web. 07 Dec 2019.

Vancouver:

Stoll A. Ueber den Kappenkörper eines konvexen Körpers. [Internet] [Doctoral dissertation]. ETH Zürich; 1930. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/135293.

Council of Science Editors:

Stoll A. Ueber den Kappenkörper eines konvexen Körpers. [Doctoral Dissertation]. ETH Zürich; 1930. Available from: http://hdl.handle.net/20.500.11850/135293


ETH Zürich

8. Miesch, Benjamin. Gluing Constructions and Local-to-Global Results for Hyperconvex Metric Spaces.

Degree: 2017, ETH Zürich

Subjects/Keywords: METRIC SPACES (TOPOLOGY); KONVEXE MENGEN (GEOMETRIE); METRISCHE RÄUME (TOPOLOGIE); CONVEX SETS (GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Miesch, B. (2017). Gluing Constructions and Local-to-Global Results for Hyperconvex Metric Spaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/129525

Chicago Manual of Style (16th Edition):

Miesch, Benjamin. “Gluing Constructions and Local-to-Global Results for Hyperconvex Metric Spaces.” 2017. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/129525.

MLA Handbook (7th Edition):

Miesch, Benjamin. “Gluing Constructions and Local-to-Global Results for Hyperconvex Metric Spaces.” 2017. Web. 07 Dec 2019.

Vancouver:

Miesch B. Gluing Constructions and Local-to-Global Results for Hyperconvex Metric Spaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2017. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/129525.

Council of Science Editors:

Miesch B. Gluing Constructions and Local-to-Global Results for Hyperconvex Metric Spaces. [Doctoral Dissertation]. ETH Zürich; 2017. Available from: http://hdl.handle.net/20.500.11850/129525


ETH Zürich

9. Oertel, Timm. Integer Convex Minimization in Low Dimensions.

Degree: 2014, ETH Zürich

Subjects/Keywords: KONVEXE MENGEN (GEOMETRIE); MAXIMA AND MINIMA OF FUNCTIONS (MATHEMATICAL ANALYSIS); INTEGER PROGRAMMING (OPERATIONS RESEARCH); CONVEX FUNCTIONS (MATHEMATICAL ANALYSIS); CONVEX PROGRAMMING (OPERATIONS RESEARCH); GANZZAHLIGE OPTIMIERUNG (OPERATIONS RESEARCH); KONVEXE OPTIMIERUNG (OPERATIONS RESEARCH); KONVEXE FUNKTIONEN (ANALYSIS); MAXIMA UND MINIMA VON FUNKTIONEN (ANALYSIS); CONVEX SETS (GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oertel, T. (2014). Integer Convex Minimization in Low Dimensions. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/93371

Chicago Manual of Style (16th Edition):

Oertel, Timm. “Integer Convex Minimization in Low Dimensions.” 2014. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/93371.

MLA Handbook (7th Edition):

Oertel, Timm. “Integer Convex Minimization in Low Dimensions.” 2014. Web. 07 Dec 2019.

Vancouver:

Oertel T. Integer Convex Minimization in Low Dimensions. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/93371.

Council of Science Editors:

Oertel T. Integer Convex Minimization in Low Dimensions. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/93371


ETH Zürich

10. Okamoto, Yoshio. Structural parameters in combinatorial objects.

Degree: 2005, ETH Zürich

Subjects/Keywords: CONVEX GEOMETRY + DISCRETE GEOMETRY; KONVEXE GEOMETRIE + DISKRETE GEOMETRIE; MATROIDS (COMBINATORICS); COMBINATORIAL PROBLEMS (DISCRETE PROGRAMMING); KOMBINATORISCHE PROBLEME (DISKRETE OPTIMIERUNG); MATROIDE (KOMBINATORIK); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Okamoto, Y. (2005). Structural parameters in combinatorial objects. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/72829

Chicago Manual of Style (16th Edition):

Okamoto, Yoshio. “Structural parameters in combinatorial objects.” 2005. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/72829.

MLA Handbook (7th Edition):

Okamoto, Yoshio. “Structural parameters in combinatorial objects.” 2005. Web. 07 Dec 2019.

Vancouver:

Okamoto Y. Structural parameters in combinatorial objects. [Internet] [Doctoral dissertation]. ETH Zürich; 2005. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/72829.

Council of Science Editors:

Okamoto Y. Structural parameters in combinatorial objects. [Doctoral Dissertation]. ETH Zürich; 2005. Available from: http://hdl.handle.net/20.500.11850/72829

11. Scholz, Sebastian Paris. Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper.

Degree: 2002, Universität Dortmund

As notion for robustness, a finite sample breakdown point definition for estimators of convex bodies is presented by using ideas from convex geometry. The estimation… (more)

Subjects/Keywords: affin aquivariante Schätzer; affine equivariant estimators; Convex body; high breakdown point; hoher Bruchpunkt; Konvexe Körper; MZE­criterion; MZE­Kriterium; Polarmenge; polar set; polytope; Polytope; Stützfunktion; support function; zonoid; Zonoid; 310

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scholz, S. P. (2002). Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. (Thesis). Universität Dortmund. Retrieved from http://hdl.handle.net/2003/2787

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Scholz, Sebastian Paris. “Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper.” 2002. Thesis, Universität Dortmund. Accessed December 07, 2019. http://hdl.handle.net/2003/2787.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Scholz, Sebastian Paris. “Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper.” 2002. Web. 07 Dec 2019.

Vancouver:

Scholz SP. Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. [Internet] [Thesis]. Universität Dortmund; 2002. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/2003/2787.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Scholz SP. Robustheitskonzepte und -untersuchungen für Schätzer konvexer Körper. [Thesis]. Universität Dortmund; 2002. Available from: http://hdl.handle.net/2003/2787

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Ruhr Universität Bochum

12. Baitsch, Matthias. Optimierung druckbeanspruchter Stabtragwerke unter Berücksichtigung geometrischer Imperfektionen.

Degree: 2003, Ruhr Universität Bochum

 Die vorliegende Arbeit befasst sich mit der Entwicklung eines Optimierungsmodells für druckbeanspruchte Stabtragwerke. Bei der Optimierung derartiger Strukturen ist die Berücksichtigung geometrischer Imperfektionen zur realitätsnahen… (more)

Subjects/Keywords: Strukturoptimierung; NURBS; Zufälliges Feld; Objektorientierung; Konvexe Hülle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baitsch, M. (2003). Optimierung druckbeanspruchter Stabtragwerke unter Berücksichtigung geometrischer Imperfektionen. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-9044

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Baitsch, Matthias. “Optimierung druckbeanspruchter Stabtragwerke unter Berücksichtigung geometrischer Imperfektionen.” 2003. Thesis, Ruhr Universität Bochum. Accessed December 07, 2019. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-9044.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Baitsch, Matthias. “Optimierung druckbeanspruchter Stabtragwerke unter Berücksichtigung geometrischer Imperfektionen.” 2003. Web. 07 Dec 2019.

Vancouver:

Baitsch M. Optimierung druckbeanspruchter Stabtragwerke unter Berücksichtigung geometrischer Imperfektionen. [Internet] [Thesis]. Ruhr Universität Bochum; 2003. [cited 2019 Dec 07]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-9044.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Baitsch M. Optimierung druckbeanspruchter Stabtragwerke unter Berücksichtigung geometrischer Imperfektionen. [Thesis]. Ruhr Universität Bochum; 2003. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-9044

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

13. Banert, Sebastian. Splitting algorithms in Hilbert spaces and beyond.

Degree: 2017, University of Vienna

Monotone Inklusionen kommen oft und in natürlicher Weise vor, wenn Optimierungsprobleme oder Differentialgleichungen betrachtet werden, deshalb können Lösungsmethoden für sie benutzt werden, um viele praktische… (more)

Subjects/Keywords: 31.80 Angewandte Mathematik; 31.47 Operatortheorie; 31.76 Numerische Mathematik; Monotone Operatoren / Proximal splitting / Konvexe Optimierung; Monotone operators / Proximal splitting / Convex optimisation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Banert, S. (2017). Splitting algorithms in Hilbert spaces and beyond. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/47327/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Banert, Sebastian. “Splitting algorithms in Hilbert spaces and beyond.” 2017. Thesis, University of Vienna. Accessed December 07, 2019. http://othes.univie.ac.at/47327/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Banert, Sebastian. “Splitting algorithms in Hilbert spaces and beyond.” 2017. Web. 07 Dec 2019.

Vancouver:

Banert S. Splitting algorithms in Hilbert spaces and beyond. [Internet] [Thesis]. University of Vienna; 2017. [cited 2019 Dec 07]. Available from: http://othes.univie.ac.at/47327/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Banert S. Splitting algorithms in Hilbert spaces and beyond. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/47327/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Weller, Frank. Geometrische Algorithmen in der Flächenrückführung.

Degree: 2000, Universität Dortmund

 Gegenstand der Flächenrückführung ist, aus einer gegebenen Menge von Abtastpunkten einer Fläche eine Näherung zu rekonstruieren, die die Fläche möglichst gut repräsentiert. Ein weit verbreiteter… (more)

Subjects/Keywords: Algorithmische Geometrie; Aufzählungsalgorithmen; computational geometry; Delaunaydiagramme; delaunay diagrams; enumeration algorithms; Flächenrückführung; Polygonale Hüllen; polygonal hulls; reverse engineering; Sphärische konvexe Hüllen; spherical convex hulls; surface reconstruction; triangulation; Triangulierung; 004

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Weller, F. (2000). Geometrische Algorithmen in der Flächenrückführung. (Thesis). Universität Dortmund. Retrieved from http://hdl.handle.net/2003/2567

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Weller, Frank. “Geometrische Algorithmen in der Flächenrückführung.” 2000. Thesis, Universität Dortmund. Accessed December 07, 2019. http://hdl.handle.net/2003/2567.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Weller, Frank. “Geometrische Algorithmen in der Flächenrückführung.” 2000. Web. 07 Dec 2019.

Vancouver:

Weller F. Geometrische Algorithmen in der Flächenrückführung. [Internet] [Thesis]. Universität Dortmund; 2000. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/2003/2567.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Weller F. Geometrische Algorithmen in der Flächenrückführung. [Thesis]. Universität Dortmund; 2000. Available from: http://hdl.handle.net/2003/2567

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Freie Universität Berlin

15. Loiskekoski, Lauri. Separatoren der einfachen Polytopen.

Degree: 2018, Freie Universität Berlin

 Sei G=(V,E) ein Graph mit n Ecken. Ein Separator ist eine Partition der Ecken des Graphs in drei Mengen (A,B,C), sodass A und B ``gro\ss``… (more)

Subjects/Keywords: graph; simple polytope; separator; 500 Naturwissenschaften und Mathematik::510 Mathematik::516 Geometrie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Loiskekoski, L. (2018). Separatoren der einfachen Polytopen. (Thesis). Freie Universität Berlin. Retrieved from https://refubium.fu-berlin.de/handle/fub188/11875

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Loiskekoski, Lauri. “Separatoren der einfachen Polytopen.” 2018. Thesis, Freie Universität Berlin. Accessed December 07, 2019. https://refubium.fu-berlin.de/handle/fub188/11875.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Loiskekoski, Lauri. “Separatoren der einfachen Polytopen.” 2018. Web. 07 Dec 2019.

Vancouver:

Loiskekoski L. Separatoren der einfachen Polytopen. [Internet] [Thesis]. Freie Universität Berlin; 2018. [cited 2019 Dec 07]. Available from: https://refubium.fu-berlin.de/handle/fub188/11875.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Loiskekoski L. Separatoren der einfachen Polytopen. [Thesis]. Freie Universität Berlin; 2018. Available from: https://refubium.fu-berlin.de/handle/fub188/11875

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Freie Universität Berlin

16. Beeler, Katy. kombinatorische Typen und Durchmesserschranken.

Degree: 2017, Freie Universität Berlin

 In der vorliegenden Arbeit stellen wir (0, 1, a)- und (0, 1, a i )-Polytope vor und erforschen ihre verschiedenen kombinatorischen Eigenschaften. Diese Poly- tope… (more)

Subjects/Keywords: discrete geometry; polytope; vertex coordinates; 500 Naturwissenschaften und Mathematik::510 Mathematik::516 Geometrie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Beeler, K. (2017). kombinatorische Typen und Durchmesserschranken. (Thesis). Freie Universität Berlin. Retrieved from https://refubium.fu-berlin.de/handle/fub188/10461

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Beeler, Katy. “kombinatorische Typen und Durchmesserschranken.” 2017. Thesis, Freie Universität Berlin. Accessed December 07, 2019. https://refubium.fu-berlin.de/handle/fub188/10461.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Beeler, Katy. “kombinatorische Typen und Durchmesserschranken.” 2017. Web. 07 Dec 2019.

Vancouver:

Beeler K. kombinatorische Typen und Durchmesserschranken. [Internet] [Thesis]. Freie Universität Berlin; 2017. [cited 2019 Dec 07]. Available from: https://refubium.fu-berlin.de/handle/fub188/10461.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Beeler K. kombinatorische Typen und Durchmesserschranken. [Thesis]. Freie Universität Berlin; 2017. Available from: https://refubium.fu-berlin.de/handle/fub188/10461

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

17. Voigt, Ina Kirsten. Voronoizellen diskreter Punktmengen.

Degree: 2008, Technische Universität Dortmund

In dieser Arbeit wird eine Charakterisierung derjenigen diskreten Punktmengen angegeben, für die gilt, dass alle Voronoizellen Polyeder (bzw. Polytope) sind. Dazu wird der Begriff einer… (more)

Subjects/Keywords: Convex hull; Direction cone; Konvexe Hülle; Locally finitely generated discrete point set; Lokal endlich erzeugte Punktmenge; Polyeder; Polyhedron; Richtungskegel; Vornoizellen; Voronoi cell; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Voigt, I. K. (2008). Voronoizellen diskreter Punktmengen. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/25846

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Voigt, Ina Kirsten. “Voronoizellen diskreter Punktmengen.” 2008. Thesis, Technische Universität Dortmund. Accessed December 07, 2019. http://hdl.handle.net/2003/25846.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Voigt, Ina Kirsten. “Voronoizellen diskreter Punktmengen.” 2008. Web. 07 Dec 2019.

Vancouver:

Voigt IK. Voronoizellen diskreter Punktmengen. [Internet] [Thesis]. Technische Universität Dortmund; 2008. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/2003/25846.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Voigt IK. Voronoizellen diskreter Punktmengen. [Thesis]. Technische Universität Dortmund; 2008. Available from: http://hdl.handle.net/2003/25846

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

18. Morsy, Tharwat Elsayed Hamad. Convex optimization for detection in structured communication problems.

Degree: 2012, Technische Universität Dortmund

 The receiver in a wireless communication system has the task of computing good estimates for the data symbols that have been transmitted. The best (optimum)… (more)

Subjects/Keywords: Convex optimization; Generalized minimum mean square error detection; Maximum likelihood; Structured matrices; 620; Konvexe Optimierung; Matrixstruktur; Maximum-Likelihood-Schätzung; Signal detection theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Morsy, T. E. (2012). Convex optimization for detection in structured communication problems. (Thesis). Technische Universität Dortmund. Retrieved from http://hdl.handle.net/2003/29813

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Morsy, Tharwat Elsayed. “Convex optimization for detection in structured communication problems.” 2012. Thesis, Technische Universität Dortmund. Accessed December 07, 2019. http://hdl.handle.net/2003/29813.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Morsy, Tharwat Elsayed. “Convex optimization for detection in structured communication problems.” 2012. Web. 07 Dec 2019.

Vancouver:

Morsy TE. Convex optimization for detection in structured communication problems. [Internet] [Thesis]. Technische Universität Dortmund; 2012. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/2003/29813.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Morsy TE. Convex optimization for detection in structured communication problems. [Thesis]. Technische Universität Dortmund; 2012. Available from: http://hdl.handle.net/2003/29813

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Vilcu, Costin. Farthest points on convex surfaces.

Degree: 2003, Universität Dortmund

Subjects/Keywords: convex surface; distance function; Distanzfunktion; farthest point; Konvexe Fläche; lokales Maximum; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vilcu, C. (2003). Farthest points on convex surfaces. (Thesis). Universität Dortmund. Retrieved from http://hdl.handle.net/2003/2310

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vilcu, Costin. “Farthest points on convex surfaces.” 2003. Thesis, Universität Dortmund. Accessed December 07, 2019. http://hdl.handle.net/2003/2310.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vilcu, Costin. “Farthest points on convex surfaces.” 2003. Web. 07 Dec 2019.

Vancouver:

Vilcu C. Farthest points on convex surfaces. [Internet] [Thesis]. Universität Dortmund; 2003. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/2003/2310.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vilcu C. Farthest points on convex surfaces. [Thesis]. Universität Dortmund; 2003. Available from: http://hdl.handle.net/2003/2310

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

20. Vogelpoth, Nicolas. L^0-convex analysis and conditional risk measures.

Degree: 2009, University of Vienna

Motiviert durch Anwendungen aus der Finanzmathematik wird in der vorliegenden Dissertation konvexe Analysis für Moduln über dem geordneten Ring L0 aller Zufallsvariablen studiert. Dabei werden… (more)

Subjects/Keywords: 31.80 Angewandte Mathematik; L^0-konvexe Analysis / bedingte Risikomaße; L^0-convex Analysis / Conditional Risk Measures

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vogelpoth, N. (2009). L^0-convex analysis and conditional risk measures. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/6769/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vogelpoth, Nicolas. “L^0-convex analysis and conditional risk measures.” 2009. Thesis, University of Vienna. Accessed December 07, 2019. http://othes.univie.ac.at/6769/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vogelpoth, Nicolas. “L^0-convex analysis and conditional risk measures.” 2009. Web. 07 Dec 2019.

Vancouver:

Vogelpoth N. L^0-convex analysis and conditional risk measures. [Internet] [Thesis]. University of Vienna; 2009. [cited 2019 Dec 07]. Available from: http://othes.univie.ac.at/6769/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vogelpoth N. L^0-convex analysis and conditional risk measures. [Thesis]. University of Vienna; 2009. Available from: http://othes.univie.ac.at/6769/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

21. Hempel, Maria. An attack on flexibility and Stoker's problem.

Degree: 2015, ETH Zürich

Subjects/Keywords: POLYTOPE + POLYEDER (GEOMETRIE); POLYTOPES + POLYHEDRA (GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hempel, M. (2015). An attack on flexibility and Stoker's problem. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/113911

Chicago Manual of Style (16th Edition):

Hempel, Maria. “An attack on flexibility and Stoker's problem.” 2015. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/113911.

MLA Handbook (7th Edition):

Hempel, Maria. “An attack on flexibility and Stoker's problem.” 2015. Web. 07 Dec 2019.

Vancouver:

Hempel M. An attack on flexibility and Stoker's problem. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/113911.

Council of Science Editors:

Hempel M. An attack on flexibility and Stoker's problem. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/113911


ETH Zürich

22. Stich, Sebastian U. Convex Optimization with Random Pursuit.

Degree: 2014, ETH Zürich

Subjects/Keywords: SEARCH THEORY (OPERATIONS RESEARCH); CONVEX FUNCTIONS (MATHEMATICAL ANALYSIS); SUCHTHEORIE (OPERATIONS RESEARCH); CONVEX PROGRAMMING (OPERATIONS RESEARCH); ALGORITHMISCHE KOMPLEXITÄT (MATHEMATIK); KONVEXE OPTIMIERUNG (OPERATIONS RESEARCH); KONVEXE FUNKTIONEN (ANALYSIS); ALGORITHMIC COMPLEXITY (MATHEMATICS); info:eu-repo/classification/ddc/004; info:eu-repo/classification/ddc/510; Data processing, computer science; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stich, S. U. (2014). Convex Optimization with Random Pursuit. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/98277

Chicago Manual of Style (16th Edition):

Stich, Sebastian U. “Convex Optimization with Random Pursuit.” 2014. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/98277.

MLA Handbook (7th Edition):

Stich, Sebastian U. “Convex Optimization with Random Pursuit.” 2014. Web. 07 Dec 2019.

Vancouver:

Stich SU. Convex Optimization with Random Pursuit. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/98277.

Council of Science Editors:

Stich SU. Convex Optimization with Random Pursuit. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/98277


ETH Zürich

23. Wulff, Sharon. Convex optimization as a building block for difficult problems in machine learning.

Degree: 2014, ETH Zürich

Subjects/Keywords: MACHINE LEARNING (ARTIFICIAL INTELLIGENCE); MASCHINELLES LERNEN (KÜNSTLICHE INTELLIGENZ); CONVEX PROGRAMMING (OPERATIONS RESEARCH); ALGORITHMISCHE KOMPLEXITÄT (MATHEMATIK); KONVEXE OPTIMIERUNG (OPERATIONS RESEARCH); ALGORITHMIC COMPLEXITY (MATHEMATICS); GRAPHENMODELLE (GRAPHENTHEORIE); GRAPH MODELS (GRAPH THEORY); info:eu-repo/classification/ddc/004; Data processing, computer science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wulff, S. (2014). Convex optimization as a building block for difficult problems in machine learning. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/85666

Chicago Manual of Style (16th Edition):

Wulff, Sharon. “Convex optimization as a building block for difficult problems in machine learning.” 2014. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/85666.

MLA Handbook (7th Edition):

Wulff, Sharon. “Convex optimization as a building block for difficult problems in machine learning.” 2014. Web. 07 Dec 2019.

Vancouver:

Wulff S. Convex optimization as a building block for difficult problems in machine learning. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/85666.

Council of Science Editors:

Wulff S. Convex optimization as a building block for difficult problems in machine learning. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/85666


ETH Zürich

24. Jaggi, Martin. Sparse Convex Optimization Methods for Machine Learning.

Degree: 2011, ETH Zürich

Subjects/Keywords: MACHINE LEARNING (ARTIFICIAL INTELLIGENCE); MASCHINELLES LERNEN (KÜNSTLICHE INTELLIGENZ); GRAPHENALGORITHMEN + GEOMETRISCHE ALGORITHMEN (GRAPHENTHEORIE); CONVEX PROGRAMMING (OPERATIONS RESEARCH); KONVEXE OPTIMIERUNG (OPERATIONS RESEARCH); GRAPH ALGORITHMS + GEOMETRIC ALGORITHMS (GRAPH THEORY); info:eu-repo/classification/ddc/004; Data processing, computer science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jaggi, M. (2011). Sparse Convex Optimization Methods for Machine Learning. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/72811

Chicago Manual of Style (16th Edition):

Jaggi, Martin. “Sparse Convex Optimization Methods for Machine Learning.” 2011. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/72811.

MLA Handbook (7th Edition):

Jaggi, Martin. “Sparse Convex Optimization Methods for Machine Learning.” 2011. Web. 07 Dec 2019.

Vancouver:

Jaggi M. Sparse Convex Optimization Methods for Machine Learning. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/72811.

Council of Science Editors:

Jaggi M. Sparse Convex Optimization Methods for Machine Learning. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/72811


ETH Zürich

25. Urech, Auguste. Polytopes réguliers de l'espace à n dimensions et leurs groupes de rotations.

Degree: 1925, ETH Zürich

Subjects/Keywords: POLYTOPE + POLYEDER (GEOMETRIE); GEOMETRISCHE TRANSFORMATIONEN; POLYTOPES + POLYHEDRA (GEOMETRY); GEOMETRIC TRANSFORMATIONS; info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Urech, A. (1925). Polytopes réguliers de l'espace à n dimensions et leurs groupes de rotations. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132047

Chicago Manual of Style (16th Edition):

Urech, Auguste. “Polytopes réguliers de l'espace à n dimensions et leurs groupes de rotations.” 1925. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/132047.

MLA Handbook (7th Edition):

Urech, Auguste. “Polytopes réguliers de l'espace à n dimensions et leurs groupes de rotations.” 1925. Web. 07 Dec 2019.

Vancouver:

Urech A. Polytopes réguliers de l'espace à n dimensions et leurs groupes de rotations. [Internet] [Doctoral dissertation]. ETH Zürich; 1925. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/132047.

Council of Science Editors:

Urech A. Polytopes réguliers de l'espace à n dimensions et leurs groupes de rotations. [Doctoral Dissertation]. ETH Zürich; 1925. Available from: http://hdl.handle.net/20.500.11850/132047


Freie Universität Berlin

26. Birkner, René. Exotische Komponenten des torischen Hilbert Schemas.

Degree: 2010, Freie Universität Berlin

 Diese Dissertation befasst sich mit der Analyse und Konstruktion der irreduziblen Komponenten von torischen Hilbert Schemata. Das torische Hilbert Schema parametrisiert alle Ideale in einem… (more)

Subjects/Keywords: toric Hilbert scheme; coherent component; non-cohrent component; state polytope; Groebner fan; explicit construction; 500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik; 500 Naturwissenschaften und Mathematik::510 Mathematik::512 Algebra; 500 Naturwissenschaften und Mathematik::510 Mathematik::516 Geometrie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Birkner, R. (2010). Exotische Komponenten des torischen Hilbert Schemas. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-9381

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Birkner, René. “Exotische Komponenten des torischen Hilbert Schemas.” 2010. Thesis, Freie Universität Berlin. Accessed December 07, 2019. http://dx.doi.org/10.17169/refubium-9381.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Birkner, René. “Exotische Komponenten des torischen Hilbert Schemas.” 2010. Web. 07 Dec 2019.

Vancouver:

Birkner R. Exotische Komponenten des torischen Hilbert Schemas. [Internet] [Thesis]. Freie Universität Berlin; 2010. [cited 2019 Dec 07]. Available from: http://dx.doi.org/10.17169/refubium-9381.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Birkner R. Exotische Komponenten des torischen Hilbert Schemas. [Thesis]. Freie Universität Berlin; 2010. Available from: http://dx.doi.org/10.17169/refubium-9381

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

27. Forte, Simone. Distributed Optimization for Non-Strongly Convex Regularizers.

Degree: 2015, ETH Zürich

Subjects/Keywords: EXAMINATION PAPERS + DEGREE PAPERS (DOCUMENT TYPES); MACHINE LEARNING (ARTIFICIAL INTELLIGENCE); DIPLOMARBEITEN UND EXAMENSARBEITEN (DOKUMENTENTYP); MASCHINELLES LERNEN (KÜNSTLICHE INTELLIGENZ); SUPPORT VECTOR MACHINES (STOCHASTICS); DISTRIBUTED SYSTEMS (COMPUTER SYSTEMS); CONVEX PROGRAMMING (OPERATIONS RESEARCH); KONVEXE OPTIMIERUNG (OPERATIONS RESEARCH); SUPPORT VECTOR MACHINES (STOCHASTIK); VERTEILTE SYSTEME (COMPUTERSYSTEME); info:eu-repo/classification/ddc/004; Data processing, computer science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Forte, S. (2015). Distributed Optimization for Non-Strongly Convex Regularizers. (Thesis). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/112546

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Forte, Simone. “Distributed Optimization for Non-Strongly Convex Regularizers.” 2015. Thesis, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/112546.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Forte, Simone. “Distributed Optimization for Non-Strongly Convex Regularizers.” 2015. Web. 07 Dec 2019.

Vancouver:

Forte S. Distributed Optimization for Non-Strongly Convex Regularizers. [Internet] [Thesis]. ETH Zürich; 2015. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/112546.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Forte S. Distributed Optimization for Non-Strongly Convex Regularizers. [Thesis]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/112546

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

28. Olbrich, Jakob. Screening Rules for Convex Problems.

Degree: 2015, ETH Zürich

Subjects/Keywords: EXAMINATION PAPERS + DEGREE PAPERS (DOCUMENT TYPES); DIPLOMARBEITEN UND EXAMENSARBEITEN (DOKUMENTENTYP); SUPPORT VECTOR MACHINES (STOCHASTICS); CONVEX PROGRAMMING (OPERATIONS RESEARCH); KONVEXE OPTIMIERUNG (OPERATIONS RESEARCH); SUPPORT VECTOR MACHINES (STOCHASTIK); CORRELATION ANALYSIS + REGRESSION ANALYSIS (MULTIVARIATE STATISTICS); KORRELATIONSANALYSE + REGRESSIONSANALYSE (MULTIVARIATE STATISTIK); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Olbrich, J. (2015). Screening Rules for Convex Problems. (Thesis). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/108537

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Olbrich, Jakob. “Screening Rules for Convex Problems.” 2015. Thesis, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/108537.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Olbrich, Jakob. “Screening Rules for Convex Problems.” 2015. Web. 07 Dec 2019.

Vancouver:

Olbrich J. Screening Rules for Convex Problems. [Internet] [Thesis]. ETH Zürich; 2015. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/108537.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Olbrich J. Screening Rules for Convex Problems. [Thesis]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/108537

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

29. Aubel, Céline. Performance of super-resolution methods in parameter estimation and system identification.

Degree: 2016, ETH Zürich

Subjects/Keywords: MATHEMATISCHE ASPEKTE DER INFORMATIONSTHEORIE; BILDAUFLÖSUNG/QUALITÄT (NACHRICHTENTECHNIK); NUMERISCHE SIMULATION UND MATHEMATISCHE MODELLRECHNUNG; LINEARE UNGLEICHUNGEN + KONVEXE BEREICHE (LINEARE OPTIMIERUNG); MATHEMATICAL ASPECTS OF INFORMATION THEORY; IMAGE RESOLUTION/QUALITY (TELECOMMUNICATIONS); NUMERICAL SIMULATION AND MATHEMATICAL MODELING; LINEAR INEQUALITIES + CONVEX DOMAINS (LINEAR PROGRAMMING); info:eu-repo/classification/ddc/621.3; info:eu-repo/classification/ddc/510; Electric engineering; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aubel, C. (2016). Performance of super-resolution methods in parameter estimation and system identification. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/156296

Chicago Manual of Style (16th Edition):

Aubel, Céline. “Performance of super-resolution methods in parameter estimation and system identification.” 2016. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/156296.

MLA Handbook (7th Edition):

Aubel, Céline. “Performance of super-resolution methods in parameter estimation and system identification.” 2016. Web. 07 Dec 2019.

Vancouver:

Aubel C. Performance of super-resolution methods in parameter estimation and system identification. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/156296.

Council of Science Editors:

Aubel C. Performance of super-resolution methods in parameter estimation and system identification. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/156296


ETH Zürich

30. Christ, Tobias. Discrete Descriptions of Geometric Objects.

Degree: 2011, ETH Zürich

Subjects/Keywords: POLYGONGEOMETRIE; GEOMETRY OF POLYGONS; GEOMETRIC MODELING; GEOMETRISCHE MODELLIERUNG; ALGORITHMISCHE KOMPLEXITÄT (MATHEMATIK); BILDSEGMENTIERUNG (MATHEMATISCHE BILDVERARBEITUNG); POLYTOPE + POLYEDER (GEOMETRIE); ALGORITHMIC COMPLEXITY (MATHEMATICS); POLYTOPES + POLYHEDRA (GEOMETRY); IMAGE SEGMENTATION (MATHEMATICAL IMAGE PROCESSING); info:eu-repo/classification/ddc/004; Data processing, computer science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Christ, T. (2011). Discrete Descriptions of Geometric Objects. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/72862

Chicago Manual of Style (16th Edition):

Christ, Tobias. “Discrete Descriptions of Geometric Objects.” 2011. Doctoral Dissertation, ETH Zürich. Accessed December 07, 2019. http://hdl.handle.net/20.500.11850/72862.

MLA Handbook (7th Edition):

Christ, Tobias. “Discrete Descriptions of Geometric Objects.” 2011. Web. 07 Dec 2019.

Vancouver:

Christ T. Discrete Descriptions of Geometric Objects. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2019 Dec 07]. Available from: http://hdl.handle.net/20.500.11850/72862.

Council of Science Editors:

Christ T. Discrete Descriptions of Geometric Objects. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/72862

[1] [2] [3] [4] [5] … [16]

.