Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(KLR algebras)`

.
Showing records 1 – 4 of
4 total matches.

▼ Search Limiters

University of Oregon

1.
Muth, Robert.
Representations of Khovanov-Lauda-Rouquier *algebras* of affine Lie type.

Degree: PhD, Department of Mathematics, 2016, University of Oregon

URL: http://hdl.handle.net/1794/20432

► We study representations of Khovanov-Lauda-Rouquier (*KLR*) *algebras* of affine Lie type. Associated to every convex preorder on the set of positive roots is a system…
(more)

Subjects/Keywords: KLR algebras; Representation theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Muth, R. (2016). Representations of Khovanov-Lauda-Rouquier algebras of affine Lie type. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/20432

Chicago Manual of Style (16^{th} Edition):

Muth, Robert. “Representations of Khovanov-Lauda-Rouquier algebras of affine Lie type.” 2016. Doctoral Dissertation, University of Oregon. Accessed September 27, 2020. http://hdl.handle.net/1794/20432.

MLA Handbook (7^{th} Edition):

Muth, Robert. “Representations of Khovanov-Lauda-Rouquier algebras of affine Lie type.” 2016. Web. 27 Sep 2020.

Vancouver:

Muth R. Representations of Khovanov-Lauda-Rouquier algebras of affine Lie type. [Internet] [Doctoral dissertation]. University of Oregon; 2016. [cited 2020 Sep 27]. Available from: http://hdl.handle.net/1794/20432.

Council of Science Editors:

Muth R. Representations of Khovanov-Lauda-Rouquier algebras of affine Lie type. [Doctoral Dissertation]. University of Oregon; 2016. Available from: http://hdl.handle.net/1794/20432

University of Sydney

2.
Boys, Clinton.
Alternating quiver Hecke * algebras*
.

Degree: 2014, University of Sydney

URL: http://hdl.handle.net/2123/12725

► This thesis consists of a detailed study of alternating quiver Hecke *algebras*, which are alternating analogues of quiver Hecke *algebras* as defined by Khovanov-Lauda and…
(more)

Subjects/Keywords: Hecke algebras; KLR algebras; Alternating groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Boys, C. (2014). Alternating quiver Hecke algebras . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/12725

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Boys, Clinton. “Alternating quiver Hecke algebras .” 2014. Thesis, University of Sydney. Accessed September 27, 2020. http://hdl.handle.net/2123/12725.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Boys, Clinton. “Alternating quiver Hecke algebras .” 2014. Web. 27 Sep 2020.

Vancouver:

Boys C. Alternating quiver Hecke algebras . [Internet] [Thesis]. University of Sydney; 2014. [cited 2020 Sep 27]. Available from: http://hdl.handle.net/2123/12725.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Boys C. Alternating quiver Hecke algebras . [Thesis]. University of Sydney; 2014. Available from: http://hdl.handle.net/2123/12725

Not specified: Masters Thesis or Doctoral Dissertation

3.
Li, Ge Jr.
Integral Basis Theorem of cyclotomic Khovanov-Lauda-Rouquier *Algebras* of type A
.

Degree: 2012, University of Sydney

URL: http://hdl.handle.net/2123/8844

► The main purpose of this thesis is to prove that the cyclotomic Khovanov-Lauda-Rouquier *algebras* of type A over Z are free by giving a graded…
(more)

Subjects/Keywords: Representation theory; KLR algebras; Hecke algebras

…cellular basis of *KLR* *algebras* over a field
Suppose O is a field, Hu and Mathas [9, Theorem… …1.4. Graded cellular basis of *KLR* *algebras* over a field
This section closes with an… …1.1. The cyclotomic Khovanov-Lauda-Rouquier *algebras*
5
and relations
(1.1.2)… …Lauda-Rouquier *Algebras*
then the diagrammatic analogue of the relation e(i)e(j… …*algebras*
i
i
i
i
i
=−
(1.1.15)
i
−
i
i
i
i
i
−
i
i
(1.1.10)…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, G. J. (2012). Integral Basis Theorem of cyclotomic Khovanov-Lauda-Rouquier Algebras of type A . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/8844

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Li, Ge Jr. “Integral Basis Theorem of cyclotomic Khovanov-Lauda-Rouquier Algebras of type A .” 2012. Thesis, University of Sydney. Accessed September 27, 2020. http://hdl.handle.net/2123/8844.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Li, Ge Jr. “Integral Basis Theorem of cyclotomic Khovanov-Lauda-Rouquier Algebras of type A .” 2012. Web. 27 Sep 2020.

Vancouver:

Li GJ. Integral Basis Theorem of cyclotomic Khovanov-Lauda-Rouquier Algebras of type A . [Internet] [Thesis]. University of Sydney; 2012. [cited 2020 Sep 27]. Available from: http://hdl.handle.net/2123/8844.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Li GJ. Integral Basis Theorem of cyclotomic Khovanov-Lauda-Rouquier Algebras of type A . [Thesis]. University of Sydney; 2012. Available from: http://hdl.handle.net/2123/8844

Not specified: Masters Thesis or Doctoral Dissertation

4.
Loubert, Joseph.
Affine Cellularity of Finite Type *KLR* *Algebras*, and Homomorphisms Between Specht Modules for *KLR* *Algebras* in Affine Type A.

Degree: PhD, Department of Mathematics, 2015, University of Oregon

URL: http://hdl.handle.net/1794/19255

► This thesis consists of two parts. In the first we prove that the Khovanov-Lauda-Rouquier *algebras* R_α of finite type are (graded) affine cellular in the…
(more)

Subjects/Keywords: Affine cellularity; KLR algebras; Specht modules

…Cellularity of *KLR* *Algebras* of Finite Types
The content of chapter II has already been published as… …*KLR* *algebras* of finite types.
Our approach is independent of the homological results in… …the definition and basic results of KhovanovLauda-Rouquier (*KLR*) *algebras*. The… …contains an easy direct proof of a graded dimension formula for the
*KLR* *algebras*, cf. (3… …Corollary 3.15).
6
Section 3 is devoted to constructing a basis for the *KLR* *algebras* that…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Loubert, J. (2015). Affine Cellularity of Finite Type KLR Algebras, and Homomorphisms Between Specht Modules for KLR Algebras in Affine Type A. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/19255

Chicago Manual of Style (16^{th} Edition):

Loubert, Joseph. “Affine Cellularity of Finite Type KLR Algebras, and Homomorphisms Between Specht Modules for KLR Algebras in Affine Type A.” 2015. Doctoral Dissertation, University of Oregon. Accessed September 27, 2020. http://hdl.handle.net/1794/19255.

MLA Handbook (7^{th} Edition):

Loubert, Joseph. “Affine Cellularity of Finite Type KLR Algebras, and Homomorphisms Between Specht Modules for KLR Algebras in Affine Type A.” 2015. Web. 27 Sep 2020.

Vancouver:

Loubert J. Affine Cellularity of Finite Type KLR Algebras, and Homomorphisms Between Specht Modules for KLR Algebras in Affine Type A. [Internet] [Doctoral dissertation]. University of Oregon; 2015. [cited 2020 Sep 27]. Available from: http://hdl.handle.net/1794/19255.

Council of Science Editors:

Loubert J. Affine Cellularity of Finite Type KLR Algebras, and Homomorphisms Between Specht Modules for KLR Algebras in Affine Type A. [Doctoral Dissertation]. University of Oregon; 2015. Available from: http://hdl.handle.net/1794/19255