Advanced search options
You searched for subject:(KAM theory)
.
Showing records 1 – 15 of
15 total matches.
▼ Search Limiters
Johannes Gutenberg Universität Mainz
1. Albrecht, Joachim. Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind.
Degree: 2005, Johannes Gutenberg Universität Mainz
URL: http://ubm.opus.hbz-nrw.de/volltexte/2005/830/
Subjects/Keywords: KAM-Theorie; KAM-Theory; Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Albrecht, J. (2005). Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2005/830/
Chicago Manual of Style (16th Edition):
Albrecht, Joachim. “Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind.” 2005. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed January 25, 2021. http://ubm.opus.hbz-nrw.de/volltexte/2005/830/.
MLA Handbook (7th Edition):
Albrecht, Joachim. “Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind.” 2005. Web. 25 Jan 2021.
Vancouver:
Albrecht J. Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2005. [cited 2021 Jan 25]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2005/830/.
Council of Science Editors:
Albrecht J. Über die Existenz invarianter Tori in Hamiltonschen Systemen, die bis auf eine endlich oft differenzierbare Störung analytisch und integrabel sind. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2005. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2005/830/
2. Masoero, Marco. On the long time behavior of potential MFG : Sur la convergence en temps long des jeux à champ moyen de type potentiel.
Degree: Docteur es, Sciences, 2019, Paris Sciences et Lettres (ComUE); École nationale supérieure des mines (Paris)
URL: http://www.theses.fr/2019PSLED057
Subjects/Keywords: Jeux à champ moyen; Contrôl optimal; Théorie KAM faible; Mean Field Games; Optimal Control; Weak KAM theory; 519
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Masoero, M. (2019). On the long time behavior of potential MFG : Sur la convergence en temps long des jeux à champ moyen de type potentiel. (Doctoral Dissertation). Paris Sciences et Lettres (ComUE); École nationale supérieure des mines (Paris). Retrieved from http://www.theses.fr/2019PSLED057
Chicago Manual of Style (16th Edition):
Masoero, Marco. “On the long time behavior of potential MFG : Sur la convergence en temps long des jeux à champ moyen de type potentiel.” 2019. Doctoral Dissertation, Paris Sciences et Lettres (ComUE); École nationale supérieure des mines (Paris). Accessed January 25, 2021. http://www.theses.fr/2019PSLED057.
MLA Handbook (7th Edition):
Masoero, Marco. “On the long time behavior of potential MFG : Sur la convergence en temps long des jeux à champ moyen de type potentiel.” 2019. Web. 25 Jan 2021.
Vancouver:
Masoero M. On the long time behavior of potential MFG : Sur la convergence en temps long des jeux à champ moyen de type potentiel. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres (ComUE); École nationale supérieure des mines (Paris); 2019. [cited 2021 Jan 25]. Available from: http://www.theses.fr/2019PSLED057.
Council of Science Editors:
Masoero M. On the long time behavior of potential MFG : Sur la convergence en temps long des jeux à champ moyen de type potentiel. [Doctoral Dissertation]. Paris Sciences et Lettres (ComUE); École nationale supérieure des mines (Paris); 2019. Available from: http://www.theses.fr/2019PSLED057
University of Colorado
3. Fox, Adam Merritt. Destruction of Invariant Tori in Volume-Preserving Maps.
Degree: PhD, Applied Mathematics, 2013, University of Colorado
URL: https://scholar.colorado.edu/appm_gradetds/36
Subjects/Keywords: KAM theory; Greene's residue criterion; near-critical conjugacies; Applied Mathematics
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Fox, A. M. (2013). Destruction of Invariant Tori in Volume-Preserving Maps. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/appm_gradetds/36
Chicago Manual of Style (16th Edition):
Fox, Adam Merritt. “Destruction of Invariant Tori in Volume-Preserving Maps.” 2013. Doctoral Dissertation, University of Colorado. Accessed January 25, 2021. https://scholar.colorado.edu/appm_gradetds/36.
MLA Handbook (7th Edition):
Fox, Adam Merritt. “Destruction of Invariant Tori in Volume-Preserving Maps.” 2013. Web. 25 Jan 2021.
Vancouver:
Fox AM. Destruction of Invariant Tori in Volume-Preserving Maps. [Internet] [Doctoral dissertation]. University of Colorado; 2013. [cited 2021 Jan 25]. Available from: https://scholar.colorado.edu/appm_gradetds/36.
Council of Science Editors:
Fox AM. Destruction of Invariant Tori in Volume-Preserving Maps. [Doctoral Dissertation]. University of Colorado; 2013. Available from: https://scholar.colorado.edu/appm_gradetds/36
University of Texas – Austin
4. Maciejewski, James Michael. An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations.
Degree: MA, Mathematics, 2010, University of Texas – Austin
URL: http://hdl.handle.net/2152/ETD-UT-2010-05-1092
Subjects/Keywords: KAM theory; Particle channelling; Crystals
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Maciejewski, J. M. (2010). An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations. (Masters Thesis). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/ETD-UT-2010-05-1092
Chicago Manual of Style (16th Edition):
Maciejewski, James Michael. “An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations.” 2010. Masters Thesis, University of Texas – Austin. Accessed January 25, 2021. http://hdl.handle.net/2152/ETD-UT-2010-05-1092.
MLA Handbook (7th Edition):
Maciejewski, James Michael. “An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations.” 2010. Web. 25 Jan 2021.
Vancouver:
Maciejewski JM. An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations. [Internet] [Masters thesis]. University of Texas – Austin; 2010. [cited 2021 Jan 25]. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-1092.
Council of Science Editors:
Maciejewski JM. An application of KAM theory to a model for particle channelling in crystals and some related numerical simulations. [Masters Thesis]. University of Texas – Austin; 2010. Available from: http://hdl.handle.net/2152/ETD-UT-2010-05-1092
Australian National University
5. Gomes, Sean P. Quantum ergodicity in mixed and KAM Hamiltonian systems .
Degree: 2017, Australian National University
URL: http://hdl.handle.net/1885/154331
Subjects/Keywords: quantum ergodicity; microlocal analysis; semiclassical analysis; partial differential equations; spectral theory; KAM Hamiltonian systems
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Gomes, S. P. (2017). Quantum ergodicity in mixed and KAM Hamiltonian systems . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/154331
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Gomes, Sean P. “Quantum ergodicity in mixed and KAM Hamiltonian systems .” 2017. Thesis, Australian National University. Accessed January 25, 2021. http://hdl.handle.net/1885/154331.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Gomes, Sean P. “Quantum ergodicity in mixed and KAM Hamiltonian systems .” 2017. Web. 25 Jan 2021.
Vancouver:
Gomes SP. Quantum ergodicity in mixed and KAM Hamiltonian systems . [Internet] [Thesis]. Australian National University; 2017. [cited 2021 Jan 25]. Available from: http://hdl.handle.net/1885/154331.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Gomes SP. Quantum ergodicity in mixed and KAM Hamiltonian systems . [Thesis]. Australian National University; 2017. Available from: http://hdl.handle.net/1885/154331
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
6. Pageault, Pierre. Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach.
Degree: Docteur es, Mathématiques, 2011, Lyon, École normale supérieure
URL: http://www.theses.fr/2011ENSL0654
Subjects/Keywords: Fonctions de Lyapunov; Systèmes dynamiques; Récurrence par chaînes; Théorème de Sard; Théorie KAM faible; Lyapunov function; Dynamical systems; Chain-recurrence; Sard's theorem; Weak KAM theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Pageault, P. (2011). Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2011ENSL0654
Chicago Manual of Style (16th Edition):
Pageault, Pierre. “Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach.” 2011. Doctoral Dissertation, Lyon, École normale supérieure. Accessed January 25, 2021. http://www.theses.fr/2011ENSL0654.
MLA Handbook (7th Edition):
Pageault, Pierre. “Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach.” 2011. Web. 25 Jan 2021.
Vancouver:
Pageault P. Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2011. [cited 2021 Jan 25]. Available from: http://www.theses.fr/2011ENSL0654.
Council of Science Editors:
Pageault P. Fonctions de Lyapunov : une approche KAM faible : Lyapunov functions : a weak KAM approach. [Doctoral Dissertation]. Lyon, École normale supérieure; 2011. Available from: http://www.theses.fr/2011ENSL0654
7. Castan, Thibaut. Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan.
Degree: Docteur es, Mathématiques appliquées, 2017, Université Pierre et Marie Curie – Paris VI
URL: http://www.theses.fr/2017PA066062
Subjects/Keywords: Problème à trois corps; Théorie des perturbations; Théorème KAM; Systèmes hamiltoniens; Systèmes dynamiques; Géométrie symplectique; Three-body problem; Perturbation theory; KAM theorem; 519.6
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Castan, T. (2017). Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2017PA066062
Chicago Manual of Style (16th Edition):
Castan, Thibaut. “Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan.” 2017. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed January 25, 2021. http://www.theses.fr/2017PA066062.
MLA Handbook (7th Edition):
Castan, Thibaut. “Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan.” 2017. Web. 25 Jan 2021.
Vancouver:
Castan T. Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. [cited 2021 Jan 25]. Available from: http://www.theses.fr/2017PA066062.
Council of Science Editors:
Castan T. Stability in the plane planetary three-body problem : Stabilité dans le problème à trois corps planétaire plan. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2017. Available from: http://www.theses.fr/2017PA066062
Penn State University
8. Chen, Dong. On some problems in Lagrangian Dynamics and Finsler Geometry.
Degree: 2017, Penn State University
URL: https://submit-etda.libraries.psu.edu/catalog/14421dxc360
Subjects/Keywords: KAM theory; Finsler metric; duel lens map Hamiltonian flow; perturbation; metric entropy; duel lens map; Hamiltonian flow; perturbation; metric entropy
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Chen, D. (2017). On some problems in Lagrangian Dynamics and Finsler Geometry. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/14421dxc360
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Chen, Dong. “On some problems in Lagrangian Dynamics and Finsler Geometry.” 2017. Thesis, Penn State University. Accessed January 25, 2021. https://submit-etda.libraries.psu.edu/catalog/14421dxc360.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Chen, Dong. “On some problems in Lagrangian Dynamics and Finsler Geometry.” 2017. Web. 25 Jan 2021.
Vancouver:
Chen D. On some problems in Lagrangian Dynamics and Finsler Geometry. [Internet] [Thesis]. Penn State University; 2017. [cited 2021 Jan 25]. Available from: https://submit-etda.libraries.psu.edu/catalog/14421dxc360.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Chen D. On some problems in Lagrangian Dynamics and Finsler Geometry. [Thesis]. Penn State University; 2017. Available from: https://submit-etda.libraries.psu.edu/catalog/14421dxc360
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
9. Liu, Jian-Long. Preservation of Periodicity in Variational Integrators.
Degree: MS, Mathematics, 2015, San Jose State University
URL: https://doi.org/10.31979/etd.c4z9-y9yp
;
https://scholarworks.sjsu.edu/etd_theses/4596
Subjects/Keywords: hamiltonian system; kam theory; periodicity; perturbation theory; symplectic integrator; variational integrator
…Kolmogorov-Arnold-Moser (KAM) theory from classical perturbation theory, with a sketch of… …CHAPTER 3 KAM THEORY In this chapter, we attempt to motivate and explain the progression of the… …initial development of the subject of KAM theory through perturbation theory. We then state the… …original coordinates. 3.1 Perturbation Theory KAM theory has its roots in classical perturbation… …KAM theory through the problems of small divisors. In perturbation theory, given a Liouville…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Liu, J. (2015). Preservation of Periodicity in Variational Integrators. (Masters Thesis). San Jose State University. Retrieved from https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596
Chicago Manual of Style (16th Edition):
Liu, Jian-Long. “Preservation of Periodicity in Variational Integrators.” 2015. Masters Thesis, San Jose State University. Accessed January 25, 2021. https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596.
MLA Handbook (7th Edition):
Liu, Jian-Long. “Preservation of Periodicity in Variational Integrators.” 2015. Web. 25 Jan 2021.
Vancouver:
Liu J. Preservation of Periodicity in Variational Integrators. [Internet] [Masters thesis]. San Jose State University; 2015. [cited 2021 Jan 25]. Available from: https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596.
Council of Science Editors:
Liu J. Preservation of Periodicity in Variational Integrators. [Masters Thesis]. San Jose State University; 2015. Available from: https://doi.org/10.31979/etd.c4z9-y9yp ; https://scholarworks.sjsu.edu/etd_theses/4596
Georgia Tech
10. Viveros Rogel, Jorge. An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems.
Degree: PhD, Mathematics, 2007, Georgia Tech
URL: http://hdl.handle.net/1853/19869
Subjects/Keywords: KAM theory; Hamiltonian; Lattice; Quasi-periodic breathers; Oscillations; Hamiltonian systems; Energy transfer; Lattice theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Viveros Rogel, J. (2007). An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/19869
Chicago Manual of Style (16th Edition):
Viveros Rogel, Jorge. “An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems.” 2007. Doctoral Dissertation, Georgia Tech. Accessed January 25, 2021. http://hdl.handle.net/1853/19869.
MLA Handbook (7th Edition):
Viveros Rogel, Jorge. “An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems.” 2007. Web. 25 Jan 2021.
Vancouver:
Viveros Rogel J. An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems. [Internet] [Doctoral dissertation]. Georgia Tech; 2007. [cited 2021 Jan 25]. Available from: http://hdl.handle.net/1853/19869.
Council of Science Editors:
Viveros Rogel J. An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems. [Doctoral Dissertation]. Georgia Tech; 2007. Available from: http://hdl.handle.net/1853/19869
Universiteit Utrecht
11. Rink, B.W. Geometry and dynamics in Hamiltonian lattices.
Degree: 2003, Universiteit Utrecht
URL: http://dspace.library.uu.nl:8080/handle/1874/884
Subjects/Keywords: Wiskunde en Informatica; Fermi-Pasta-Ulam chain; Birkhoff normal forms; symmetry; resonance; dynamics; invariant manifolds; singular reduction; monodromy; KAM theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Rink, B. W. (2003). Geometry and dynamics in Hamiltonian lattices. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/884
Chicago Manual of Style (16th Edition):
Rink, B W. “Geometry and dynamics in Hamiltonian lattices.” 2003. Doctoral Dissertation, Universiteit Utrecht. Accessed January 25, 2021. http://dspace.library.uu.nl:8080/handle/1874/884.
MLA Handbook (7th Edition):
Rink, B W. “Geometry and dynamics in Hamiltonian lattices.” 2003. Web. 25 Jan 2021.
Vancouver:
Rink BW. Geometry and dynamics in Hamiltonian lattices. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2003. [cited 2021 Jan 25]. Available from: http://dspace.library.uu.nl:8080/handle/1874/884.
Council of Science Editors:
Rink BW. Geometry and dynamics in Hamiltonian lattices. [Doctoral Dissertation]. Universiteit Utrecht; 2003. Available from: http://dspace.library.uu.nl:8080/handle/1874/884
12. Viana Camejo, Mikel. Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains.
Degree: PhD, Mathematics, 2018, Georgia Tech
URL: http://hdl.handle.net/1853/59176
Subjects/Keywords: Quasi-periodic dynamics; KAM theory; Lower dimensional elliptic tori; Skew-products; Compensated domains
…50s and 60s (the KAM theory). The systematic numerical treatment is more recent… …x29; where ∆c0 := U0−1 ψ0−1 ∆c0 . It is standard in KAM theory to argue that the term eR U0… …tori for fibered holomorphic maps In this paper we present a very general theory that… …kx − ykB . This condition is very important for the function theory in D. This is joint… …1 CHAPTER I INTRODUCTION The goal of this paper is to present a very general theory of…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Viana Camejo, M. (2018). Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/59176
Chicago Manual of Style (16th Edition):
Viana Camejo, Mikel. “Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains.” 2018. Doctoral Dissertation, Georgia Tech. Accessed January 25, 2021. http://hdl.handle.net/1853/59176.
MLA Handbook (7th Edition):
Viana Camejo, Mikel. “Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains.” 2018. Web. 25 Jan 2021.
Vancouver:
Viana Camejo M. Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains. [Internet] [Doctoral dissertation]. Georgia Tech; 2018. [cited 2021 Jan 25]. Available from: http://hdl.handle.net/1853/59176.
Council of Science Editors:
Viana Camejo M. Results on invariant whiskered tori for fibered holomorphic maps and on compensated domains. [Doctoral Dissertation]. Georgia Tech; 2018. Available from: http://hdl.handle.net/1853/59176
13. Rink, B.W. Geometry and dynamics in Hamiltonian lattices.
Degree: 2003, University Utrecht
URL: https://dspace.library.uu.nl/handle/1874/884
;
URN:NBN:NL:UI:10-1874-884
;
1874/884
;
URN:NBN:NL:UI:10-1874-884
;
https://dspace.library.uu.nl/handle/1874/884
Subjects/Keywords: Fermi-Pasta-Ulam chain; Birkhoff normal forms; symmetry; resonance; dynamics; invariant manifolds; singular reduction; monodromy; KAM theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Rink, B. W. (2003). Geometry and dynamics in Hamiltonian lattices. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/884 ; URN:NBN:NL:UI:10-1874-884 ; 1874/884 ; URN:NBN:NL:UI:10-1874-884 ; https://dspace.library.uu.nl/handle/1874/884
Chicago Manual of Style (16th Edition):
Rink, B W. “Geometry and dynamics in Hamiltonian lattices.” 2003. Doctoral Dissertation, University Utrecht. Accessed January 25, 2021. https://dspace.library.uu.nl/handle/1874/884 ; URN:NBN:NL:UI:10-1874-884 ; 1874/884 ; URN:NBN:NL:UI:10-1874-884 ; https://dspace.library.uu.nl/handle/1874/884.
MLA Handbook (7th Edition):
Rink, B W. “Geometry and dynamics in Hamiltonian lattices.” 2003. Web. 25 Jan 2021.
Vancouver:
Rink BW. Geometry and dynamics in Hamiltonian lattices. [Internet] [Doctoral dissertation]. University Utrecht; 2003. [cited 2021 Jan 25]. Available from: https://dspace.library.uu.nl/handle/1874/884 ; URN:NBN:NL:UI:10-1874-884 ; 1874/884 ; URN:NBN:NL:UI:10-1874-884 ; https://dspace.library.uu.nl/handle/1874/884.
Council of Science Editors:
Rink BW. Geometry and dynamics in Hamiltonian lattices. [Doctoral Dissertation]. University Utrecht; 2003. Available from: https://dspace.library.uu.nl/handle/1874/884 ; URN:NBN:NL:UI:10-1874-884 ; 1874/884 ; URN:NBN:NL:UI:10-1874-884 ; https://dspace.library.uu.nl/handle/1874/884
University of Notre Dame
14. Qun Ma. Novel Multiscale Algorithms for Molecular Dynamics</h1>.
Degree: Computer Science and Engineering, 2003, University of Notre Dame
URL: https://curate.nd.edu/show/4q77fq99533
Subjects/Keywords: KAM theory; mollified Impulse method; nonlinear instability; targeted Langevin stabilization; long molecular dynamics simulations; multiple time stepping; Verlet-I/r-RESPA/Impulse
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ma, Q. (2003). Novel Multiscale Algorithms for Molecular Dynamics</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/4q77fq99533
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Ma, Qun. “Novel Multiscale Algorithms for Molecular Dynamics</h1>.” 2003. Thesis, University of Notre Dame. Accessed January 25, 2021. https://curate.nd.edu/show/4q77fq99533.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Ma, Qun. “Novel Multiscale Algorithms for Molecular Dynamics</h1>.” 2003. Web. 25 Jan 2021.
Vancouver:
Ma Q. Novel Multiscale Algorithms for Molecular Dynamics</h1>. [Internet] [Thesis]. University of Notre Dame; 2003. [cited 2021 Jan 25]. Available from: https://curate.nd.edu/show/4q77fq99533.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Ma Q. Novel Multiscale Algorithms for Molecular Dynamics</h1>. [Thesis]. University of Notre Dame; 2003. Available from: https://curate.nd.edu/show/4q77fq99533
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
15. Mandorino, Vito. Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians.
Degree: Docteur es, Mathématiques appliquées, 2013, Paris 9
URL: http://www.theses.fr/2013PA090003
Subjects/Keywords: Dynamique hamiltonienne et lagrangienne; Théorie KAM faible; Diffusion d’Arnold; Polysystème; Semi-groupe de Lax-Oleinik; Ensembles d’Aubry et Mañé; Propriétés génériques; Théorie géométrique du contrôle; Ensemble atteignable; Théorème de transversalité de Thom; Ensemble rectifiable; Hamiltonian and Lagrangian dynamics; Weak KAM theory; Arnold diffusion; Polysystem; Lax-Oleinik semigroup; Aubry and Mañé sets; Generic properties; Geometric control theory; Reachable set; Thom’s transversality theorem; Rectifiable set
…approach of Mather and Fathi’s weak KAM theory has been fruitful, especially in the framework of… …Kam theory, for which we refer to [Fat]. The ideas will be close to those in… …issue de la théorie KAM faible. Dans la Partie 2 nous considérons le cas d’un polysystème… …Polysystèmes hamiltoniens à temps discret (approche avec la théorie KAM faible) Dans cette… …Notons que les hamiltoniens Tonelli sont les hamiltoniens standard de la théorie KAM faible…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Mandorino, V. (2013). Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians. (Doctoral Dissertation). Paris 9. Retrieved from http://www.theses.fr/2013PA090003
Chicago Manual of Style (16th Edition):
Mandorino, Vito. “Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians.” 2013. Doctoral Dissertation, Paris 9. Accessed January 25, 2021. http://www.theses.fr/2013PA090003.
MLA Handbook (7th Edition):
Mandorino, Vito. “Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians.” 2013. Web. 25 Jan 2021.
Vancouver:
Mandorino V. Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians. [Internet] [Doctoral dissertation]. Paris 9; 2013. [cited 2021 Jan 25]. Available from: http://www.theses.fr/2013PA090003.
Council of Science Editors:
Mandorino V. Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians. [Doctoral Dissertation]. Paris 9; 2013. Available from: http://www.theses.fr/2013PA090003