Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Jacobi structure operator). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

1. Θεοφανίδης, Θεοχάρης. Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.

Degree: 2011, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

J. de Dios Perez, F. G. Santos and Y. J. Suh in [29], studied real hypersurfaces of dimension greater than 3 in complex projective spaces, whose Jacobi structure operator is of Codazzi type. In chapter 2 we study real hypersurfaces under the same condition, fulfilling the case of hyperbolic spaces of dimension n > 3 as long as the case of 3dimensional hypersurfaces. M. Ortega, J. de Dios Perez and F. G. Santos in [24] studied real hypersurfaces of dimension greater than 3, in complex space forms, whose Jacobi structure operator is parallel. J. de Dios Perez and F. G.Santos in [27] studied real hypersurfaces of dimension greater than 3 with recurrent structure Jacobi operator. In chapter 3 we improve [27] in dimension 3, by studying real hypersurfaces with D recurrent structure Jacobi operator, in complex planes. Furthermore we improve [24] by studying real hypersurfaces of dimension n > 3 with recurrent structure Jacobi operator. J. T. Cho and U H. Ki in [13] classified real hypersurfaces of dimension greater than 3, in complex projective spaces, which satisfy the conditions l = l and lA = Al everywhere in the real hypersurface M. In chapter 4 we improve the previous paper by classifying real hypersurfaces in complex space forms of dimension 2n (n 2) satisfying the condition l = l in D and the condition lA = Al either in D or in D?. Moreover we classify real hypersurfaces in complex space forms of dimension 2n (n 2) satisfying the condition l = l in D and the condition (r l) = , 2 C1 either in D or in D?.

Subjects/Keywords: Διαφορική γεωμετρία; Πολλαπλότητα Riemann; Μιγαδικός χώρος μορφής; Πραγματική υπερεπιφάνεια; Δομή σχεδόν επαφής; Τελεστής δομής Jacobi; Differential geometry; Riemannian manifolds; Complex space form; Real hypersurface; Almost contact structure; Jacobi structure operator

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Θεοφανίδης, . . (2011). Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/27049

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed October 28, 2020. http://hdl.handle.net/10442/hedi/27049.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Web. 28 Oct 2020.

Vancouver:

Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/10442/hedi/27049.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. Available from: http://hdl.handle.net/10442/hedi/27049

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.