Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Jacobi polynomials)`

.
Showing records 1 – 20 of
20 total matches.

▼ Search Limiters

1.
Abbas, Sayed Mohammad.
A study of *jacobi* *polynomials*; -.

Degree: Mathematics, 2012, Aligarh Muslim University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/17951

Bibliography p.276-300
*Advisors/Committee Members: Khan, Abdul Hakim.*

Subjects/Keywords: Mathematics; jacobi; polynomials

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Abbas, S. M. (2012). A study of jacobi polynomials; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/17951

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Abbas, Sayed Mohammad. “A study of jacobi polynomials; -.” 2012. Thesis, Aligarh Muslim University. Accessed December 01, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/17951.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Abbas, Sayed Mohammad. “A study of jacobi polynomials; -.” 2012. Web. 01 Dec 2020.

Vancouver:

Abbas SM. A study of jacobi polynomials; -. [Internet] [Thesis]. Aligarh Muslim University; 2012. [cited 2020 Dec 01]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/17951.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Abbas SM. A study of jacobi polynomials; -. [Thesis]. Aligarh Muslim University; 2012. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/17951

Not specified: Masters Thesis or Doctoral Dissertation

Baylor University

2.
Stewart, Jessica D.
Spectral analysis of the exceptional Laguerre and *Jacobi* equations.

Degree: PhD, Mathematics., 2014, Baylor University

URL: http://hdl.handle.net/2104/9110

► It was believed that Bochner's characterization of all sequences of *polynomials* {Ƥ_n}∞_(n=0), with deg Ƥ_n=n≥0, that are eigenfunctions of a second-order differential equation and are…
(more)

Subjects/Keywords: Orthogonal polynomials.; Spectral analysis.; Glazman-Krein-Naimark theory.; Exceptional Jacobi polynomials.; Exceptional Laguerre polynomials.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stewart, J. D. (2014). Spectral analysis of the exceptional Laguerre and Jacobi equations. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/9110

Chicago Manual of Style (16^{th} Edition):

Stewart, Jessica D. “Spectral analysis of the exceptional Laguerre and Jacobi equations.” 2014. Doctoral Dissertation, Baylor University. Accessed December 01, 2020. http://hdl.handle.net/2104/9110.

MLA Handbook (7^{th} Edition):

Stewart, Jessica D. “Spectral analysis of the exceptional Laguerre and Jacobi equations.” 2014. Web. 01 Dec 2020.

Vancouver:

Stewart JD. Spectral analysis of the exceptional Laguerre and Jacobi equations. [Internet] [Doctoral dissertation]. Baylor University; 2014. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2104/9110.

Council of Science Editors:

Stewart JD. Spectral analysis of the exceptional Laguerre and Jacobi equations. [Doctoral Dissertation]. Baylor University; 2014. Available from: http://hdl.handle.net/2104/9110

Universidade Estadual de Campinas

3. Yen, Chi Lun, 1983-. O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications.

Degree: 2013, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956

► Abstract: In this thesis we state a new formulation of the Sturm comparison Theorem and its applications to the zeros of orthogonal *polynomials*. Specifically, these…
(more)

Subjects/Keywords: Polinômios ortogonais; Sturm, Teorema de; Gautschi, Conjectura de; Jacobi, Polinômios de; Orthogonal polynomials; Sturm's theorem; Gautschi conjecture; Jacobi polynomials

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yen, Chi Lun, 1. (2013). O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Yen, Chi Lun, 1983-. “O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications.” 2013. Thesis, Universidade Estadual de Campinas. Accessed December 01, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Yen, Chi Lun, 1983-. “O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications.” 2013. Web. 01 Dec 2020.

Vancouver:

Yen, Chi Lun 1. O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications. [Internet] [Thesis]. Universidade Estadual de Campinas; 2013. [cited 2020 Dec 01]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yen, Chi Lun 1. O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications. [Thesis]. Universidade Estadual de Campinas; 2013. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956

Not specified: Masters Thesis or Doctoral Dissertation

Delft University of Technology

4.
van der Klein, Anne (author).
Spherical and Cherednik-Opdam transforms of *Jacobi*-type * polynomials*.

Degree: 2019, Delft University of Technology

URL: http://resolver.tudelft.nl/uuid:25ba0e3e-6641-4f99-b6ba-29a556b3a7e9

► The spherical transform maps the orthogonal basis of symmetric *Jacobi*-type *polynomials* to an orthogonal basis of (symmetric) Wilson *polynomials*. The spherical transform is closely related…
(more)

Subjects/Keywords: Spherical transform; Jacobi-type polynomials; Cherednik-Opdam transform

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

van der Klein, A. (. (2019). Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:25ba0e3e-6641-4f99-b6ba-29a556b3a7e9

Chicago Manual of Style (16^{th} Edition):

van der Klein, Anne (author). “Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials.” 2019. Masters Thesis, Delft University of Technology. Accessed December 01, 2020. http://resolver.tudelft.nl/uuid:25ba0e3e-6641-4f99-b6ba-29a556b3a7e9.

MLA Handbook (7^{th} Edition):

van der Klein, Anne (author). “Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials.” 2019. Web. 01 Dec 2020.

Vancouver:

van der Klein A(. Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials. [Internet] [Masters thesis]. Delft University of Technology; 2019. [cited 2020 Dec 01]. Available from: http://resolver.tudelft.nl/uuid:25ba0e3e-6641-4f99-b6ba-29a556b3a7e9.

Council of Science Editors:

van der Klein A(. Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials. [Masters Thesis]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:25ba0e3e-6641-4f99-b6ba-29a556b3a7e9

The Ohio State University

5.
Ekong, Victor Jonathan Udo.
Rate of convergence of Hermite interpolation based on the
roots of certain *Jacobi* * polynomials*.

Degree: PhD, Graduate School, 1972, The Ohio State University

URL: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486734577565816

Subjects/Keywords: Mathematics; Interpolation; Jacobi polynomials

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ekong, V. J. U. (1972). Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486734577565816

Chicago Manual of Style (16^{th} Edition):

Ekong, Victor Jonathan Udo. “Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials.” 1972. Doctoral Dissertation, The Ohio State University. Accessed December 01, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486734577565816.

MLA Handbook (7^{th} Edition):

Ekong, Victor Jonathan Udo. “Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials.” 1972. Web. 01 Dec 2020.

Vancouver:

Ekong VJU. Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials. [Internet] [Doctoral dissertation]. The Ohio State University; 1972. [cited 2020 Dec 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486734577565816.

Council of Science Editors:

Ekong VJU. Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials. [Doctoral Dissertation]. The Ohio State University; 1972. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486734577565816

6.
Macedo, Osmar Jesus.
Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de *Jacobi* modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore.

Degree: PhD, Estatística e Experimentação Agronômica, 2007, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/ ;

► Com o objetivo de avaliar o desempenho dos modelos mistos quando se assumem bases de funções ortonormais de Legendre, *Jacobi* modificadas e trigonométricas como covariáveis…
(more)

Subjects/Keywords: Animal Genetic Improvement; Componentes de variância; Components of Variance; Funções de Jacobi; Gado Nelore; Jacobi functions; Legendre polynomials; Melhoramento genético animal; Nellore catle; Polimonios de Legendre

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Macedo, O. J. (2007). Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/ ;

Chicago Manual of Style (16^{th} Edition):

Macedo, Osmar Jesus. “Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore.” 2007. Doctoral Dissertation, University of São Paulo. Accessed December 01, 2020. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/ ;.

MLA Handbook (7^{th} Edition):

Macedo, Osmar Jesus. “Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore.” 2007. Web. 01 Dec 2020.

Vancouver:

Macedo OJ. Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore. [Internet] [Doctoral dissertation]. University of São Paulo; 2007. [cited 2020 Dec 01]. Available from: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/ ;.

Council of Science Editors:

Macedo OJ. Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore. [Doctoral Dissertation]. University of São Paulo; 2007. Available from: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/ ;

Baylor University

7.
Bruder, Andrea S.
Applied left-definite theory : the *Jacobi* *polynomials*, their Sobolev orthogonality, and self-adjoint operators.

Degree: PhD, Mathematics., 2009, Baylor University

URL: http://hdl.handle.net/2104/5327

► It is well known that, for –α, –β, –α – β – 1 ∉ ℕ, the *Jacobi* *polynomials* {Pn(α,β)(x)} ∞ n=0 are orthogonal on ℝ…
(more)

Subjects/Keywords: Jacobi polynomials.; Sobolev spaces.; Selfadjoint operators.; Eigenfunctions.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bruder, A. S. (2009). Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/5327

Chicago Manual of Style (16^{th} Edition):

Bruder, Andrea S. “Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators.” 2009. Doctoral Dissertation, Baylor University. Accessed December 01, 2020. http://hdl.handle.net/2104/5327.

MLA Handbook (7^{th} Edition):

Bruder, Andrea S. “Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators.” 2009. Web. 01 Dec 2020.

Vancouver:

Bruder AS. Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators. [Internet] [Doctoral dissertation]. Baylor University; 2009. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2104/5327.

Council of Science Editors:

Bruder AS. Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators. [Doctoral Dissertation]. Baylor University; 2009. Available from: http://hdl.handle.net/2104/5327

University of Cambridge

8.
Webb, Marcus David.
Isospectral algorithms, Toeplitz matrices and orthogonal * polynomials*.

Degree: PhD, 2017, University of Cambridge

URL: https://www.repository.cam.ac.uk/handle/1810/264149

► An isospectral algorithm is one which manipulates a matrix without changing its spectrum. In this thesis we study three interrelated examples of isospectral algorithms, all…
(more)

Subjects/Keywords: Isospectral flows; Toeplitz matrices; Orthogonal polynomials; eigenvalues; matrices; spectrum; spectra; Jacobi operators; QR algorithm; QL algorithm

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Webb, M. D. (2017). Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/264149

Chicago Manual of Style (16^{th} Edition):

Webb, Marcus David. “Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.” 2017. Doctoral Dissertation, University of Cambridge. Accessed December 01, 2020. https://www.repository.cam.ac.uk/handle/1810/264149.

MLA Handbook (7^{th} Edition):

Webb, Marcus David. “Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.” 2017. Web. 01 Dec 2020.

Vancouver:

Webb MD. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2020 Dec 01]. Available from: https://www.repository.cam.ac.uk/handle/1810/264149.

Council of Science Editors:

Webb MD. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/264149

University of Kentucky

9. Wang, Hao. The Krylov Subspace Methods for the Computation of Matrix Exponentials.

Degree: 2015, University of Kentucky

URL: https://uknowledge.uky.edu/math_etds/31

► The problem of computing the matrix exponential etA arises in many theoretical and practical problems. Many methods have been developed to accurately and efficiently compute…
(more)

Subjects/Keywords: matrix exponential; Krylov subspace methods; numerical range; Faber polynomials; Jacobi elliptic functions; Numerical Analysis and Computation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, H. (2015). The Krylov Subspace Methods for the Computation of Matrix Exponentials. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/31

Chicago Manual of Style (16^{th} Edition):

Wang, Hao. “The Krylov Subspace Methods for the Computation of Matrix Exponentials.” 2015. Doctoral Dissertation, University of Kentucky. Accessed December 01, 2020. https://uknowledge.uky.edu/math_etds/31.

MLA Handbook (7^{th} Edition):

Wang, Hao. “The Krylov Subspace Methods for the Computation of Matrix Exponentials.” 2015. Web. 01 Dec 2020.

Vancouver:

Wang H. The Krylov Subspace Methods for the Computation of Matrix Exponentials. [Internet] [Doctoral dissertation]. University of Kentucky; 2015. [cited 2020 Dec 01]. Available from: https://uknowledge.uky.edu/math_etds/31.

Council of Science Editors:

Wang H. The Krylov Subspace Methods for the Computation of Matrix Exponentials. [Doctoral Dissertation]. University of Kentucky; 2015. Available from: https://uknowledge.uky.edu/math_etds/31

10.
Webb, Marcus David.
Isospectral algorithms, Toeplitz matrices and orthogonal * polynomials*.

Degree: PhD, 2017, University of Cambridge

URL: https://doi.org/10.17863/CAM.9505 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715948

► An isospectral algorithm is one which manipulates a matrix without changing its spectrum. In this thesis we study three interrelated examples of isospectral algorithms, all…
(more)

Subjects/Keywords: 515; Isospectral flows; Toeplitz matrices; Orthogonal polynomials; eigenvalues; matrices; spectrum; spectra; Jacobi operators; QR algorithm; QL algorithm

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Webb, M. D. (2017). Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.9505 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715948

Chicago Manual of Style (16^{th} Edition):

Webb, Marcus David. “Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.” 2017. Doctoral Dissertation, University of Cambridge. Accessed December 01, 2020. https://doi.org/10.17863/CAM.9505 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715948.

MLA Handbook (7^{th} Edition):

Webb, Marcus David. “Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.” 2017. Web. 01 Dec 2020.

Vancouver:

Webb MD. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2020 Dec 01]. Available from: https://doi.org/10.17863/CAM.9505 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715948.

Council of Science Editors:

Webb MD. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://doi.org/10.17863/CAM.9505 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715948

11.
Hsia , Pei-kang.
Some orthogonal *polynomials* and their general properties.

Degree: Master, Applied Mathematics, 2015, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0601115-121335

► We shall study the mathematical properties of some classical orthogonal *polynomials*: Chebyshev *polynomials* of the first kind, Chebyshev *polynomials* of the second kind, Laguerre *polynomials*…
(more)

Subjects/Keywords: Chebyshev polynomials; orthogonal polynomials; Laguerre polynomials; Jacobi polynomials; recur- rence relations and Favardâs Theorem

…17
2.4 *Jacobi* *polynomials* . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
3… …Recurrence relations for *Jacobi* *Polynomials* . . . . . . . . . . . . . . .
48
A Appendix
57
A.1… …*polynomials* (first kind and second kind),
Laguerre *polynomials* and *Jacobi* *polynomials*… …Chebyshev *polynomials* (first kind and second kind), Laguerre *polynomials* and *Jacobi*… …*Jacobi* *polynomials* discussed in section 2.4, where when α = β = 21 ,
( 1 , 12 )
Qn…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hsia , P. (2015). Some orthogonal polynomials and their general properties. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0601115-121335

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hsia , Pei-kang. “Some orthogonal polynomials and their general properties.” 2015. Thesis, NSYSU. Accessed December 01, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0601115-121335.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hsia , Pei-kang. “Some orthogonal polynomials and their general properties.” 2015. Web. 01 Dec 2020.

Vancouver:

Hsia P. Some orthogonal polynomials and their general properties. [Internet] [Thesis]. NSYSU; 2015. [cited 2020 Dec 01]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0601115-121335.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hsia P. Some orthogonal polynomials and their general properties. [Thesis]. NSYSU; 2015. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0601115-121335

Not specified: Masters Thesis or Doctoral Dissertation

12.
-7092-803X.
Moment representations of exceptional orthogonal *polynomials*.

Degree: PhD, Baylor University. Dept. of Mathematics., 2018, Baylor University

URL: http://hdl.handle.net/2104/10524

► Exceptional orthogonal *polynomials* (XOPs) can be viewed as an extension of their classical orthogonal polynomial counterparts. They exclude *polynomials* of a certain order(s) from being…
(more)

…Exceptional Orthogonal *Polynomials*
1.1
Characteristics of Exceptional Orthogonal *Polynomials*… …orthogonal polynomial systems. The classical polynomial systems of Laguerre, *Jacobi*, and Hermite… …system is complete in
an appropriate Hilbert space, even though it lacks *polynomials* of a… …for
their relationship to classical orthogonal *polynomials* and their associated properties… …Laguerre; Types I and II *Jacobi*; and Hermite. The spectral analysis of the
exceptional Laguerre…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

-7092-803X. (2018). Moment representations of exceptional orthogonal polynomials. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/10524

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Chicago Manual of Style (16^{th} Edition):

-7092-803X. “Moment representations of exceptional orthogonal polynomials.” 2018. Doctoral Dissertation, Baylor University. Accessed December 01, 2020. http://hdl.handle.net/2104/10524.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

MLA Handbook (7^{th} Edition):

-7092-803X. “Moment representations of exceptional orthogonal polynomials.” 2018. Web. 01 Dec 2020.

Note: this citation may be lacking information needed for this citation format:

Author name may be incomplete

Vancouver:

-7092-803X. Moment representations of exceptional orthogonal polynomials. [Internet] [Doctoral dissertation]. Baylor University; 2018. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2104/10524.

Author name may be incomplete

Council of Science Editors:

-7092-803X. Moment representations of exceptional orthogonal polynomials. [Doctoral Dissertation]. Baylor University; 2018. Available from: http://hdl.handle.net/2104/10524

Author name may be incomplete

Rhodes University

13. Iheanetu, Kelachukwu. Modelling and investigating primary beam effects of reflector antenna arrays.

Degree: Faculty of Science, Physics and Electronics, 2020, Rhodes University

URL: http://hdl.handle.net/10962/147425

► Signals received by a radio telescope are always affected by propagation and instrumental effects. These effects need to be modelled and accounted for during the…
(more)

Subjects/Keywords: Antennas, Reflector; Radio telescopes; Astronomical instruments – Calibration; Holography; Polynomials; Very large array telescopes – South Africa; Astronomy – Data processing; Primary beam effects; Jacobi-Bessel pattern; Cassbeam software; MeerKAT telescope

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Iheanetu, K. (2020). Modelling and investigating primary beam effects of reflector antenna arrays. (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/147425

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Iheanetu, Kelachukwu. “Modelling and investigating primary beam effects of reflector antenna arrays.” 2020. Thesis, Rhodes University. Accessed December 01, 2020. http://hdl.handle.net/10962/147425.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Iheanetu, Kelachukwu. “Modelling and investigating primary beam effects of reflector antenna arrays.” 2020. Web. 01 Dec 2020.

Vancouver:

Iheanetu K. Modelling and investigating primary beam effects of reflector antenna arrays. [Internet] [Thesis]. Rhodes University; 2020. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/10962/147425.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Iheanetu K. Modelling and investigating primary beam effects of reflector antenna arrays. [Thesis]. Rhodes University; 2020. Available from: http://hdl.handle.net/10962/147425

Not specified: Masters Thesis or Doctoral Dissertation

14. Peron, Ana Paula. Funções positivas definidas para interpolação em esferas complexas.

Degree: PhD, Matemática, 2001, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/ ;

►

Apresentamos uma caracterização das funções positivas definidas em esferas complexas, generalizando assim, um resultado de Schoenberg ([41]). Como no caso real, uma classe importante dessas… (more)

Subjects/Keywords: complex spheres; disk polynomials; esferas complexas; funções positivas definidas; Jacobi polynomials; polinômios de Jacobi; polinômios no disco; positive definite functions; positividade definida estrita; strict positive definiteness

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Peron, A. P. (2001). Funções positivas definidas para interpolação em esferas complexas. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/ ;

Chicago Manual of Style (16^{th} Edition):

Peron, Ana Paula. “Funções positivas definidas para interpolação em esferas complexas.” 2001. Doctoral Dissertation, University of São Paulo. Accessed December 01, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/ ;.

MLA Handbook (7^{th} Edition):

Peron, Ana Paula. “Funções positivas definidas para interpolação em esferas complexas.” 2001. Web. 01 Dec 2020.

Vancouver:

Peron AP. Funções positivas definidas para interpolação em esferas complexas. [Internet] [Doctoral dissertation]. University of São Paulo; 2001. [cited 2020 Dec 01]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/ ;.

Council of Science Editors:

Peron AP. Funções positivas definidas para interpolação em esferas complexas. [Doctoral Dissertation]. University of São Paulo; 2001. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/ ;

15. Abbas, Lamia. Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces.

Degree: Docteur es, Mathématiques, 2012, Rouen, INSA

URL: http://www.theses.fr/2012ISAM0013

►

Ce travail est dédié à l’étude des inégalités de type Landau-Kolmogorov en normes L2. Les mesures utilisées sont celles d’Hermite, de Laguerre-Sonin et de *Jacobi*.…
(more)

Subjects/Keywords: Inégalités de type Landau-Kolmogorov; Inégalités de Markov-Bernstein; Mesure d’Hermite; Mesure de Laguerre-Sonin; Mesure de Jacobi; Polynômes orthogonaux; Méthodes variationnelles; Espace de Sobolev; Landau-Kolmogorov type inequalities; Markov-Bernstein inequalities; Hermite measure; Laguerre-Sonin measure; Jacobi measure; Orthogonal polynomials; Variational method; Sobolev spaces; 510

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Abbas, L. (2012). Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces. (Doctoral Dissertation). Rouen, INSA. Retrieved from http://www.theses.fr/2012ISAM0013

Chicago Manual of Style (16^{th} Edition):

Abbas, Lamia. “Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces.” 2012. Doctoral Dissertation, Rouen, INSA. Accessed December 01, 2020. http://www.theses.fr/2012ISAM0013.

MLA Handbook (7^{th} Edition):

Abbas, Lamia. “Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces.” 2012. Web. 01 Dec 2020.

Vancouver:

Abbas L. Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces. [Internet] [Doctoral dissertation]. Rouen, INSA; 2012. [cited 2020 Dec 01]. Available from: http://www.theses.fr/2012ISAM0013.

Council of Science Editors:

Abbas L. Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces. [Doctoral Dissertation]. Rouen, INSA; 2012. Available from: http://www.theses.fr/2012ISAM0013

University of South Florida

16.
Gishe, Jemal Emina.
A finite family of q-orthogonal *polynomials* and resultants of Chebyshev * polynomials*.

Degree: 2006, University of South Florida

URL: https://scholarcommons.usf.edu/etd/2533

► Two problems related to orthogonal *polynomials* and special functions are considered. For q greater than 1 it is known that continuous q-*Jacobi* *polynomials* are orthogonal…
(more)

Subjects/Keywords: Continuous q-Jacobi polynomials; Lowering operator; Generating function; Weight function; Rodrigues formula; Discriminant; American Studies; Arts and Humanities

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gishe, J. E. (2006). A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials. (Thesis). University of South Florida. Retrieved from https://scholarcommons.usf.edu/etd/2533

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Gishe, Jemal Emina. “A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials.” 2006. Thesis, University of South Florida. Accessed December 01, 2020. https://scholarcommons.usf.edu/etd/2533.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Gishe, Jemal Emina. “A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials.” 2006. Web. 01 Dec 2020.

Vancouver:

Gishe JE. A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials. [Internet] [Thesis]. University of South Florida; 2006. [cited 2020 Dec 01]. Available from: https://scholarcommons.usf.edu/etd/2533.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gishe JE. A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials. [Thesis]. University of South Florida; 2006. Available from: https://scholarcommons.usf.edu/etd/2533

Not specified: Masters Thesis or Doctoral Dissertation

University of New South Wales

17. Hall, Jack Kingsbury. Some branching rules for GL(N,C).

Degree: Mathematics & Statistics, 2007, University of New South Wales

URL: http://handle.unsw.edu.au/1959.4/29473 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:1430/SOURCE02?view=true

► This thesis considers symmetric functions and algebraic combinatorics via the polynomial representation theory of GL(N,C). In particular, we utilise the theory of *Jacobi*-Trudi determinants to…
(more)

Subjects/Keywords: Representation theory; Lie groups; Symmetric functions; Jacobi-Trudi identity; Littlewood-Richardon coefficients; Kostka numbers; Racah formula; Polynomials; Determinants

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hall, J. K. (2007). Some branching rules for GL(N,C). (Masters Thesis). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/29473 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:1430/SOURCE02?view=true

Chicago Manual of Style (16^{th} Edition):

Hall, Jack Kingsbury. “Some branching rules for GL(N,C).” 2007. Masters Thesis, University of New South Wales. Accessed December 01, 2020. http://handle.unsw.edu.au/1959.4/29473 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:1430/SOURCE02?view=true.

MLA Handbook (7^{th} Edition):

Hall, Jack Kingsbury. “Some branching rules for GL(N,C).” 2007. Web. 01 Dec 2020.

Vancouver:

Hall JK. Some branching rules for GL(N,C). [Internet] [Masters thesis]. University of New South Wales; 2007. [cited 2020 Dec 01]. Available from: http://handle.unsw.edu.au/1959.4/29473 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:1430/SOURCE02?view=true.

Council of Science Editors:

Hall JK. Some branching rules for GL(N,C). [Masters Thesis]. University of New South Wales; 2007. Available from: http://handle.unsw.edu.au/1959.4/29473 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:1430/SOURCE02?view=true

Texas Tech University

18. Mckale, Kaleb D. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.

Degree: Mathematics and Statistics, 2011, Texas Tech University

URL: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

► In this paper, we extend the work of Debusschere et al. (2004) by introducing a new approach to evaluating transcendental functions of generalized polynomial chaos…
(more)

Subjects/Keywords: Arithmetic-geometric mean; Polynomial chaos; Transcendental functions; Borchardt, C.W.; Debusschere, B.J.; Ghanem, R.G.; Uncertainty; Quantification; Brent, R.P; Fast algorithms; Spectral methods; Hypergeometric; Orthogonal polynomials; Carlson, B.C.; Non-intrusive spectral projection (NISP); Arithmetic-geometric mean (AGM); Polynomial chaos expansions (PCEs); Uncertainty quantification (UQ); Gauss; Quadratic convergence; Jacobi polynomials; Wiener, N.; Spanos, P.D.; Xiu, D.; Homogeneous chaos; Cameron, R.H.; Martin, W.T.; Fourier-hermite; Karniadakis, G.E.; Askey, R.; Probability; Distributions; Density function

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mckale, K. D. (2011). Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Thesis, Texas Tech University. Accessed December 01, 2020. http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Web. 01 Dec 2020.

Vancouver:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Internet] [Thesis]. Texas Tech University; 2011. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Thesis]. Texas Tech University; 2011. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Not specified: Masters Thesis or Doctoral Dissertation

Universidade Estadual de Campinas

19. Vazquez, Thais Godoy. Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods.

Degree: 2008, Universidade Estadual de Campinas

URL: http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500

► Abstract: The main purpose of this work is the development of tensor-based interpolation functions and integration rules for the hp High-order Finite Element Method (FEM),…
(more)

Subjects/Keywords: Método dos elementos finitos; Análise espectral; Lagrange, Funções de; Integração numérica; Polinômios ortogonais; Finite elements method; Spectral methods; High-order methods; Shape functions; Tensorization; Quadrature rules; Jacobi polynomials

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vazquez, T. G. (2008). Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Vazquez, Thais Godoy. “Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods.” 2008. Thesis, Universidade Estadual de Campinas. Accessed December 01, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Vazquez, Thais Godoy. “Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods.” 2008. Web. 01 Dec 2020.

Vancouver:

Vazquez TG. Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods. [Internet] [Thesis]. Universidade Estadual de Campinas; 2008. [cited 2020 Dec 01]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vazquez TG. Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods. [Thesis]. Universidade Estadual de Campinas; 2008. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500

Not specified: Masters Thesis or Doctoral Dissertation

Penn State University

20. Rajendren, Krishnaswami. Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification.

Degree: 2017, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/14885kur158

► Random pore model (Bhatia and Perlmutter, 1980; 1981; 1983) has been applied extensively to both char oxidation systems (Su and Perlmutter, 1985) and char gasification…
(more)

Subjects/Keywords: Heterogeneous Solid-Gas Reactions; Chemical Reaction Engineering; Coal Gasification; Carbon Gasification; Random Pore Model; Langmuir Adsorption; Langmuir-Hinshelwood Kinetics; Stefan-Maxwell Relations; Multi-component Diffusion; Reaction Diffusion PDE; Partial Differential Equations; Reaction Kinetics; Chemical Engineering; Energy Engineering; Clean Coal Technologies; Transport Phenomena; Mass Transfer; Fluid Mechanics; Diffusion; Crystallization; Crystal Growth Kinetics; Kinetics of Phase Change; MATLAB; Orthogonal Collocation; Legendre Polynomials; Gauss-Jacobi Iteration Scheme; Non-linear PDEs; Arrhenius Equation; Gasifier; Gasification Technologies; Fossil Fuels; Climate Change; Environmental Sustainability; Entrained Flow Reactor; High-Pressure Entrained Flow Reactor; HPEFR

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rajendren, K. (2017). Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/14885kur158

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Rajendren, Krishnaswami. “Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification.” 2017. Thesis, Penn State University. Accessed December 01, 2020. https://submit-etda.libraries.psu.edu/catalog/14885kur158.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Rajendren, Krishnaswami. “Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification.” 2017. Web. 01 Dec 2020.

Vancouver:

Rajendren K. Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification. [Internet] [Thesis]. Penn State University; 2017. [cited 2020 Dec 01]. Available from: https://submit-etda.libraries.psu.edu/catalog/14885kur158.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rajendren K. Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification. [Thesis]. Penn State University; 2017. Available from: https://submit-etda.libraries.psu.edu/catalog/14885kur158

Not specified: Masters Thesis or Doctoral Dissertation