Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Jacobi polynomials). Showing records 1 – 20 of 20 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Abbas, Sayed Mohammad. A study of jacobi polynomials; -.

Degree: Mathematics, 2012, Aligarh Muslim University

Bibliography p.276-300 Advisors/Committee Members: Khan, Abdul Hakim.

Subjects/Keywords: Mathematics; jacobi; polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Abbas, S. M. (2012). A study of jacobi polynomials; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/17951

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Abbas, Sayed Mohammad. “A study of jacobi polynomials; -.” 2012. Thesis, Aligarh Muslim University. Accessed December 01, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/17951.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Abbas, Sayed Mohammad. “A study of jacobi polynomials; -.” 2012. Web. 01 Dec 2020.

Vancouver:

Abbas SM. A study of jacobi polynomials; -. [Internet] [Thesis]. Aligarh Muslim University; 2012. [cited 2020 Dec 01]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/17951.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Abbas SM. A study of jacobi polynomials; -. [Thesis]. Aligarh Muslim University; 2012. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/17951

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Baylor University

2. Stewart, Jessica D. Spectral analysis of the exceptional Laguerre and Jacobi equations.

Degree: PhD, Mathematics., 2014, Baylor University

 It was believed that Bochner's characterization of all sequences of polynomials {Ƥ_n}∞_(n=0), with deg Ƥ_n=n≥0, that are eigenfunctions of a second-order differential equation and are… (more)

Subjects/Keywords: Orthogonal polynomials.; Spectral analysis.; Glazman-Krein-Naimark theory.; Exceptional Jacobi polynomials.; Exceptional Laguerre polynomials.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stewart, J. D. (2014). Spectral analysis of the exceptional Laguerre and Jacobi equations. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/9110

Chicago Manual of Style (16th Edition):

Stewart, Jessica D. “Spectral analysis of the exceptional Laguerre and Jacobi equations.” 2014. Doctoral Dissertation, Baylor University. Accessed December 01, 2020. http://hdl.handle.net/2104/9110.

MLA Handbook (7th Edition):

Stewart, Jessica D. “Spectral analysis of the exceptional Laguerre and Jacobi equations.” 2014. Web. 01 Dec 2020.

Vancouver:

Stewart JD. Spectral analysis of the exceptional Laguerre and Jacobi equations. [Internet] [Doctoral dissertation]. Baylor University; 2014. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2104/9110.

Council of Science Editors:

Stewart JD. Spectral analysis of the exceptional Laguerre and Jacobi equations. [Doctoral Dissertation]. Baylor University; 2014. Available from: http://hdl.handle.net/2104/9110


Universidade Estadual de Campinas

3. Yen, Chi Lun, 1983-. O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications.

Degree: 2013, Universidade Estadual de Campinas

 Abstract: In this thesis we state a new formulation of the Sturm comparison Theorem and its applications to the zeros of orthogonal polynomials. Specifically, these… (more)

Subjects/Keywords: Polinômios ortogonais; Sturm, Teorema de; Gautschi, Conjectura de; Jacobi, Polinômios de; Orthogonal polynomials; Sturm's theorem; Gautschi conjecture; Jacobi polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yen, Chi Lun, 1. (2013). O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yen, Chi Lun, 1983-. “O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications.” 2013. Thesis, Universidade Estadual de Campinas. Accessed December 01, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yen, Chi Lun, 1983-. “O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications.” 2013. Web. 01 Dec 2020.

Vancouver:

Yen, Chi Lun 1. O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications. [Internet] [Thesis]. Universidade Estadual de Campinas; 2013. [cited 2020 Dec 01]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yen, Chi Lun 1. O teorema de comparação de Sturm e aplicações: Sturm comparison theorem and applications. [Thesis]. Universidade Estadual de Campinas; 2013. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/306956

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Delft University of Technology

4. van der Klein, Anne (author). Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials.

Degree: 2019, Delft University of Technology

 The spherical transform maps the orthogonal basis of symmetric Jacobi-type polynomials to an orthogonal basis of (symmetric) Wilson polynomials. The spherical transform is closely related… (more)

Subjects/Keywords: Spherical transform; Jacobi-type polynomials; Cherednik-Opdam transform

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

van der Klein, A. (. (2019). Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials. (Masters Thesis). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:25ba0e3e-6641-4f99-b6ba-29a556b3a7e9

Chicago Manual of Style (16th Edition):

van der Klein, Anne (author). “Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials.” 2019. Masters Thesis, Delft University of Technology. Accessed December 01, 2020. http://resolver.tudelft.nl/uuid:25ba0e3e-6641-4f99-b6ba-29a556b3a7e9.

MLA Handbook (7th Edition):

van der Klein, Anne (author). “Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials.” 2019. Web. 01 Dec 2020.

Vancouver:

van der Klein A(. Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials. [Internet] [Masters thesis]. Delft University of Technology; 2019. [cited 2020 Dec 01]. Available from: http://resolver.tudelft.nl/uuid:25ba0e3e-6641-4f99-b6ba-29a556b3a7e9.

Council of Science Editors:

van der Klein A(. Spherical and Cherednik-Opdam transforms of Jacobi-type polynomials. [Masters Thesis]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:25ba0e3e-6641-4f99-b6ba-29a556b3a7e9


The Ohio State University

5. Ekong, Victor Jonathan Udo. Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials.

Degree: PhD, Graduate School, 1972, The Ohio State University

Subjects/Keywords: Mathematics; Interpolation; Jacobi polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ekong, V. J. U. (1972). Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486734577565816

Chicago Manual of Style (16th Edition):

Ekong, Victor Jonathan Udo. “Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials.” 1972. Doctoral Dissertation, The Ohio State University. Accessed December 01, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486734577565816.

MLA Handbook (7th Edition):

Ekong, Victor Jonathan Udo. “Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials.” 1972. Web. 01 Dec 2020.

Vancouver:

Ekong VJU. Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials. [Internet] [Doctoral dissertation]. The Ohio State University; 1972. [cited 2020 Dec 01]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486734577565816.

Council of Science Editors:

Ekong VJU. Rate of convergence of Hermite interpolation based on the roots of certain Jacobi polynomials. [Doctoral Dissertation]. The Ohio State University; 1972. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486734577565816

6. Macedo, Osmar Jesus. Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore.

Degree: PhD, Estatística e Experimentação Agronômica, 2007, University of São Paulo

 Com o objetivo de avaliar o desempenho dos modelos mistos quando se assumem bases de funções ortonormais de Legendre, Jacobi modificadas e trigonométricas como covariáveis… (more)

Subjects/Keywords: Animal Genetic Improvement; Componentes de variância; Components of Variance; Funções de Jacobi; Gado Nelore; Jacobi functions; Legendre polynomials; Melhoramento genético animal; Nellore catle; Polimonios de Legendre

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Macedo, O. J. (2007). Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/ ;

Chicago Manual of Style (16th Edition):

Macedo, Osmar Jesus. “Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore.” 2007. Doctoral Dissertation, University of São Paulo. Accessed December 01, 2020. http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/ ;.

MLA Handbook (7th Edition):

Macedo, Osmar Jesus. “Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore.” 2007. Web. 01 Dec 2020.

Vancouver:

Macedo OJ. Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore. [Internet] [Doctoral dissertation]. University of São Paulo; 2007. [cited 2020 Dec 01]. Available from: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/ ;.

Council of Science Editors:

Macedo OJ. Modelos de regressão aleatória usando como bases as funções polinomiais de Legendre, de Jacobi modificadas e trigonométricas, com uma aplicação na análise genética dos pesos de bovinos da raça Nelore. [Doctoral Dissertation]. University of São Paulo; 2007. Available from: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-12122007-091638/ ;


Baylor University

7. Bruder, Andrea S. Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators.

Degree: PhD, Mathematics., 2009, Baylor University

 It is well known that, for –α, –β, –α – β – 1 ∉ ℕ, the Jacobi polynomials {Pn(α,β)(x)} ∞ n=0 are orthogonal on ℝ… (more)

Subjects/Keywords: Jacobi polynomials.; Sobolev spaces.; Selfadjoint operators.; Eigenfunctions.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bruder, A. S. (2009). Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/5327

Chicago Manual of Style (16th Edition):

Bruder, Andrea S. “Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators.” 2009. Doctoral Dissertation, Baylor University. Accessed December 01, 2020. http://hdl.handle.net/2104/5327.

MLA Handbook (7th Edition):

Bruder, Andrea S. “Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators.” 2009. Web. 01 Dec 2020.

Vancouver:

Bruder AS. Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators. [Internet] [Doctoral dissertation]. Baylor University; 2009. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2104/5327.

Council of Science Editors:

Bruder AS. Applied left-definite theory : the Jacobi polynomials, their Sobolev orthogonality, and self-adjoint operators. [Doctoral Dissertation]. Baylor University; 2009. Available from: http://hdl.handle.net/2104/5327


University of Cambridge

8. Webb, Marcus David. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.

Degree: PhD, 2017, University of Cambridge

 An isospectral algorithm is one which manipulates a matrix without changing its spectrum. In this thesis we study three interrelated examples of isospectral algorithms, all… (more)

Subjects/Keywords: Isospectral flows; Toeplitz matrices; Orthogonal polynomials; eigenvalues; matrices; spectrum; spectra; Jacobi operators; QR algorithm; QL algorithm

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Webb, M. D. (2017). Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/264149

Chicago Manual of Style (16th Edition):

Webb, Marcus David. “Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.” 2017. Doctoral Dissertation, University of Cambridge. Accessed December 01, 2020. https://www.repository.cam.ac.uk/handle/1810/264149.

MLA Handbook (7th Edition):

Webb, Marcus David. “Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.” 2017. Web. 01 Dec 2020.

Vancouver:

Webb MD. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2020 Dec 01]. Available from: https://www.repository.cam.ac.uk/handle/1810/264149.

Council of Science Editors:

Webb MD. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/264149


University of Kentucky

9. Wang, Hao. The Krylov Subspace Methods for the Computation of Matrix Exponentials.

Degree: 2015, University of Kentucky

 The problem of computing the matrix exponential etA arises in many theoretical and practical problems. Many methods have been developed to accurately and efficiently compute… (more)

Subjects/Keywords: matrix exponential; Krylov subspace methods; numerical range; Faber polynomials; Jacobi elliptic functions; Numerical Analysis and Computation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, H. (2015). The Krylov Subspace Methods for the Computation of Matrix Exponentials. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/31

Chicago Manual of Style (16th Edition):

Wang, Hao. “The Krylov Subspace Methods for the Computation of Matrix Exponentials.” 2015. Doctoral Dissertation, University of Kentucky. Accessed December 01, 2020. https://uknowledge.uky.edu/math_etds/31.

MLA Handbook (7th Edition):

Wang, Hao. “The Krylov Subspace Methods for the Computation of Matrix Exponentials.” 2015. Web. 01 Dec 2020.

Vancouver:

Wang H. The Krylov Subspace Methods for the Computation of Matrix Exponentials. [Internet] [Doctoral dissertation]. University of Kentucky; 2015. [cited 2020 Dec 01]. Available from: https://uknowledge.uky.edu/math_etds/31.

Council of Science Editors:

Wang H. The Krylov Subspace Methods for the Computation of Matrix Exponentials. [Doctoral Dissertation]. University of Kentucky; 2015. Available from: https://uknowledge.uky.edu/math_etds/31

10. Webb, Marcus David. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.

Degree: PhD, 2017, University of Cambridge

 An isospectral algorithm is one which manipulates a matrix without changing its spectrum. In this thesis we study three interrelated examples of isospectral algorithms, all… (more)

Subjects/Keywords: 515; Isospectral flows; Toeplitz matrices; Orthogonal polynomials; eigenvalues; matrices; spectrum; spectra; Jacobi operators; QR algorithm; QL algorithm

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Webb, M. D. (2017). Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. (Doctoral Dissertation). University of Cambridge. Retrieved from https://doi.org/10.17863/CAM.9505 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715948

Chicago Manual of Style (16th Edition):

Webb, Marcus David. “Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.” 2017. Doctoral Dissertation, University of Cambridge. Accessed December 01, 2020. https://doi.org/10.17863/CAM.9505 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715948.

MLA Handbook (7th Edition):

Webb, Marcus David. “Isospectral algorithms, Toeplitz matrices and orthogonal polynomials.” 2017. Web. 01 Dec 2020.

Vancouver:

Webb MD. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2020 Dec 01]. Available from: https://doi.org/10.17863/CAM.9505 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715948.

Council of Science Editors:

Webb MD. Isospectral algorithms, Toeplitz matrices and orthogonal polynomials. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://doi.org/10.17863/CAM.9505 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715948

11. Hsia , Pei-kang. Some orthogonal polynomials and their general properties.

Degree: Master, Applied Mathematics, 2015, NSYSU

 We shall study the mathematical properties of some classical orthogonal polynomials: Chebyshev polynomials of the first kind, Chebyshev polynomials of the second kind, Laguerre polynomials(more)

Subjects/Keywords: Chebyshev polynomials; orthogonal polynomials; Laguerre polynomials; Jacobi polynomials; recur- rence relations and Favardâs Theorem

…17 2.4 Jacobi polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3… …Recurrence relations for Jacobi Polynomials . . . . . . . . . . . . . . . 48 A Appendix 57 A.1… …polynomials (first kind and second kind), Laguerre polynomials and Jacobi polynomials… …Chebyshev polynomials (first kind and second kind), Laguerre polynomials and Jacobi… …Jacobi polynomials discussed in section 2.4, where when α = β = 21 , ( 1 , 12 ) Qn… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hsia , P. (2015). Some orthogonal polynomials and their general properties. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0601115-121335

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hsia , Pei-kang. “Some orthogonal polynomials and their general properties.” 2015. Thesis, NSYSU. Accessed December 01, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0601115-121335.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hsia , Pei-kang. “Some orthogonal polynomials and their general properties.” 2015. Web. 01 Dec 2020.

Vancouver:

Hsia P. Some orthogonal polynomials and their general properties. [Internet] [Thesis]. NSYSU; 2015. [cited 2020 Dec 01]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0601115-121335.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hsia P. Some orthogonal polynomials and their general properties. [Thesis]. NSYSU; 2015. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0601115-121335

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

12. -7092-803X. Moment representations of exceptional orthogonal polynomials.

Degree: PhD, Baylor University. Dept. of Mathematics., 2018, Baylor University

 Exceptional orthogonal polynomials (XOPs) can be viewed as an extension of their classical orthogonal polynomial counterparts. They exclude polynomials of a certain order(s) from being… (more)

Subjects/Keywords: Orthogonal polynomials. Exceptional orthogonal polynomials. Moment representations. Determinantal representations. Darboux transform. Exceptional Laguerre orthogonal polynomials. Exceptional Jacobi orthogonal polynomials.

…Exceptional Orthogonal Polynomials 1.1 Characteristics of Exceptional Orthogonal Polynomials… …orthogonal polynomial systems. The classical polynomial systems of Laguerre, Jacobi, and Hermite… …system is complete in an appropriate Hilbert space, even though it lacks polynomials of a… …for their relationship to classical orthogonal polynomials and their associated properties… …Laguerre; Types I and II Jacobi; and Hermite. The spectral analysis of the exceptional Laguerre… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-7092-803X. (2018). Moment representations of exceptional orthogonal polynomials. (Doctoral Dissertation). Baylor University. Retrieved from http://hdl.handle.net/2104/10524

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-7092-803X. “Moment representations of exceptional orthogonal polynomials.” 2018. Doctoral Dissertation, Baylor University. Accessed December 01, 2020. http://hdl.handle.net/2104/10524.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-7092-803X. “Moment representations of exceptional orthogonal polynomials.” 2018. Web. 01 Dec 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-7092-803X. Moment representations of exceptional orthogonal polynomials. [Internet] [Doctoral dissertation]. Baylor University; 2018. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2104/10524.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-7092-803X. Moment representations of exceptional orthogonal polynomials. [Doctoral Dissertation]. Baylor University; 2018. Available from: http://hdl.handle.net/2104/10524

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


Rhodes University

13. Iheanetu, Kelachukwu. Modelling and investigating primary beam effects of reflector antenna arrays.

Degree: Faculty of Science, Physics and Electronics, 2020, Rhodes University

 Signals received by a radio telescope are always affected by propagation and instrumental effects. These effects need to be modelled and accounted for during the… (more)

Subjects/Keywords: Antennas, Reflector; Radio telescopes; Astronomical instruments  – Calibration; Holography; Polynomials; Very large array telescopes  – South Africa; Astronomy  – Data processing; Primary beam effects; Jacobi-Bessel pattern; Cassbeam software; MeerKAT telescope

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Iheanetu, K. (2020). Modelling and investigating primary beam effects of reflector antenna arrays. (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/147425

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Iheanetu, Kelachukwu. “Modelling and investigating primary beam effects of reflector antenna arrays.” 2020. Thesis, Rhodes University. Accessed December 01, 2020. http://hdl.handle.net/10962/147425.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Iheanetu, Kelachukwu. “Modelling and investigating primary beam effects of reflector antenna arrays.” 2020. Web. 01 Dec 2020.

Vancouver:

Iheanetu K. Modelling and investigating primary beam effects of reflector antenna arrays. [Internet] [Thesis]. Rhodes University; 2020. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/10962/147425.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Iheanetu K. Modelling and investigating primary beam effects of reflector antenna arrays. [Thesis]. Rhodes University; 2020. Available from: http://hdl.handle.net/10962/147425

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Peron, Ana Paula. Funções positivas definidas para interpolação em esferas complexas.

Degree: PhD, Matemática, 2001, University of São Paulo

Apresentamos uma caracterização das funções positivas definidas em esferas complexas, generalizando assim, um resultado de Schoenberg ([41]). Como no caso real, uma classe importante dessas… (more)

Subjects/Keywords: complex spheres; disk polynomials; esferas complexas; funções positivas definidas; Jacobi polynomials; polinômios de Jacobi; polinômios no disco; positive definite functions; positividade definida estrita; strict positive definiteness

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peron, A. P. (2001). Funções positivas definidas para interpolação em esferas complexas. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/ ;

Chicago Manual of Style (16th Edition):

Peron, Ana Paula. “Funções positivas definidas para interpolação em esferas complexas.” 2001. Doctoral Dissertation, University of São Paulo. Accessed December 01, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/ ;.

MLA Handbook (7th Edition):

Peron, Ana Paula. “Funções positivas definidas para interpolação em esferas complexas.” 2001. Web. 01 Dec 2020.

Vancouver:

Peron AP. Funções positivas definidas para interpolação em esferas complexas. [Internet] [Doctoral dissertation]. University of São Paulo; 2001. [cited 2020 Dec 01]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/ ;.

Council of Science Editors:

Peron AP. Funções positivas definidas para interpolação em esferas complexas. [Doctoral Dissertation]. University of São Paulo; 2001. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-05032002-101326/ ;

15. Abbas, Lamia. Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces.

Degree: Docteur es, Mathématiques, 2012, Rouen, INSA

Ce travail est dédié à l’étude des inégalités de type Landau-Kolmogorov en normes L2. Les mesures utilisées sont celles d’Hermite, de Laguerre-Sonin et de Jacobi.… (more)

Subjects/Keywords: Inégalités de type Landau-Kolmogorov; Inégalités de Markov-Bernstein; Mesure d’Hermite; Mesure de Laguerre-Sonin; Mesure de Jacobi; Polynômes orthogonaux; Méthodes variationnelles; Espace de Sobolev; Landau-Kolmogorov type inequalities; Markov-Bernstein inequalities; Hermite measure; Laguerre-Sonin measure; Jacobi measure; Orthogonal polynomials; Variational method; Sobolev spaces; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Abbas, L. (2012). Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces. (Doctoral Dissertation). Rouen, INSA. Retrieved from http://www.theses.fr/2012ISAM0013

Chicago Manual of Style (16th Edition):

Abbas, Lamia. “Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces.” 2012. Doctoral Dissertation, Rouen, INSA. Accessed December 01, 2020. http://www.theses.fr/2012ISAM0013.

MLA Handbook (7th Edition):

Abbas, Lamia. “Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces.” 2012. Web. 01 Dec 2020.

Vancouver:

Abbas L. Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces. [Internet] [Doctoral dissertation]. Rouen, INSA; 2012. [cited 2020 Dec 01]. Available from: http://www.theses.fr/2012ISAM0013.

Council of Science Editors:

Abbas L. Inégalités de Landau-Kolmogorov dans des espaces de Sobolev : Landau-Kolmogorov inequalities in Sobolev spaces. [Doctoral Dissertation]. Rouen, INSA; 2012. Available from: http://www.theses.fr/2012ISAM0013


University of South Florida

16. Gishe, Jemal Emina. A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials.

Degree: 2006, University of South Florida

 Two problems related to orthogonal polynomials and special functions are considered. For q greater than 1 it is known that continuous q-Jacobi polynomials are orthogonal… (more)

Subjects/Keywords: Continuous q-Jacobi polynomials; Lowering operator; Generating function; Weight function; Rodrigues formula; Discriminant; American Studies; Arts and Humanities

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gishe, J. E. (2006). A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials. (Thesis). University of South Florida. Retrieved from https://scholarcommons.usf.edu/etd/2533

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gishe, Jemal Emina. “A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials.” 2006. Thesis, University of South Florida. Accessed December 01, 2020. https://scholarcommons.usf.edu/etd/2533.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gishe, Jemal Emina. “A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials.” 2006. Web. 01 Dec 2020.

Vancouver:

Gishe JE. A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials. [Internet] [Thesis]. University of South Florida; 2006. [cited 2020 Dec 01]. Available from: https://scholarcommons.usf.edu/etd/2533.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gishe JE. A finite family of q-orthogonal polynomials and resultants of Chebyshev polynomials. [Thesis]. University of South Florida; 2006. Available from: https://scholarcommons.usf.edu/etd/2533

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of New South Wales

17. Hall, Jack Kingsbury. Some branching rules for GL(N,C).

Degree: Mathematics & Statistics, 2007, University of New South Wales

 This thesis considers symmetric functions and algebraic combinatorics via the polynomial representation theory of GL(N,C). In particular, we utilise the theory of Jacobi-Trudi determinants to… (more)

Subjects/Keywords: Representation theory; Lie groups; Symmetric functions; Jacobi-Trudi identity; Littlewood-Richardon coefficients; Kostka numbers; Racah formula; Polynomials; Determinants

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hall, J. K. (2007). Some branching rules for GL(N,C). (Masters Thesis). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/29473 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:1430/SOURCE02?view=true

Chicago Manual of Style (16th Edition):

Hall, Jack Kingsbury. “Some branching rules for GL(N,C).” 2007. Masters Thesis, University of New South Wales. Accessed December 01, 2020. http://handle.unsw.edu.au/1959.4/29473 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:1430/SOURCE02?view=true.

MLA Handbook (7th Edition):

Hall, Jack Kingsbury. “Some branching rules for GL(N,C).” 2007. Web. 01 Dec 2020.

Vancouver:

Hall JK. Some branching rules for GL(N,C). [Internet] [Masters thesis]. University of New South Wales; 2007. [cited 2020 Dec 01]. Available from: http://handle.unsw.edu.au/1959.4/29473 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:1430/SOURCE02?view=true.

Council of Science Editors:

Hall JK. Some branching rules for GL(N,C). [Masters Thesis]. University of New South Wales; 2007. Available from: http://handle.unsw.edu.au/1959.4/29473 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:1430/SOURCE02?view=true


Texas Tech University

18. Mckale, Kaleb D. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.

Degree: Mathematics and Statistics, 2011, Texas Tech University

 In this paper, we extend the work of Debusschere et al. (2004) by introducing a new approach to evaluating transcendental functions of generalized polynomial chaos… (more)

Subjects/Keywords: Arithmetic-geometric mean; Polynomial chaos; Transcendental functions; Borchardt, C.W.; Debusschere, B.J.; Ghanem, R.G.; Uncertainty; Quantification; Brent, R.P; Fast algorithms; Spectral methods; Hypergeometric; Orthogonal polynomials; Carlson, B.C.; Non-intrusive spectral projection (NISP); Arithmetic-geometric mean (AGM); Polynomial chaos expansions (PCEs); Uncertainty quantification (UQ); Gauss; Quadratic convergence; Jacobi polynomials; Wiener, N.; Spanos, P.D.; Xiu, D.; Homogeneous chaos; Cameron, R.H.; Martin, W.T.; Fourier-hermite; Karniadakis, G.E.; Askey, R.; Probability; Distributions; Density function

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mckale, K. D. (2011). Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Thesis, Texas Tech University. Accessed December 01, 2020. http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mckale, Kaleb D. “Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions.” 2011. Web. 01 Dec 2020.

Vancouver:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Internet] [Thesis]. Texas Tech University; 2011. [cited 2020 Dec 01]. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mckale KD. Archimedes, Gauss and Stochastic computation: A new (old) approach to Fast Algorithms for the evaluation of transcendental functions of generalized Polynomial Chaos Expansions. [Thesis]. Texas Tech University; 2011. Available from: http://hdl.handle.net/2346/ETD-TTU-2011-05-1480

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade Estadual de Campinas

19. Vazquez, Thais Godoy. Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods.

Degree: 2008, Universidade Estadual de Campinas

 Abstract: The main purpose of this work is the development of tensor-based interpolation functions and integration rules for the hp High-order Finite Element Method (FEM),… (more)

Subjects/Keywords: Método dos elementos finitos; Análise espectral; Lagrange, Funções de; Integração numérica; Polinômios ortogonais; Finite elements method; Spectral methods; High-order methods; Shape functions; Tensorization; Quadrature rules; Jacobi polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vazquez, T. G. (2008). Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods. (Thesis). Universidade Estadual de Campinas. Retrieved from http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vazquez, Thais Godoy. “Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods.” 2008. Thesis, Universidade Estadual de Campinas. Accessed December 01, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vazquez, Thais Godoy. “Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods.” 2008. Web. 01 Dec 2020.

Vancouver:

Vazquez TG. Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods. [Internet] [Thesis]. Universidade Estadual de Campinas; 2008. [cited 2020 Dec 01]. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vazquez TG. Funções de interpolação e regras de integração tensorizaveis para o metodo de elementos finitos de alta ordem: Tensor-based interpolation functions and integration rules for the high order finite elements methods. [Thesis]. Universidade Estadual de Campinas; 2008. Available from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/263500

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

20. Rajendren, Krishnaswami. Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification.

Degree: 2017, Penn State University

 Random pore model (Bhatia and Perlmutter, 1980; 1981; 1983) has been applied extensively to both char oxidation systems (Su and Perlmutter, 1985) and char gasification… (more)

Subjects/Keywords: Heterogeneous Solid-Gas Reactions; Chemical Reaction Engineering; Coal Gasification; Carbon Gasification; Random Pore Model; Langmuir Adsorption; Langmuir-Hinshelwood Kinetics; Stefan-Maxwell Relations; Multi-component Diffusion; Reaction Diffusion PDE; Partial Differential Equations; Reaction Kinetics; Chemical Engineering; Energy Engineering; Clean Coal Technologies; Transport Phenomena; Mass Transfer; Fluid Mechanics; Diffusion; Crystallization; Crystal Growth Kinetics; Kinetics of Phase Change; MATLAB; Orthogonal Collocation; Legendre Polynomials; Gauss-Jacobi Iteration Scheme; Non-linear PDEs; Arrhenius Equation; Gasifier; Gasification Technologies; Fossil Fuels; Climate Change; Environmental Sustainability; Entrained Flow Reactor; High-Pressure Entrained Flow Reactor; HPEFR

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rajendren, K. (2017). Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/14885kur158

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rajendren, Krishnaswami. “Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification.” 2017. Thesis, Penn State University. Accessed December 01, 2020. https://submit-etda.libraries.psu.edu/catalog/14885kur158.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rajendren, Krishnaswami. “Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification.” 2017. Web. 01 Dec 2020.

Vancouver:

Rajendren K. Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification. [Internet] [Thesis]. Penn State University; 2017. [cited 2020 Dec 01]. Available from: https://submit-etda.libraries.psu.edu/catalog/14885kur158.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rajendren K. Integration of Random-Pore Model & Langmuir-Hinshelwood Kinetics To Study High Temperature Coal Gasification. [Thesis]. Penn State University; 2017. Available from: https://submit-etda.libraries.psu.edu/catalog/14885kur158

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.