Advanced search options
You searched for subject:(Jacobi form)
.
Showing records 1 – 6 of
6 total matches.
▼ Search Limiters
University of Arizona
1. Quinones, Jason. Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms .
Degree: 2020, University of Arizona
URL: http://hdl.handle.net/10150/645779
Subjects/Keywords: anti-self duality; holography; Jacobi form; monopole; Nahm transform; Nahm's equations
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Quinones, J. (2020). Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/645779
Chicago Manual of Style (16th Edition):
Quinones, Jason. “Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms .” 2020. Doctoral Dissertation, University of Arizona. Accessed March 07, 2021. http://hdl.handle.net/10150/645779.
MLA Handbook (7th Edition):
Quinones, Jason. “Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms .” 2020. Web. 07 Mar 2021.
Vancouver:
Quinones J. Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms . [Internet] [Doctoral dissertation]. University of Arizona; 2020. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10150/645779.
Council of Science Editors:
Quinones J. Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms . [Doctoral Dissertation]. University of Arizona; 2020. Available from: http://hdl.handle.net/10150/645779
Kyoto University / 京都大学
2. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.
Degree: 博士(理学), 2016, Kyoto University / 京都大学
URL: http://hdl.handle.net/2433/215374
;
http://dx.doi.org/10.14989/doctor.k19548
新制・課程博士
甲第19548号
理博第4208号
Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Thesis, Kyoto University / 京都大学. Accessed March 07, 2021. http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Web. 07 Mar 2021.
Vancouver:
Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Internet] [Thesis]. Kyoto University / 京都大学; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Thesis]. Kyoto University / 京都大学; 2016. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Kyoto University
3. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms .
Degree: 2016, Kyoto University
URL: http://hdl.handle.net/2433/215374
Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/215374
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Thesis, Kyoto University. Accessed March 07, 2021. http://hdl.handle.net/2433/215374.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Web. 07 Mar 2021.
Vancouver:
Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Internet] [Thesis]. Kyoto University; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2433/215374.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Thesis]. Kyoto University; 2016. Available from: http://hdl.handle.net/2433/215374
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)
4. Θεοφανίδης, Θεοχάρης. Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.
Degree: 2011, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)
URL: http://hdl.handle.net/10442/hedi/27049
Subjects/Keywords: Διαφορική γεωμετρία; Πολλαπλότητα Riemann; Μιγαδικός χώρος μορφής; Πραγματική υπερεπιφάνεια; Δομή σχεδόν επαφής; Τελεστής δομής Jacobi; Differential geometry; Riemannian manifolds; Complex space form; Real hypersurface; Almost contact structure; Jacobi structure operator
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Θεοφανίδης, . . (2011). Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/27049
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed March 07, 2021. http://hdl.handle.net/10442/hedi/27049.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Web. 07 Mar 2021.
Vancouver:
Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10442/hedi/27049.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. Available from: http://hdl.handle.net/10442/hedi/27049
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Universiteit Utrecht
5. Zwegers, S.P. Mock Theta Functions.
Degree: 2002, Universiteit Utrecht
URL: http://dspace.library.uu.nl:8080/handle/1874/878
Subjects/Keywords: Wiskunde en Informatica; mock theta function; indefinite theta function; indefinite quadratic form; theta series; Jacobi form; real-analytic modular form
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Zwegers, S. P. (2002). Mock Theta Functions. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/878
Chicago Manual of Style (16th Edition):
Zwegers, S P. “Mock Theta Functions.” 2002. Doctoral Dissertation, Universiteit Utrecht. Accessed March 07, 2021. http://dspace.library.uu.nl:8080/handle/1874/878.
MLA Handbook (7th Edition):
Zwegers, S P. “Mock Theta Functions.” 2002. Web. 07 Mar 2021.
Vancouver:
Zwegers SP. Mock Theta Functions. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2002. [cited 2021 Mar 07]. Available from: http://dspace.library.uu.nl:8080/handle/1874/878.
Council of Science Editors:
Zwegers SP. Mock Theta Functions. [Doctoral Dissertation]. Universiteit Utrecht; 2002. Available from: http://dspace.library.uu.nl:8080/handle/1874/878
6. Zwegers, S.P. Mock Theta Functions.
Degree: 2002, University Utrecht
URL: https://dspace.library.uu.nl/handle/1874/878
;
URN:NBN:NL:UI:10-1874-878
;
1874/878
;
URN:NBN:NL:UI:10-1874-878
;
https://dspace.library.uu.nl/handle/1874/878
Subjects/Keywords: mock theta function; indefinite theta function; indefinite quadratic form; theta series; Jacobi form; real-analytic modular form
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Zwegers, S. P. (2002). Mock Theta Functions. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/878 ; URN:NBN:NL:UI:10-1874-878 ; 1874/878 ; URN:NBN:NL:UI:10-1874-878 ; https://dspace.library.uu.nl/handle/1874/878
Chicago Manual of Style (16th Edition):
Zwegers, S P. “Mock Theta Functions.” 2002. Doctoral Dissertation, University Utrecht. Accessed March 07, 2021. https://dspace.library.uu.nl/handle/1874/878 ; URN:NBN:NL:UI:10-1874-878 ; 1874/878 ; URN:NBN:NL:UI:10-1874-878 ; https://dspace.library.uu.nl/handle/1874/878.
MLA Handbook (7th Edition):
Zwegers, S P. “Mock Theta Functions.” 2002. Web. 07 Mar 2021.
Vancouver:
Zwegers SP. Mock Theta Functions. [Internet] [Doctoral dissertation]. University Utrecht; 2002. [cited 2021 Mar 07]. Available from: https://dspace.library.uu.nl/handle/1874/878 ; URN:NBN:NL:UI:10-1874-878 ; 1874/878 ; URN:NBN:NL:UI:10-1874-878 ; https://dspace.library.uu.nl/handle/1874/878.
Council of Science Editors:
Zwegers SP. Mock Theta Functions. [Doctoral Dissertation]. University Utrecht; 2002. Available from: https://dspace.library.uu.nl/handle/1874/878 ; URN:NBN:NL:UI:10-1874-878 ; 1874/878 ; URN:NBN:NL:UI:10-1874-878 ; https://dspace.library.uu.nl/handle/1874/878