Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Jacobi form)`

.
Showing records 1 – 6 of
6 total matches.

▼ Search Limiters

University of Arizona

1.
Quinones, Jason.
Mathematical Aspects of Field Theory: Nahm's Equations and *Jacobi* Forms
.

Degree: 2020, University of Arizona

URL: http://hdl.handle.net/10150/645779

► This thesis consists of two projects wherein we explore some mathematical aspects of field theory. In the first project, we address Nahm's equations, which is…
(more)

Subjects/Keywords: anti-self duality; holography; Jacobi form; monopole; Nahm transform; Nahm's equations

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Quinones, J. (2020). Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/645779

Chicago Manual of Style (16^{th} Edition):

Quinones, Jason. “Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms .” 2020. Doctoral Dissertation, University of Arizona. Accessed March 07, 2021. http://hdl.handle.net/10150/645779.

MLA Handbook (7^{th} Edition):

Quinones, Jason. “Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms .” 2020. Web. 07 Mar 2021.

Vancouver:

Quinones J. Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms . [Internet] [Doctoral dissertation]. University of Arizona; 2020. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10150/645779.

Council of Science Editors:

Quinones J. Mathematical Aspects of Field Theory: Nahm's Equations and Jacobi Forms . [Doctoral Dissertation]. University of Arizona; 2020. Available from: http://hdl.handle.net/10150/645779

Kyoto University / 京都大学

2. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.

Degree: 博士(理学), 2016, Kyoto University / 京都大学

URL: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

新制・課程博士

甲第19548号

理博第4208号

Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Thesis, Kyoto University / 京都大学. Accessed March 07, 2021. http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間.” 2016. Web. 07 Mar 2021.

Vancouver:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Internet] [Thesis]. Kyoto University / 京都大学; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms : ヒルベルトジーゲルモジュラー形式に関するコーネンプラス空間. [Thesis]. Kyoto University / 京都大学; 2016. Available from: http://hdl.handle.net/2433/215374 ; http://dx.doi.org/10.14989/doctor.k19548

Not specified: Masters Thesis or Doctoral Dissertation

Kyoto University

3. Ren-He, Su. The Kohnen plus space for Hilbert-Siegel modular forms .

Degree: 2016, Kyoto University

URL: http://hdl.handle.net/2433/215374

Subjects/Keywords: automorphic form; Hilbert-Siegel modular form; Kohnen plus space; Jacobi form; Weil representation

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ren-He, S. (2016). The Kohnen plus space for Hilbert-Siegel modular forms . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/215374

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Thesis, Kyoto University. Accessed March 07, 2021. http://hdl.handle.net/2433/215374.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ren-He, Su. “The Kohnen plus space for Hilbert-Siegel modular forms .” 2016. Web. 07 Mar 2021.

Vancouver:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Internet] [Thesis]. Kyoto University; 2016. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2433/215374.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ren-He S. The Kohnen plus space for Hilbert-Siegel modular forms . [Thesis]. Kyoto University; 2016. Available from: http://hdl.handle.net/2433/215374

Not specified: Masters Thesis or Doctoral Dissertation

Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

4. Θεοφανίδης, Θεοχάρης. Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.

Degree: 2011, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ)

URL: http://hdl.handle.net/10442/hedi/27049

► J. de Dios Perez, F. G. Santos and Y. J. Suh in [29], studied real hypersurfaces of dimension greater than 3 in complex projective spaces,…
(more)

Subjects/Keywords: Διαφορική γεωμετρία; Πολλαπλότητα Riemann; Μιγαδικός χώρος μορφής; Πραγματική υπερεπιφάνεια; Δομή σχεδόν επαφής; Τελεστής δομής Jacobi; Differential geometry; Riemannian manifolds; Complex space form; Real hypersurface; Almost contact structure; Jacobi structure operator

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Θεοφανίδης, . . (2011). Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. (Thesis). Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Retrieved from http://hdl.handle.net/10442/hedi/27049

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Thesis, Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ). Accessed March 07, 2021. http://hdl.handle.net/10442/hedi/27049.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Θεοφανίδης, Θεοχάρης. “Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής.” 2011. Web. 07 Mar 2021.

Vancouver:

Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Internet] [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/10442/hedi/27049.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Θεοφανίδης . Μελέτη πραγματικών υπερεπιφανειών μη ευκλείδειων μιγαδικών χώρων μορφής. [Thesis]. Aristotle University Of Thessaloniki (AUTH); Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); 2011. Available from: http://hdl.handle.net/10442/hedi/27049

Not specified: Masters Thesis or Doctoral Dissertation

Universiteit Utrecht

5. Zwegers, S.P. Mock Theta Functions.

Degree: 2002, Universiteit Utrecht

URL: http://dspace.library.uu.nl:8080/handle/1874/878

► The mock theta functions were invented by the Indian mathematician Srinivasa Ramanujan, who lived from 1887 until 1920. He discovered them shortly before his death.…
(more)

Subjects/Keywords: Wiskunde en Informatica; mock theta function; indefinite theta function; indefinite quadratic form; theta series; Jacobi form; real-analytic modular form

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zwegers, S. P. (2002). Mock Theta Functions. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/878

Chicago Manual of Style (16^{th} Edition):

Zwegers, S P. “Mock Theta Functions.” 2002. Doctoral Dissertation, Universiteit Utrecht. Accessed March 07, 2021. http://dspace.library.uu.nl:8080/handle/1874/878.

MLA Handbook (7^{th} Edition):

Zwegers, S P. “Mock Theta Functions.” 2002. Web. 07 Mar 2021.

Vancouver:

Zwegers SP. Mock Theta Functions. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2002. [cited 2021 Mar 07]. Available from: http://dspace.library.uu.nl:8080/handle/1874/878.

Council of Science Editors:

Zwegers SP. Mock Theta Functions. [Doctoral Dissertation]. Universiteit Utrecht; 2002. Available from: http://dspace.library.uu.nl:8080/handle/1874/878

6. Zwegers, S.P. Mock Theta Functions.

Degree: 2002, University Utrecht

URL: https://dspace.library.uu.nl/handle/1874/878 ; URN:NBN:NL:UI:10-1874-878 ; 1874/878 ; URN:NBN:NL:UI:10-1874-878 ; https://dspace.library.uu.nl/handle/1874/878

► The mock theta functions were invented by the Indian mathematician Srinivasa Ramanujan, who lived from 1887 until 1920. He discovered them shortly before his death.…
(more)

Subjects/Keywords: mock theta function; indefinite theta function; indefinite quadratic form; theta series; Jacobi form; real-analytic modular form

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zwegers, S. P. (2002). Mock Theta Functions. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/878 ; URN:NBN:NL:UI:10-1874-878 ; 1874/878 ; URN:NBN:NL:UI:10-1874-878 ; https://dspace.library.uu.nl/handle/1874/878

Chicago Manual of Style (16^{th} Edition):

Zwegers, S P. “Mock Theta Functions.” 2002. Doctoral Dissertation, University Utrecht. Accessed March 07, 2021. https://dspace.library.uu.nl/handle/1874/878 ; URN:NBN:NL:UI:10-1874-878 ; 1874/878 ; URN:NBN:NL:UI:10-1874-878 ; https://dspace.library.uu.nl/handle/1874/878.

MLA Handbook (7^{th} Edition):

Zwegers, S P. “Mock Theta Functions.” 2002. Web. 07 Mar 2021.

Vancouver:

Zwegers SP. Mock Theta Functions. [Internet] [Doctoral dissertation]. University Utrecht; 2002. [cited 2021 Mar 07]. Available from: https://dspace.library.uu.nl/handle/1874/878 ; URN:NBN:NL:UI:10-1874-878 ; 1874/878 ; URN:NBN:NL:UI:10-1874-878 ; https://dspace.library.uu.nl/handle/1874/878.

Council of Science Editors:

Zwegers SP. Mock Theta Functions. [Doctoral Dissertation]. University Utrecht; 2002. Available from: https://dspace.library.uu.nl/handle/1874/878 ; URN:NBN:NL:UI:10-1874-878 ; 1874/878 ; URN:NBN:NL:UI:10-1874-878 ; https://dspace.library.uu.nl/handle/1874/878