Advanced search options
You searched for subject:(Jackknife estimate )
.
Showing records 1 – 3 of
3 total matches.
▼ Search Limiters
Queens University
1. Liu, Shifang. Statistical Methods for Testing Treatment-Covariate Interactions in Cancer Clinical Trials .
Degree: Mathematics and Statistics, 2011, Queens University
URL: http://hdl.handle.net/1974/6758
Subjects/Keywords: Jackknife estimate ; Monte-Carlo simulation ; nonparametric measure of interaction ; Kernel smooth
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Liu, S. (2011). Statistical Methods for Testing Treatment-Covariate Interactions in Cancer Clinical Trials . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/6758
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Liu, Shifang. “Statistical Methods for Testing Treatment-Covariate Interactions in Cancer Clinical Trials .” 2011. Thesis, Queens University. Accessed January 19, 2021. http://hdl.handle.net/1974/6758.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Liu, Shifang. “Statistical Methods for Testing Treatment-Covariate Interactions in Cancer Clinical Trials .” 2011. Web. 19 Jan 2021.
Vancouver:
Liu S. Statistical Methods for Testing Treatment-Covariate Interactions in Cancer Clinical Trials . [Internet] [Thesis]. Queens University; 2011. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/1974/6758.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Liu S. Statistical Methods for Testing Treatment-Covariate Interactions in Cancer Clinical Trials . [Thesis]. Queens University; 2011. Available from: http://hdl.handle.net/1974/6758
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Brno University of Technology
2. Černík, Tomáš. Detekce neobvyklých událostí v temporálních datech: Detection of Unusual Events in Temporal Data.
Degree: 2019, Brno University of Technology
URL: http://hdl.handle.net/11012/56606
Subjects/Keywords: Anomálie; detekční algoritmy; dovolání znalostí z dat; Perl; temporální data; algoritmus kNN; JackKnife Estimate; Outliers; Anomaly; detection algorithms; data mining; Perl; temporal data; kNN algorithm; JackKnife Estimate
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Černík, T. (2019). Detekce neobvyklých událostí v temporálních datech: Detection of Unusual Events in Temporal Data. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/56606
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Černík, Tomáš. “Detekce neobvyklých událostí v temporálních datech: Detection of Unusual Events in Temporal Data.” 2019. Thesis, Brno University of Technology. Accessed January 19, 2021. http://hdl.handle.net/11012/56606.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Černík, Tomáš. “Detekce neobvyklých událostí v temporálních datech: Detection of Unusual Events in Temporal Data.” 2019. Web. 19 Jan 2021.
Vancouver:
Černík T. Detekce neobvyklých událostí v temporálních datech: Detection of Unusual Events in Temporal Data. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2021 Jan 19]. Available from: http://hdl.handle.net/11012/56606.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Černík T. Detekce neobvyklých událostí v temporálních datech: Detection of Unusual Events in Temporal Data. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/56606
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Purdue University
3. Li, Lingnan. Maximum empirical likelihood estimation in U-statistics based general estimating equations.
Degree: PhD, Mathematics, 2016, Purdue University
URL: https://docs.lib.purdue.edu/open_access_dissertations/796
Subjects/Keywords: Pure sciences; Jackknife pseudo value; Maximum empirical likelihood estimate; U-statistics; U-statistics based general estimating equations; Mathematics; Statistics and Probability
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Li, L. (2016). Maximum empirical likelihood estimation in U-statistics based general estimating equations. (Doctoral Dissertation). Purdue University. Retrieved from https://docs.lib.purdue.edu/open_access_dissertations/796
Chicago Manual of Style (16th Edition):
Li, Lingnan. “Maximum empirical likelihood estimation in U-statistics based general estimating equations.” 2016. Doctoral Dissertation, Purdue University. Accessed January 19, 2021. https://docs.lib.purdue.edu/open_access_dissertations/796.
MLA Handbook (7th Edition):
Li, Lingnan. “Maximum empirical likelihood estimation in U-statistics based general estimating equations.” 2016. Web. 19 Jan 2021.
Vancouver:
Li L. Maximum empirical likelihood estimation in U-statistics based general estimating equations. [Internet] [Doctoral dissertation]. Purdue University; 2016. [cited 2021 Jan 19]. Available from: https://docs.lib.purdue.edu/open_access_dissertations/796.
Council of Science Editors:
Li L. Maximum empirical likelihood estimation in U-statistics based general estimating equations. [Doctoral Dissertation]. Purdue University; 2016. Available from: https://docs.lib.purdue.edu/open_access_dissertations/796