Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

You searched for subject:(Inverted Folding Problem). One record found.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Université du Luxembourg

1. Nielsen, Sune Steinbjorn. Diversity Preserving Genetic Algorithms - Application to the Inverted Folding Problem and Analogous Formulated Benchmarks.

Degree: 2016, Université du Luxembourg

Protein structure prediction is an essential step in understanding the molecular mechanisms of living cells with widespread applications in biotechnology and health. Among the open problems in the field, the Inverse Folding Problem (IFP) that consists in finding sequences that fold into a defined structure is, in itself, an important research problem at the heart of most rational protein design approaches. In brief, solutions to the IFP are protein sequences that will fold into a given protein structure, contrary to conventional structure prediction where the solution consists of the structure into which a given sequence folds. This inverse approach is viewed as a simplification due to the fact that the near infinite number of structure conformations of a protein can be disregarded, and only sequence to structure compatibility needs to be determined. Additional emphasis has been put on the generation of many sequences dissimilar from the known reference sequence instead of finding only one solution. To solve the IFP computationally, a novel formulation of the problem was proposed in which possible problem solutions are evaluated in terms of their predicted secondary structure match. In addition, two specialised Genetic Algorithms (GAs) were developed specifically for solving the IFP problem and compared with existing algorithms in terms of performance. Experimental results outlined the superior performance of the developed algorithms, both in terms of model score and diversity of the generated sets of problem solutions, i.e. new protein sequences. A number of landscape analysis experiments were conducted on the IFP model, enabling the development of an original benchmark suite of analogous problems. These benchmarks were shown to share many characteristics with their IFP model counterparts, but are executable in a fraction of the time. To validate the IFP model and the algorithm output, a subset of the generated solutions were selected for further inspection through full tertiary structure prediction and comparison to the original protein structure. Congruence was then assessed by super-positioning and secondary structure annotation statistics. The results demonstrated that an optimisation process relying on a fast secondary structure approximation, such as the IFP model, permits to obtain meaningful sequences. Advisors/Committee Members: AFR [sponsor], Bouvry, Pascal [superviser], Schneider, Reinhard [president of the jury], Talbi, El-Ghazali [member of the jury], Danoy, Grégoire [member of the jury], Jurkowski, Wiktor [member of the jury], University of Luxembourg: High Performance Computing - ULHPC [research center].

Subjects/Keywords: Genetic Algorithms; Inverted Folding Problem; Diversity Preservation; Engineering, computing & technology :: Computer science [C05]; Ingénierie, informatique & technologie :: Sciences informatiques [C05]

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nielsen, S. S. (2016). Diversity Preserving Genetic Algorithms - Application to the Inverted Folding Problem and Analogous Formulated Benchmarks. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/28226

Chicago Manual of Style (16th Edition):

Nielsen, Sune Steinbjorn. “Diversity Preserving Genetic Algorithms - Application to the Inverted Folding Problem and Analogous Formulated Benchmarks.” 2016. Doctoral Dissertation, Université du Luxembourg. Accessed October 17, 2019. http://orbilu.uni.lu/handle/10993/28226.

MLA Handbook (7th Edition):

Nielsen, Sune Steinbjorn. “Diversity Preserving Genetic Algorithms - Application to the Inverted Folding Problem and Analogous Formulated Benchmarks.” 2016. Web. 17 Oct 2019.

Vancouver:

Nielsen SS. Diversity Preserving Genetic Algorithms - Application to the Inverted Folding Problem and Analogous Formulated Benchmarks. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2016. [cited 2019 Oct 17]. Available from: http://orbilu.uni.lu/handle/10993/28226.

Council of Science Editors:

Nielsen SS. Diversity Preserving Genetic Algorithms - Application to the Inverted Folding Problem and Analogous Formulated Benchmarks. [Doctoral Dissertation]. Université du Luxembourg; 2016. Available from: http://orbilu.uni.lu/handle/10993/28226

.