Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Intersection Cohomology). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Loughborough University

1. Lukiyanov, Vladimir. Cohomology for multicontrolled stratified spaces.

Degree: PhD, 2016, Loughborough University

 In this thesis an extension of the classical intersection cohomology of Goresky and MacPherson, which we call multiperverse cohomology, is defined for a certain class… (more)

Subjects/Keywords: 514; Cohomology; Stratified; Controlled; Intersection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lukiyanov, V. (2016). Cohomology for multicontrolled stratified spaces. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/20707

Chicago Manual of Style (16th Edition):

Lukiyanov, Vladimir. “Cohomology for multicontrolled stratified spaces.” 2016. Doctoral Dissertation, Loughborough University. Accessed December 05, 2020. http://hdl.handle.net/2134/20707.

MLA Handbook (7th Edition):

Lukiyanov, Vladimir. “Cohomology for multicontrolled stratified spaces.” 2016. Web. 05 Dec 2020.

Vancouver:

Lukiyanov V. Cohomology for multicontrolled stratified spaces. [Internet] [Doctoral dissertation]. Loughborough University; 2016. [cited 2020 Dec 05]. Available from: http://hdl.handle.net/2134/20707.

Council of Science Editors:

Lukiyanov V. Cohomology for multicontrolled stratified spaces. [Doctoral Dissertation]. Loughborough University; 2016. Available from: http://hdl.handle.net/2134/20707

2. Penteado, Northon Canevari Leme. O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um.

Degree: Mestrado, Matemática, 2011, University of São Paulo

James W. Alexander, no artigo[1],mostra que se tivermos um mergulho PL f : \'S POT. 1́ \'S POT. 1 ́ \'S POT. 3\', então o… (more)

Subjects/Keywords: Cohomologia; Cohomology; Dualidades; Duality; Embedding of manifolds; Fundamental group; Grupo fundamental; h-cobordim; h-cobordismo; Homologia; Homology; Intersection number; Mergulho de variedades; Número interseção

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Penteado, N. C. L. (2011). O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22032011-090041/ ;

Chicago Manual of Style (16th Edition):

Penteado, Northon Canevari Leme. “O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um.” 2011. Masters Thesis, University of São Paulo. Accessed December 05, 2020. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22032011-090041/ ;.

MLA Handbook (7th Edition):

Penteado, Northon Canevari Leme. “O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um.” 2011. Web. 05 Dec 2020.

Vancouver:

Penteado NCL. O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um. [Internet] [Masters thesis]. University of São Paulo; 2011. [cited 2020 Dec 05]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22032011-090041/ ;.

Council of Science Editors:

Penteado NCL. O produto cartesiano de duas esferas mergulhado em uma esfera em codimensão um. [Masters Thesis]. University of São Paulo; 2011. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-22032011-090041/ ;

3. Koonz, Jennifer. Properties of Singular Schubert Varieties.

Degree: PhD, Mathematics, 2013, U of Massachusetts : PhD

  This thesis deals with the study of Schubert varieties, which are subsets of flag varieties indexed by elements of Weyl groups. We start by… (more)

Subjects/Keywords: Combinatorics; Hecke Algebra; Intersection Cohomology; Kazhdan-Lusztig Polynomials; Schubert Varieties; Mathematics

…bert variety of type A, and both also coincide with the intersection cohomology Poincar´ e… …of homology. In particular, this thesis will often deal with the intersection cohomology… …indexed by x and w. The Poincar´ e polynomial for the full intersection cohomology for Xw is… …x28;X) Since intersection cohomology satisfies Poincar´ e duality, the intersection… …Williamson and Braden on intersection cohomology complexes on flag varieties [33] (… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Koonz, J. (2013). Properties of Singular Schubert Varieties. (Doctoral Dissertation). U of Massachusetts : PhD. Retrieved from https://scholarworks.umass.edu/open_access_dissertations/839

Chicago Manual of Style (16th Edition):

Koonz, Jennifer. “Properties of Singular Schubert Varieties.” 2013. Doctoral Dissertation, U of Massachusetts : PhD. Accessed December 05, 2020. https://scholarworks.umass.edu/open_access_dissertations/839.

MLA Handbook (7th Edition):

Koonz, Jennifer. “Properties of Singular Schubert Varieties.” 2013. Web. 05 Dec 2020.

Vancouver:

Koonz J. Properties of Singular Schubert Varieties. [Internet] [Doctoral dissertation]. U of Massachusetts : PhD; 2013. [cited 2020 Dec 05]. Available from: https://scholarworks.umass.edu/open_access_dissertations/839.

Council of Science Editors:

Koonz J. Properties of Singular Schubert Varieties. [Doctoral Dissertation]. U of Massachusetts : PhD; 2013. Available from: https://scholarworks.umass.edu/open_access_dissertations/839


University of Vienna

4. Waldner, Christoph. Cycles and the cohomology of arithmetic subgroups of the exceptional group $G_2$ .

Degree: 2008, University of Vienna

Das Hauptaugenmerk meiner Dissertation ist die geometrische Konstruktion von (Ko-) Homologieklassen für arithmetische Untergruppen von halbeinfachen, über \Q definierten, \Q-anisotropen algebraischen Gruppen { G}. Ich… (more)

Subjects/Keywords: 31.61 Algebraische Topologie; 31.30 Topologische Gruppen, Liegruppen; arithmetische Gruppe / Kohomologie / Zykel / spezielle Zykel / Schnittzahl / Oktonionen / exzeptionelle Lie Gruppe / G_2 / Bettizahl; arithmetic group / Cohomology / cycle / special cycle / Intersection number / octonion algebra / exceptional Lie group / G_2 / Betti number

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Waldner, C. (2008). Cycles and the cohomology of arithmetic subgroups of the exceptional group $G_2$ . (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/2733/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Waldner, Christoph. “Cycles and the cohomology of arithmetic subgroups of the exceptional group $G_2$ .” 2008. Thesis, University of Vienna. Accessed December 05, 2020. http://othes.univie.ac.at/2733/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Waldner, Christoph. “Cycles and the cohomology of arithmetic subgroups of the exceptional group $G_2$ .” 2008. Web. 05 Dec 2020.

Vancouver:

Waldner C. Cycles and the cohomology of arithmetic subgroups of the exceptional group $G_2$ . [Internet] [Thesis]. University of Vienna; 2008. [cited 2020 Dec 05]. Available from: http://othes.univie.ac.at/2733/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Waldner C. Cycles and the cohomology of arithmetic subgroups of the exceptional group $G_2$ . [Thesis]. University of Vienna; 2008. Available from: http://othes.univie.ac.at/2733/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

5. Simčević, Tatjana. A Hardy Space Approach to Lagrangian Floer gluing.

Degree: 2014, ETH Zürich

Subjects/Keywords: INTERSECTION THEORY (ALGEBRAIC GEOMETRY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); MODULI SPACES (ALGEBRAIC GEOMETRY); HARDYRÄUME + HARDYKLASSEN (FUNKTIONALANALYSIS); HARDY SPACES + HARDY CLASSES (FUNCTIONAL ANALYSIS); MODULRÄUME (ALGEBRAISCHE GEOMETRIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Simčević, T. (2014). A Hardy Space Approach to Lagrangian Floer gluing. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/91495

Chicago Manual of Style (16th Edition):

Simčević, Tatjana. “A Hardy Space Approach to Lagrangian Floer gluing.” 2014. Doctoral Dissertation, ETH Zürich. Accessed December 05, 2020. http://hdl.handle.net/20.500.11850/91495.

MLA Handbook (7th Edition):

Simčević, Tatjana. “A Hardy Space Approach to Lagrangian Floer gluing.” 2014. Web. 05 Dec 2020.

Vancouver:

Simčević T. A Hardy Space Approach to Lagrangian Floer gluing. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2020 Dec 05]. Available from: http://hdl.handle.net/20.500.11850/91495.

Council of Science Editors:

Simčević T. A Hardy Space Approach to Lagrangian Floer gluing. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/91495

.