Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Integral equations). Showing records 1 – 30 of 329 total matches.

[1] [2] [3] [4] [5] … [11]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


Tartu University

1. Rehman, Sumaira. Fast and quasi-fast solvers for weakly singular Fredholm integral equations of the second kind .

Degree: 2020, Tartu University

 Doktoritöös käsitletakse lineaarsete Fredholmi teist liiki integraalvõrrandite ligikaudse lahendamisega seotud probleeme situatsioonis, kus võrrandi tuum võib argumentide kokkulangemise korral olla iseärane (nõrgalt singulaarne). Tuuma iseärasus… (more)

Subjects/Keywords: integral equations; integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rehman, S. (2020). Fast and quasi-fast solvers for weakly singular Fredholm integral equations of the second kind . (Thesis). Tartu University. Retrieved from http://hdl.handle.net/10062/68426

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Rehman, Sumaira. “Fast and quasi-fast solvers for weakly singular Fredholm integral equations of the second kind .” 2020. Thesis, Tartu University. Accessed November 29, 2020. http://hdl.handle.net/10062/68426.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Rehman, Sumaira. “Fast and quasi-fast solvers for weakly singular Fredholm integral equations of the second kind .” 2020. Web. 29 Nov 2020.

Vancouver:

Rehman S. Fast and quasi-fast solvers for weakly singular Fredholm integral equations of the second kind . [Internet] [Thesis]. Tartu University; 2020. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10062/68426.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Rehman S. Fast and quasi-fast solvers for weakly singular Fredholm integral equations of the second kind . [Thesis]. Tartu University; 2020. Available from: http://hdl.handle.net/10062/68426

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Tartu University

2. Vikerpuur, Mikk. Numerical solution of fractional differential equations .

Degree: 2020, Tartu University

 Murrulised tuletised (s.t. tuletised, mille järk ei ole täisarv) on pakkunud huvi juba alates ajast, millal I. Newton ja G. W. Leibniz rajasid matemaatilise analüüsi… (more)

Subjects/Keywords: splines; differential equations; integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vikerpuur, M. (2020). Numerical solution of fractional differential equations . (Thesis). Tartu University. Retrieved from http://hdl.handle.net/10062/66907

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vikerpuur, Mikk. “Numerical solution of fractional differential equations .” 2020. Thesis, Tartu University. Accessed November 29, 2020. http://hdl.handle.net/10062/66907.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vikerpuur, Mikk. “Numerical solution of fractional differential equations .” 2020. Web. 29 Nov 2020.

Vancouver:

Vikerpuur M. Numerical solution of fractional differential equations . [Internet] [Thesis]. Tartu University; 2020. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10062/66907.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vikerpuur M. Numerical solution of fractional differential equations . [Thesis]. Tartu University; 2020. Available from: http://hdl.handle.net/10062/66907

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Oregon State University

3. Mirkovich, Christina Josephine. Applications of collectively compact operator theory to the existence of eigenvalues of integral equations.

Degree: MS, Mathematics, 1973, Oregon State University

The existence of eigenvalues is shown for certain types of integral equations with continuous kernels, the proofs utilizing some basic results of collectively compact operator approximation theory. Advisors/Committee Members: Lee, John W. (advisor).

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mirkovich, C. J. (1973). Applications of collectively compact operator theory to the existence of eigenvalues of integral equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/46130

Chicago Manual of Style (16th Edition):

Mirkovich, Christina Josephine. “Applications of collectively compact operator theory to the existence of eigenvalues of integral equations.” 1973. Masters Thesis, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/46130.

MLA Handbook (7th Edition):

Mirkovich, Christina Josephine. “Applications of collectively compact operator theory to the existence of eigenvalues of integral equations.” 1973. Web. 29 Nov 2020.

Vancouver:

Mirkovich CJ. Applications of collectively compact operator theory to the existence of eigenvalues of integral equations. [Internet] [Masters thesis]. Oregon State University; 1973. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/46130.

Council of Science Editors:

Mirkovich CJ. Applications of collectively compact operator theory to the existence of eigenvalues of integral equations. [Masters Thesis]. Oregon State University; 1973. Available from: http://hdl.handle.net/1957/46130


Oregon State University

4. Rall, Louis B. Error bounds for iterative solutions of Fredholm integral equations.

Degree: MS, Mathematics, 1954, Oregon State University

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rall, L. B. (1954). Error bounds for iterative solutions of Fredholm integral equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/51736

Chicago Manual of Style (16th Edition):

Rall, Louis B. “Error bounds for iterative solutions of Fredholm integral equations.” 1954. Masters Thesis, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/51736.

MLA Handbook (7th Edition):

Rall, Louis B. “Error bounds for iterative solutions of Fredholm integral equations.” 1954. Web. 29 Nov 2020.

Vancouver:

Rall LB. Error bounds for iterative solutions of Fredholm integral equations. [Internet] [Masters thesis]. Oregon State University; 1954. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/51736.

Council of Science Editors:

Rall LB. Error bounds for iterative solutions of Fredholm integral equations. [Masters Thesis]. Oregon State University; 1954. Available from: http://hdl.handle.net/1957/51736


Oregon State University

5. Glahn, Thomas Leroy. An error bound for an iterative method of solving Fredholm integral equations.

Degree: MS, Mathematics, 1953, Oregon State University

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Glahn, T. L. (1953). An error bound for an iterative method of solving Fredholm integral equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/52102

Chicago Manual of Style (16th Edition):

Glahn, Thomas Leroy. “An error bound for an iterative method of solving Fredholm integral equations.” 1953. Masters Thesis, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/52102.

MLA Handbook (7th Edition):

Glahn, Thomas Leroy. “An error bound for an iterative method of solving Fredholm integral equations.” 1953. Web. 29 Nov 2020.

Vancouver:

Glahn TL. An error bound for an iterative method of solving Fredholm integral equations. [Internet] [Masters thesis]. Oregon State University; 1953. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/52102.

Council of Science Editors:

Glahn TL. An error bound for an iterative method of solving Fredholm integral equations. [Masters Thesis]. Oregon State University; 1953. Available from: http://hdl.handle.net/1957/52102


University of Tasmania

6. Dow, Murray Leslie,1949-. Singular equal equations.

Degree: 1977, University of Tasmania

 The classical analytic solution of the dominant singular integral equation ... is found by transforming the equation into a Riemann boundary problem. (The above integral(more)

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dow, M. L. (1977). Singular equal equations. (Thesis). University of Tasmania. Retrieved from https://eprints.utas.edu.au/19430/1/whole_DowMurrayLeslie1977_thesis.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Dow, Murray Leslie,1949-. “Singular equal equations.” 1977. Thesis, University of Tasmania. Accessed November 29, 2020. https://eprints.utas.edu.au/19430/1/whole_DowMurrayLeslie1977_thesis.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Dow, Murray Leslie,1949-. “Singular equal equations.” 1977. Web. 29 Nov 2020.

Vancouver:

Dow ML. Singular equal equations. [Internet] [Thesis]. University of Tasmania; 1977. [cited 2020 Nov 29]. Available from: https://eprints.utas.edu.au/19430/1/whole_DowMurrayLeslie1977_thesis.pdf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Dow ML. Singular equal equations. [Thesis]. University of Tasmania; 1977. Available from: https://eprints.utas.edu.au/19430/1/whole_DowMurrayLeslie1977_thesis.pdf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Oregon State University

7. Jacoby, Jerome Jess. Numerical integration of linear integral equations with weakly discontinuous kernels.

Degree: MS, Mathematics, 1968, Oregon State University

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jacoby, J. J. (1968). Numerical integration of linear integral equations with weakly discontinuous kernels. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/47344

Chicago Manual of Style (16th Edition):

Jacoby, Jerome Jess. “Numerical integration of linear integral equations with weakly discontinuous kernels.” 1968. Masters Thesis, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/47344.

MLA Handbook (7th Edition):

Jacoby, Jerome Jess. “Numerical integration of linear integral equations with weakly discontinuous kernels.” 1968. Web. 29 Nov 2020.

Vancouver:

Jacoby JJ. Numerical integration of linear integral equations with weakly discontinuous kernels. [Internet] [Masters thesis]. Oregon State University; 1968. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/47344.

Council of Science Editors:

Jacoby JJ. Numerical integration of linear integral equations with weakly discontinuous kernels. [Masters Thesis]. Oregon State University; 1968. Available from: http://hdl.handle.net/1957/47344


Oregon State University

8. Aalto, Sergei Kalvin. Reduction of Fredholm integral equations with Green's function kernels to Volterra equations.

Degree: MA, Mathematics, 1966, Oregon State University

 G. F. Drukarev has given a method for solving the Fredholm equations which arise in the study of collisions between electrons and atoms. He transforms… (more)

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Aalto, S. K. (1966). Reduction of Fredholm integral equations with Green's function kernels to Volterra equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/47865

Chicago Manual of Style (16th Edition):

Aalto, Sergei Kalvin. “Reduction of Fredholm integral equations with Green's function kernels to Volterra equations.” 1966. Masters Thesis, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/47865.

MLA Handbook (7th Edition):

Aalto, Sergei Kalvin. “Reduction of Fredholm integral equations with Green's function kernels to Volterra equations.” 1966. Web. 29 Nov 2020.

Vancouver:

Aalto SK. Reduction of Fredholm integral equations with Green's function kernels to Volterra equations. [Internet] [Masters thesis]. Oregon State University; 1966. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/47865.

Council of Science Editors:

Aalto SK. Reduction of Fredholm integral equations with Green's function kernels to Volterra equations. [Masters Thesis]. Oregon State University; 1966. Available from: http://hdl.handle.net/1957/47865


Oregon State University

9. James, Ralph Leland. The solution of singular volterra integral equations by successive approximations.

Degree: MS, Mathematics, 1965, Oregon State University

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

James, R. L. (1965). The solution of singular volterra integral equations by successive approximations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/48582

Chicago Manual of Style (16th Edition):

James, Ralph Leland. “The solution of singular volterra integral equations by successive approximations.” 1965. Masters Thesis, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/48582.

MLA Handbook (7th Edition):

James, Ralph Leland. “The solution of singular volterra integral equations by successive approximations.” 1965. Web. 29 Nov 2020.

Vancouver:

James RL. The solution of singular volterra integral equations by successive approximations. [Internet] [Masters thesis]. Oregon State University; 1965. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/48582.

Council of Science Editors:

James RL. The solution of singular volterra integral equations by successive approximations. [Masters Thesis]. Oregon State University; 1965. Available from: http://hdl.handle.net/1957/48582


Oregon State University

10. Weingarten, Fred Wesley. On an integral equation occuring in the theory of wave propagation.

Degree: MS, Mathematics, 1964, Oregon State University

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Weingarten, F. W. (1964). On an integral equation occuring in the theory of wave propagation. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/48922

Chicago Manual of Style (16th Edition):

Weingarten, Fred Wesley. “On an integral equation occuring in the theory of wave propagation.” 1964. Masters Thesis, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/48922.

MLA Handbook (7th Edition):

Weingarten, Fred Wesley. “On an integral equation occuring in the theory of wave propagation.” 1964. Web. 29 Nov 2020.

Vancouver:

Weingarten FW. On an integral equation occuring in the theory of wave propagation. [Internet] [Masters thesis]. Oregon State University; 1964. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/48922.

Council of Science Editors:

Weingarten FW. On an integral equation occuring in the theory of wave propagation. [Masters Thesis]. Oregon State University; 1964. Available from: http://hdl.handle.net/1957/48922


Oregon State University

11. Johnson, Ben Clarence. Integral equations involving special functions.

Degree: PhD, Mathematics, 1963, Oregon State University

See pdf

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Johnson, B. C. (1963). Integral equations involving special functions. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17199

Chicago Manual of Style (16th Edition):

Johnson, Ben Clarence. “Integral equations involving special functions.” 1963. Doctoral Dissertation, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/17199.

MLA Handbook (7th Edition):

Johnson, Ben Clarence. “Integral equations involving special functions.” 1963. Web. 29 Nov 2020.

Vancouver:

Johnson BC. Integral equations involving special functions. [Internet] [Doctoral dissertation]. Oregon State University; 1963. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/17199.

Council of Science Editors:

Johnson BC. Integral equations involving special functions. [Doctoral Dissertation]. Oregon State University; 1963. Available from: http://hdl.handle.net/1957/17199


Oregon State University

12. Wirshup, Arthur D. Application of the Puiseux polygon to the solution of nonlinear integral equations.

Degree: PhD, Mathematics, 1963, Oregon State University

See pdf Advisors/Committee Members: Lonseth, A. T. (advisor).

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wirshup, A. D. (1963). Application of the Puiseux polygon to the solution of nonlinear integral equations. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17399

Chicago Manual of Style (16th Edition):

Wirshup, Arthur D. “Application of the Puiseux polygon to the solution of nonlinear integral equations.” 1963. Doctoral Dissertation, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/17399.

MLA Handbook (7th Edition):

Wirshup, Arthur D. “Application of the Puiseux polygon to the solution of nonlinear integral equations.” 1963. Web. 29 Nov 2020.

Vancouver:

Wirshup AD. Application of the Puiseux polygon to the solution of nonlinear integral equations. [Internet] [Doctoral dissertation]. Oregon State University; 1963. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/17399.

Council of Science Editors:

Wirshup AD. Application of the Puiseux polygon to the solution of nonlinear integral equations. [Doctoral Dissertation]. Oregon State University; 1963. Available from: http://hdl.handle.net/1957/17399


Oregon State University

13. McFarland, James Edward. Iterative solution of nonlinear integral equations.

Degree: PhD, Mathematics, 1960, Oregon State University

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McFarland, J. E. (1960). Iterative solution of nonlinear integral equations. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17416

Chicago Manual of Style (16th Edition):

McFarland, James Edward. “Iterative solution of nonlinear integral equations.” 1960. Doctoral Dissertation, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/17416.

MLA Handbook (7th Edition):

McFarland, James Edward. “Iterative solution of nonlinear integral equations.” 1960. Web. 29 Nov 2020.

Vancouver:

McFarland JE. Iterative solution of nonlinear integral equations. [Internet] [Doctoral dissertation]. Oregon State University; 1960. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/17416.

Council of Science Editors:

McFarland JE. Iterative solution of nonlinear integral equations. [Doctoral Dissertation]. Oregon State University; 1960. Available from: http://hdl.handle.net/1957/17416


Oregon State University

14. Nestell, Merlynd K. The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer.

Degree: PhD, Mathematics, 1965, Oregon State University

See pdf Advisors/Committee Members: Anselone, P. M. (advisor).

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nestell, M. K. (1965). The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17412

Chicago Manual of Style (16th Edition):

Nestell, Merlynd K. “The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer.” 1965. Doctoral Dissertation, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/17412.

MLA Handbook (7th Edition):

Nestell, Merlynd K. “The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer.” 1965. Web. 29 Nov 2020.

Vancouver:

Nestell MK. The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer. [Internet] [Doctoral dissertation]. Oregon State University; 1965. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/17412.

Council of Science Editors:

Nestell MK. The convergence of the discrete ordinates method for integral equations of anisotropic radiative transfer. [Doctoral Dissertation]. Oregon State University; 1965. Available from: http://hdl.handle.net/1957/17412


Oregon State University

15. Fredrickson, Elvy Lennea. Application of the Schmidt theory to nonlinear integral equations.

Degree: PhD, Mathematics, 1954, Oregon State University

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fredrickson, E. L. (1954). Application of the Schmidt theory to nonlinear integral equations. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17535

Chicago Manual of Style (16th Edition):

Fredrickson, Elvy Lennea. “Application of the Schmidt theory to nonlinear integral equations.” 1954. Doctoral Dissertation, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/17535.

MLA Handbook (7th Edition):

Fredrickson, Elvy Lennea. “Application of the Schmidt theory to nonlinear integral equations.” 1954. Web. 29 Nov 2020.

Vancouver:

Fredrickson EL. Application of the Schmidt theory to nonlinear integral equations. [Internet] [Doctoral dissertation]. Oregon State University; 1954. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/17535.

Council of Science Editors:

Fredrickson EL. Application of the Schmidt theory to nonlinear integral equations. [Doctoral Dissertation]. Oregon State University; 1954. Available from: http://hdl.handle.net/1957/17535


Oregon State University

16. Thompson, Gene Thomas. On Bateman's method for solving linear integral equations.

Degree: PhD, Mathematics, 1955, Oregon State University

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thompson, G. T. (1955). On Bateman's method for solving linear integral equations. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17538

Chicago Manual of Style (16th Edition):

Thompson, Gene Thomas. “On Bateman's method for solving linear integral equations.” 1955. Doctoral Dissertation, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/17538.

MLA Handbook (7th Edition):

Thompson, Gene Thomas. “On Bateman's method for solving linear integral equations.” 1955. Web. 29 Nov 2020.

Vancouver:

Thompson GT. On Bateman's method for solving linear integral equations. [Internet] [Doctoral dissertation]. Oregon State University; 1955. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/17538.

Council of Science Editors:

Thompson GT. On Bateman's method for solving linear integral equations. [Doctoral Dissertation]. Oregon State University; 1955. Available from: http://hdl.handle.net/1957/17538

17. Kaluwa, Matthew Haantumbula. Integral equations : A survey of past and current developments.

Degree: 2012, University of Zimbabwe

Subjects/Keywords: Integral equations.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kaluwa, M. H. (2012). Integral equations : A survey of past and current developments. (Thesis). University of Zimbabwe. Retrieved from http://dspace.unza.zm/handle/123456789/1309

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kaluwa, Matthew Haantumbula. “Integral equations : A survey of past and current developments.” 2012. Thesis, University of Zimbabwe. Accessed November 29, 2020. http://dspace.unza.zm/handle/123456789/1309.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kaluwa, Matthew Haantumbula. “Integral equations : A survey of past and current developments.” 2012. Web. 29 Nov 2020.

Vancouver:

Kaluwa MH. Integral equations : A survey of past and current developments. [Internet] [Thesis]. University of Zimbabwe; 2012. [cited 2020 Nov 29]. Available from: http://dspace.unza.zm/handle/123456789/1309.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kaluwa MH. Integral equations : A survey of past and current developments. [Thesis]. University of Zimbabwe; 2012. Available from: http://dspace.unza.zm/handle/123456789/1309

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

18. Patel, Utkarsh. Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems.

Degree: PhD, 2019, University of Toronto

 Despite vast advancements in computational hardware capabilities, full-wave electromagnetic simulations of many multiscale problems continue to be a daunting task. Multiscale problems are encountered, for… (more)

Subjects/Keywords: Integral equations; Surface Methods; 0607

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Patel, U. (2019). Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/97581

Chicago Manual of Style (16th Edition):

Patel, Utkarsh. “Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems.” 2019. Doctoral Dissertation, University of Toronto. Accessed November 29, 2020. http://hdl.handle.net/1807/97581.

MLA Handbook (7th Edition):

Patel, Utkarsh. “Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems.” 2019. Web. 29 Nov 2020.

Vancouver:

Patel U. Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems. [Internet] [Doctoral dissertation]. University of Toronto; 2019. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1807/97581.

Council of Science Editors:

Patel U. Reduced-order Integral Equation Methods to Solve Complex Electromagnetic Problems. [Doctoral Dissertation]. University of Toronto; 2019. Available from: http://hdl.handle.net/1807/97581


University of Minnesota

19. Bu, Fanbin. Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography.

Degree: PhD, Mathematics, 2011, University of Minnesota

 This thesis work originated from a collaborative project with J. Greenleaf and M. Fatemi at the Ultrasound Research Laboratory at the Mayo Clinic. The main… (more)

Subjects/Keywords: Integral equations; Viscoelastic; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bu, F. (2011). Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/117262

Chicago Manual of Style (16th Edition):

Bu, Fanbin. “Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography.” 2011. Doctoral Dissertation, University of Minnesota. Accessed November 29, 2020. http://purl.umn.edu/117262.

MLA Handbook (7th Edition):

Bu, Fanbin. “Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography.” 2011. Web. 29 Nov 2020.

Vancouver:

Bu F. Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography. [Internet] [Doctoral dissertation]. University of Minnesota; 2011. [cited 2020 Nov 29]. Available from: http://purl.umn.edu/117262.

Council of Science Editors:

Bu F. Integral equation methods for the simulation of viscoelastic ultrasound vibro-acoustography. [Doctoral Dissertation]. University of Minnesota; 2011. Available from: http://purl.umn.edu/117262


Georgia Tech

20. Lovelady, David Lowell. The behavior of solutions of Stieltjes integral equations.

Degree: PhD, Mathematics, 1971, Georgia Tech

Subjects/Keywords: Integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lovelady, D. L. (1971). The behavior of solutions of Stieltjes integral equations. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/28559

Chicago Manual of Style (16th Edition):

Lovelady, David Lowell. “The behavior of solutions of Stieltjes integral equations.” 1971. Doctoral Dissertation, Georgia Tech. Accessed November 29, 2020. http://hdl.handle.net/1853/28559.

MLA Handbook (7th Edition):

Lovelady, David Lowell. “The behavior of solutions of Stieltjes integral equations.” 1971. Web. 29 Nov 2020.

Vancouver:

Lovelady DL. The behavior of solutions of Stieltjes integral equations. [Internet] [Doctoral dissertation]. Georgia Tech; 1971. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1853/28559.

Council of Science Editors:

Lovelady DL. The behavior of solutions of Stieltjes integral equations. [Doctoral Dissertation]. Georgia Tech; 1971. Available from: http://hdl.handle.net/1853/28559


Oregon State University

21. Scarborough, Stephen D. A moment rate characterization for stochastic integrals.

Degree: PhD, Mathematics, 1982, Oregon State University

See pdf. Advisors/Committee Members: Carter, David S. (advisor).

Subjects/Keywords: Stochastic integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scarborough, S. D. (1982). A moment rate characterization for stochastic integrals. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17502

Chicago Manual of Style (16th Edition):

Scarborough, Stephen D. “A moment rate characterization for stochastic integrals.” 1982. Doctoral Dissertation, Oregon State University. Accessed November 29, 2020. http://hdl.handle.net/1957/17502.

MLA Handbook (7th Edition):

Scarborough, Stephen D. “A moment rate characterization for stochastic integrals.” 1982. Web. 29 Nov 2020.

Vancouver:

Scarborough SD. A moment rate characterization for stochastic integrals. [Internet] [Doctoral dissertation]. Oregon State University; 1982. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/1957/17502.

Council of Science Editors:

Scarborough SD. A moment rate characterization for stochastic integrals. [Doctoral Dissertation]. Oregon State University; 1982. Available from: http://hdl.handle.net/1957/17502


Iowa State University

22. Langenhop, Carl Eric. Properties of kernels of integral equations whose iterates satisfy linear relations.

Degree: 1948, Iowa State University

 The principle result obtained in this thesis is the theorem that if the iterated kernels of an integral equation satisfy a linear relation a1K1x,y +a2K2x,y… (more)

Subjects/Keywords: Integral equations; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Langenhop, C. E. (1948). Properties of kernels of integral equations whose iterates satisfy linear relations. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/rtd/12897

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Langenhop, Carl Eric. “Properties of kernels of integral equations whose iterates satisfy linear relations.” 1948. Thesis, Iowa State University. Accessed November 29, 2020. https://lib.dr.iastate.edu/rtd/12897.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Langenhop, Carl Eric. “Properties of kernels of integral equations whose iterates satisfy linear relations.” 1948. Web. 29 Nov 2020.

Vancouver:

Langenhop CE. Properties of kernels of integral equations whose iterates satisfy linear relations. [Internet] [Thesis]. Iowa State University; 1948. [cited 2020 Nov 29]. Available from: https://lib.dr.iastate.edu/rtd/12897.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Langenhop CE. Properties of kernels of integral equations whose iterates satisfy linear relations. [Thesis]. Iowa State University; 1948. Available from: https://lib.dr.iastate.edu/rtd/12897

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

23. Wang, Haiyan. Existence and multiplicity of positive solutions of nonlinear integral and differential equations.

Degree: PhD, Department of Mathematics, 1997, Michigan State University

Subjects/Keywords: Nonlinear integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, H. (1997). Existence and multiplicity of positive solutions of nonlinear integral and differential equations. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:26264

Chicago Manual of Style (16th Edition):

Wang, Haiyan. “Existence and multiplicity of positive solutions of nonlinear integral and differential equations.” 1997. Doctoral Dissertation, Michigan State University. Accessed November 29, 2020. http://etd.lib.msu.edu/islandora/object/etd:26264.

MLA Handbook (7th Edition):

Wang, Haiyan. “Existence and multiplicity of positive solutions of nonlinear integral and differential equations.” 1997. Web. 29 Nov 2020.

Vancouver:

Wang H. Existence and multiplicity of positive solutions of nonlinear integral and differential equations. [Internet] [Doctoral dissertation]. Michigan State University; 1997. [cited 2020 Nov 29]. Available from: http://etd.lib.msu.edu/islandora/object/etd:26264.

Council of Science Editors:

Wang H. Existence and multiplicity of positive solutions of nonlinear integral and differential equations. [Doctoral Dissertation]. Michigan State University; 1997. Available from: http://etd.lib.msu.edu/islandora/object/etd:26264


University of Minnesota

24. Ortan, Alexandra. Efficient numerical algorithms for virtual design in nanoplasmonics.

Degree: PhD, Mathematics, 2017, University of Minnesota

 Nanomaterials have given rise to many devices, from high-density data storage to optical bio-sensors capable of detecting specific biochemicals. The design of new nanodevices relies… (more)

Subjects/Keywords: Integral Equations; Nanoplasmonics; Numerical Methods; Optimization

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ortan, A. (2017). Efficient numerical algorithms for virtual design in nanoplasmonics. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/188915

Chicago Manual of Style (16th Edition):

Ortan, Alexandra. “Efficient numerical algorithms for virtual design in nanoplasmonics.” 2017. Doctoral Dissertation, University of Minnesota. Accessed November 29, 2020. http://hdl.handle.net/11299/188915.

MLA Handbook (7th Edition):

Ortan, Alexandra. “Efficient numerical algorithms for virtual design in nanoplasmonics.” 2017. Web. 29 Nov 2020.

Vancouver:

Ortan A. Efficient numerical algorithms for virtual design in nanoplasmonics. [Internet] [Doctoral dissertation]. University of Minnesota; 2017. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/11299/188915.

Council of Science Editors:

Ortan A. Efficient numerical algorithms for virtual design in nanoplasmonics. [Doctoral Dissertation]. University of Minnesota; 2017. Available from: http://hdl.handle.net/11299/188915

25. Thomas, Sophy Margaret. Numerical analysis of some integral equations with singularities.

Degree: PhD, 2006, University of Chester

 In this thesis we consider new approaches to the numerical solution of a class of Volterra integral equations, which contain a kernel with singularity of… (more)

Subjects/Keywords: 518.66; integral equations : Volterra integral equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thomas, S. M. (2006). Numerical analysis of some integral equations with singularities. (Doctoral Dissertation). University of Chester. Retrieved from http://hdl.handle.net/10034/70394

Chicago Manual of Style (16th Edition):

Thomas, Sophy Margaret. “Numerical analysis of some integral equations with singularities.” 2006. Doctoral Dissertation, University of Chester. Accessed November 29, 2020. http://hdl.handle.net/10034/70394.

MLA Handbook (7th Edition):

Thomas, Sophy Margaret. “Numerical analysis of some integral equations with singularities.” 2006. Web. 29 Nov 2020.

Vancouver:

Thomas SM. Numerical analysis of some integral equations with singularities. [Internet] [Doctoral dissertation]. University of Chester; 2006. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10034/70394.

Council of Science Editors:

Thomas SM. Numerical analysis of some integral equations with singularities. [Doctoral Dissertation]. University of Chester; 2006. Available from: http://hdl.handle.net/10034/70394

26. Sreenivas, P C. On special functions, integral transforms and integral equations.

Degree: 2008, Kannur University

Appendix p. 238-240 Advisors/Committee Members: Nambisan, T M Vasudevan.

Subjects/Keywords: Mathematics; Integral equations; Integral transforms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sreenivas, P. C. (2008). On special functions, integral transforms and integral equations. (Thesis). Kannur University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/2578

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sreenivas, P C. “On special functions, integral transforms and integral equations.” 2008. Thesis, Kannur University. Accessed November 29, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/2578.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sreenivas, P C. “On special functions, integral transforms and integral equations.” 2008. Web. 29 Nov 2020.

Vancouver:

Sreenivas PC. On special functions, integral transforms and integral equations. [Internet] [Thesis]. Kannur University; 2008. [cited 2020 Nov 29]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/2578.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sreenivas PC. On special functions, integral transforms and integral equations. [Thesis]. Kannur University; 2008. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/2578

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

27. Vidhya, N. Special functions and integral transforms.

Degree: 2008, Kannur University

References p. 259, Appendix p.260-262 Advisors/Committee Members: Nambisan, T M Vasudevan.

Subjects/Keywords: Integral Transforms; Mathematics; Integral Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vidhya, N. (2008). Special functions and integral transforms. (Thesis). Kannur University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/2586

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vidhya, N. “Special functions and integral transforms.” 2008. Thesis, Kannur University. Accessed November 29, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/2586.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vidhya, N. “Special functions and integral transforms.” 2008. Web. 29 Nov 2020.

Vancouver:

Vidhya N. Special functions and integral transforms. [Internet] [Thesis]. Kannur University; 2008. [cited 2020 Nov 29]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/2586.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vidhya N. Special functions and integral transforms. [Thesis]. Kannur University; 2008. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/2586

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

28. Ortiz guzman, John Erick. Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques.

Degree: Docteur es, Génie électrique, 2017, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire

Cette thèse présente plusieurs nouvelles techniques pour la convergence rapide des solutions aux éléments de frontière de problèmes électromagnétiques. Une attention spéciale a été dédiée… (more)

Subjects/Keywords: Equations intégrales; Électroencéphalographie; Électromagnétisme numérique; Integral equations; Electroencephalography; Computational electromagnetics; 004

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ortiz guzman, J. E. (2017). Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques. (Doctoral Dissertation). Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire. Retrieved from http://www.theses.fr/2017IMTA0051

Chicago Manual of Style (16th Edition):

Ortiz guzman, John Erick. “Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques.” 2017. Doctoral Dissertation, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire. Accessed November 29, 2020. http://www.theses.fr/2017IMTA0051.

MLA Handbook (7th Edition):

Ortiz guzman, John Erick. “Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques.” 2017. Web. 29 Nov 2020.

Vancouver:

Ortiz guzman JE. Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques. [Internet] [Doctoral dissertation]. Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire; 2017. [cited 2020 Nov 29]. Available from: http://www.theses.fr/2017IMTA0051.

Council of Science Editors:

Ortiz guzman JE. Fast boundary element formulations for electromagnetic modelling in biological tissues : Formulations rapides aux éléments de frontière pour la modélisation électromagnétique dans les tissus biologiques. [Doctoral Dissertation]. Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire; 2017. Available from: http://www.theses.fr/2017IMTA0051


University of Johannesburg

29. Mamba, Hlukaphi Sithando. Numerical solutions for a class of nonlinear volterra integral equation.

Degree: 2015, University of Johannesburg

M.Sc. (Applied Mathematics)

Numerous studies on linear and nonlinear Volterra integral equations (VIEs), have been performed. These studies mainly considered the existence and uniqueness of… (more)

Subjects/Keywords: Volterra equations; Integral equations; Numerical analysis; Mathematical analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mamba, H. S. (2015). Numerical solutions for a class of nonlinear volterra integral equation. (Thesis). University of Johannesburg. Retrieved from http://hdl.handle.net/10210/15077

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mamba, Hlukaphi Sithando. “Numerical solutions for a class of nonlinear volterra integral equation.” 2015. Thesis, University of Johannesburg. Accessed November 29, 2020. http://hdl.handle.net/10210/15077.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mamba, Hlukaphi Sithando. “Numerical solutions for a class of nonlinear volterra integral equation.” 2015. Web. 29 Nov 2020.

Vancouver:

Mamba HS. Numerical solutions for a class of nonlinear volterra integral equation. [Internet] [Thesis]. University of Johannesburg; 2015. [cited 2020 Nov 29]. Available from: http://hdl.handle.net/10210/15077.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mamba HS. Numerical solutions for a class of nonlinear volterra integral equation. [Thesis]. University of Johannesburg; 2015. Available from: http://hdl.handle.net/10210/15077

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Colorado

30. Ma, Chao. Qualitative and quantitative analysis of nonlinear integral and differential equations.

Degree: PhD, Mathematics, 2013, University of Colorado

  This thesis consists of two parts: in part one (Chapter 3, 4, 5), we study the qualitative and quantitative properties of the positive solutions… (more)

Subjects/Keywords: integral equations; partial differential equations; qualitative analysis; quantitative analysis; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ma, C. (2013). Qualitative and quantitative analysis of nonlinear integral and differential equations. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/21

Chicago Manual of Style (16th Edition):

Ma, Chao. “Qualitative and quantitative analysis of nonlinear integral and differential equations.” 2013. Doctoral Dissertation, University of Colorado. Accessed November 29, 2020. https://scholar.colorado.edu/math_gradetds/21.

MLA Handbook (7th Edition):

Ma, Chao. “Qualitative and quantitative analysis of nonlinear integral and differential equations.” 2013. Web. 29 Nov 2020.

Vancouver:

Ma C. Qualitative and quantitative analysis of nonlinear integral and differential equations. [Internet] [Doctoral dissertation]. University of Colorado; 2013. [cited 2020 Nov 29]. Available from: https://scholar.colorado.edu/math_gradetds/21.

Council of Science Editors:

Ma C. Qualitative and quantitative analysis of nonlinear integral and differential equations. [Doctoral Dissertation]. University of Colorado; 2013. Available from: https://scholar.colorado.edu/math_gradetds/21

[1] [2] [3] [4] [5] … [11]

.