Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Integrable systems). Showing records 1 – 30 of 61 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

Degrees

Country

▼ Search Limiters


University of Sydney

1. Gregory, James Philip. A q-discrete Analogue of the Third Painlevé Equation and its Linear Problem .

Degree: 2016, University of Sydney

 In this thesis we investigate the rational and Riccati type special solutions for particular parameter values of a q-discrete analogue of the third Painlevé equation,… (more)

Subjects/Keywords: Painleve; Integrable Systems; Special Solutions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gregory, J. P. (2016). A q-discrete Analogue of the Third Painlevé Equation and its Linear Problem . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/15470

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gregory, James Philip. “A q-discrete Analogue of the Third Painlevé Equation and its Linear Problem .” 2016. Thesis, University of Sydney. Accessed September 20, 2020. http://hdl.handle.net/2123/15470.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gregory, James Philip. “A q-discrete Analogue of the Third Painlevé Equation and its Linear Problem .” 2016. Web. 20 Sep 2020.

Vancouver:

Gregory JP. A q-discrete Analogue of the Third Painlevé Equation and its Linear Problem . [Internet] [Thesis]. University of Sydney; 2016. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2123/15470.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gregory JP. A q-discrete Analogue of the Third Painlevé Equation and its Linear Problem . [Thesis]. University of Sydney; 2016. Available from: http://hdl.handle.net/2123/15470

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

2. Vichitkunakorn, Panupong. Cluster algebras and discrete integrable systems.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 This dissertation presents connections between cluster algebras and discrete integrable systems, especially T-systems and their specializations/generalizations. We give connections between the T-system or the octahedron… (more)

Subjects/Keywords: Cluster algebras; Discrete integrable systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vichitkunakorn, P. (2017). Cluster algebras and discrete integrable systems. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/97314

Chicago Manual of Style (16th Edition):

Vichitkunakorn, Panupong. “Cluster algebras and discrete integrable systems.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 20, 2020. http://hdl.handle.net/2142/97314.

MLA Handbook (7th Edition):

Vichitkunakorn, Panupong. “Cluster algebras and discrete integrable systems.” 2017. Web. 20 Sep 2020.

Vancouver:

Vichitkunakorn P. Cluster algebras and discrete integrable systems. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2142/97314.

Council of Science Editors:

Vichitkunakorn P. Cluster algebras and discrete integrable systems. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/97314


University of Melbourne

3. TSARENKO, MARIA. A solvable lattice model: the square-triangle-rhombus random tiling.

Degree: 2013, University of Melbourne

 The aim of this thesis is the study of a new model in statistical mechanics, which belongs to a class of \emph{exactly solvable lattice models}.… (more)

Subjects/Keywords: solvable lattice models; integrable systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

TSARENKO, M. (2013). A solvable lattice model: the square-triangle-rhombus random tiling. (Masters Thesis). University of Melbourne. Retrieved from http://hdl.handle.net/11343/37981

Chicago Manual of Style (16th Edition):

TSARENKO, MARIA. “A solvable lattice model: the square-triangle-rhombus random tiling.” 2013. Masters Thesis, University of Melbourne. Accessed September 20, 2020. http://hdl.handle.net/11343/37981.

MLA Handbook (7th Edition):

TSARENKO, MARIA. “A solvable lattice model: the square-triangle-rhombus random tiling.” 2013. Web. 20 Sep 2020.

Vancouver:

TSARENKO M. A solvable lattice model: the square-triangle-rhombus random tiling. [Internet] [Masters thesis]. University of Melbourne; 2013. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/11343/37981.

Council of Science Editors:

TSARENKO M. A solvable lattice model: the square-triangle-rhombus random tiling. [Masters Thesis]. University of Melbourne; 2013. Available from: http://hdl.handle.net/11343/37981


University of Melbourne

4. FINN, CALEY. One-dimensional stochastic models with open boundaries: integrability, applications, and q-deformed Knizhnik–Zamolodchikov equations.

Degree: 2014, University of Melbourne

 This thesis contains work on three separate topics, but with common themes running throughout. These themes are drawn together in the asymmetric exclusion process (ASEP)… (more)

Subjects/Keywords: statistical mechanics; integrable systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

FINN, C. (2014). One-dimensional stochastic models with open boundaries: integrability, applications, and q-deformed Knizhnik–Zamolodchikov equations. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/50419

Chicago Manual of Style (16th Edition):

FINN, CALEY. “One-dimensional stochastic models with open boundaries: integrability, applications, and q-deformed Knizhnik–Zamolodchikov equations.” 2014. Doctoral Dissertation, University of Melbourne. Accessed September 20, 2020. http://hdl.handle.net/11343/50419.

MLA Handbook (7th Edition):

FINN, CALEY. “One-dimensional stochastic models with open boundaries: integrability, applications, and q-deformed Knizhnik–Zamolodchikov equations.” 2014. Web. 20 Sep 2020.

Vancouver:

FINN C. One-dimensional stochastic models with open boundaries: integrability, applications, and q-deformed Knizhnik–Zamolodchikov equations. [Internet] [Doctoral dissertation]. University of Melbourne; 2014. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/11343/50419.

Council of Science Editors:

FINN C. One-dimensional stochastic models with open boundaries: integrability, applications, and q-deformed Knizhnik–Zamolodchikov equations. [Doctoral Dissertation]. University of Melbourne; 2014. Available from: http://hdl.handle.net/11343/50419


Johannes Gutenberg Universität Mainz

5. Semmel, Michael. The geometry of Lagrangian fibres.

Degree: 2012, Johannes Gutenberg Universität Mainz

If the generic fibre f−1(c) of a Lagrangian fibration f : X → B on a complex Poisson– variety X is smooth, compact, and connected,… (more)

Subjects/Keywords: Abelsche Varietäten, Integrable Systeme; abelian varieties, integrable systems; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Semmel, M. (2012). The geometry of Lagrangian fibres. (Doctoral Dissertation). Johannes Gutenberg Universität Mainz. Retrieved from http://ubm.opus.hbz-nrw.de/volltexte/2013/3339/

Chicago Manual of Style (16th Edition):

Semmel, Michael. “The geometry of Lagrangian fibres.” 2012. Doctoral Dissertation, Johannes Gutenberg Universität Mainz. Accessed September 20, 2020. http://ubm.opus.hbz-nrw.de/volltexte/2013/3339/.

MLA Handbook (7th Edition):

Semmel, Michael. “The geometry of Lagrangian fibres.” 2012. Web. 20 Sep 2020.

Vancouver:

Semmel M. The geometry of Lagrangian fibres. [Internet] [Doctoral dissertation]. Johannes Gutenberg Universität Mainz; 2012. [cited 2020 Sep 20]. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2013/3339/.

Council of Science Editors:

Semmel M. The geometry of Lagrangian fibres. [Doctoral Dissertation]. Johannes Gutenberg Universität Mainz; 2012. Available from: http://ubm.opus.hbz-nrw.de/volltexte/2013/3339/


University of California – Berkeley

6. Schrader, Gus Knight. Quantum groups, character varieties and integrable systems.

Degree: Mathematics, 2017, University of California – Berkeley

 In this thesis we address several questions involving quantum groups, quantum cluster algebras, and integrable systems, and provide some novel examples of the very useful… (more)

Subjects/Keywords: Mathematics; cluster algebras; integrable systems; quantum groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schrader, G. K. (2017). Quantum groups, character varieties and integrable systems. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/3w832019

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Schrader, Gus Knight. “Quantum groups, character varieties and integrable systems.” 2017. Thesis, University of California – Berkeley. Accessed September 20, 2020. http://www.escholarship.org/uc/item/3w832019.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Schrader, Gus Knight. “Quantum groups, character varieties and integrable systems.” 2017. Web. 20 Sep 2020.

Vancouver:

Schrader GK. Quantum groups, character varieties and integrable systems. [Internet] [Thesis]. University of California – Berkeley; 2017. [cited 2020 Sep 20]. Available from: http://www.escholarship.org/uc/item/3w832019.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Schrader GK. Quantum groups, character varieties and integrable systems. [Thesis]. University of California – Berkeley; 2017. Available from: http://www.escholarship.org/uc/item/3w832019

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McMaster University

7. Shimabukuro, Yusuke. Stability and Well-posedness in Integrable Nonlinear Evolution Equations.

Degree: PhD, 2016, McMaster University

This dissertation is concerned with analysis of orbital stability of solitary waves and well-posedness of the Cauchy problem in the integrable evolution equations. The analysis… (more)

Subjects/Keywords: integrable systems; partial differential equations; analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shimabukuro, Y. (2016). Stability and Well-posedness in Integrable Nonlinear Evolution Equations. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/19500

Chicago Manual of Style (16th Edition):

Shimabukuro, Yusuke. “Stability and Well-posedness in Integrable Nonlinear Evolution Equations.” 2016. Doctoral Dissertation, McMaster University. Accessed September 20, 2020. http://hdl.handle.net/11375/19500.

MLA Handbook (7th Edition):

Shimabukuro, Yusuke. “Stability and Well-posedness in Integrable Nonlinear Evolution Equations.” 2016. Web. 20 Sep 2020.

Vancouver:

Shimabukuro Y. Stability and Well-posedness in Integrable Nonlinear Evolution Equations. [Internet] [Doctoral dissertation]. McMaster University; 2016. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/11375/19500.

Council of Science Editors:

Shimabukuro Y. Stability and Well-posedness in Integrable Nonlinear Evolution Equations. [Doctoral Dissertation]. McMaster University; 2016. Available from: http://hdl.handle.net/11375/19500


Université Catholique de Louvain

8. Vanderstichelen, Didier. Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models.

Degree: 2011, Université Catholique de Louvain

Random matrix theory studies the distribution of the spectrum of matrices chosen randomly in various matrix ensembles. The link between random matrix theory and integrable(more)

Subjects/Keywords: Virasoro algebra; Integrable systems; Random matrices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vanderstichelen, D. (2011). Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/93562

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vanderstichelen, Didier. “Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models.” 2011. Thesis, Université Catholique de Louvain. Accessed September 20, 2020. http://hdl.handle.net/2078.1/93562.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vanderstichelen, Didier. “Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models.” 2011. Web. 20 Sep 2020.

Vancouver:

Vanderstichelen D. Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models. [Internet] [Thesis]. Université Catholique de Louvain; 2011. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2078.1/93562.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vanderstichelen D. Virasoro symmetries for the Ablowitz-Ladik hierarchy and non-intersecting Brownian motion models. [Thesis]. Université Catholique de Louvain; 2011. Available from: http://hdl.handle.net/2078.1/93562

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Bath

9. Clarke, Daniel. Integrability in submanifold geometry.

Degree: PhD, 2012, University of Bath

 This thesis concerns the relationship of submanifold geometry, in both the smooth and discrete sense, to representation theory and the theory of integrable systems. We… (more)

Subjects/Keywords: 516.362; differential geometry; integrable systems; discrete

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Clarke, D. (2012). Integrability in submanifold geometry. (Doctoral Dissertation). University of Bath. Retrieved from https://researchportal.bath.ac.uk/en/studentthesis/integrability-in-submanifold-geometry(ad2a44e7-ee07-4cd3-ae50-e892f9bb2ecc).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558890

Chicago Manual of Style (16th Edition):

Clarke, Daniel. “Integrability in submanifold geometry.” 2012. Doctoral Dissertation, University of Bath. Accessed September 20, 2020. https://researchportal.bath.ac.uk/en/studentthesis/integrability-in-submanifold-geometry(ad2a44e7-ee07-4cd3-ae50-e892f9bb2ecc).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558890.

MLA Handbook (7th Edition):

Clarke, Daniel. “Integrability in submanifold geometry.” 2012. Web. 20 Sep 2020.

Vancouver:

Clarke D. Integrability in submanifold geometry. [Internet] [Doctoral dissertation]. University of Bath; 2012. [cited 2020 Sep 20]. Available from: https://researchportal.bath.ac.uk/en/studentthesis/integrability-in-submanifold-geometry(ad2a44e7-ee07-4cd3-ae50-e892f9bb2ecc).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558890.

Council of Science Editors:

Clarke D. Integrability in submanifold geometry. [Doctoral Dissertation]. University of Bath; 2012. Available from: https://researchportal.bath.ac.uk/en/studentthesis/integrability-in-submanifold-geometry(ad2a44e7-ee07-4cd3-ae50-e892f9bb2ecc).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558890


University of Arizona

10. Murphy, Dylan. Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations .

Degree: 2019, University of Arizona

 We develop a class of Darboux transformations called additions for Jacobi operators. We show that by conjugating by a reflection, an addition may be inverted… (more)

Subjects/Keywords: Darboux transformation; Integrable systems; Toda lattice

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Murphy, D. (2019). Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/636509

Chicago Manual of Style (16th Edition):

Murphy, Dylan. “Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations .” 2019. Doctoral Dissertation, University of Arizona. Accessed September 20, 2020. http://hdl.handle.net/10150/636509.

MLA Handbook (7th Edition):

Murphy, Dylan. “Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations .” 2019. Web. 20 Sep 2020.

Vancouver:

Murphy D. Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations . [Internet] [Doctoral dissertation]. University of Arizona; 2019. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10150/636509.

Council of Science Editors:

Murphy D. Additions for Jacobi Operators and the Toda Hierarchy of Lattice Equations . [Doctoral Dissertation]. University of Arizona; 2019. Available from: http://hdl.handle.net/10150/636509


Loughborough University

11. Izosimov, Anton. Singularities of bihamiltonian systems and the multidimensional rigid body.

Degree: PhD, 2012, Loughborough University

 Two Poisson brackets are called compatible if any linear combination of these brackets is a Poisson bracket again. The set of non-zero linear combinations of… (more)

Subjects/Keywords: 515; Bihamiltonian systems; Integrable systems; Singularities; Multidimensional rigid body

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Izosimov, A. (2012). Singularities of bihamiltonian systems and the multidimensional rigid body. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/9966

Chicago Manual of Style (16th Edition):

Izosimov, Anton. “Singularities of bihamiltonian systems and the multidimensional rigid body.” 2012. Doctoral Dissertation, Loughborough University. Accessed September 20, 2020. http://hdl.handle.net/2134/9966.

MLA Handbook (7th Edition):

Izosimov, Anton. “Singularities of bihamiltonian systems and the multidimensional rigid body.” 2012. Web. 20 Sep 2020.

Vancouver:

Izosimov A. Singularities of bihamiltonian systems and the multidimensional rigid body. [Internet] [Doctoral dissertation]. Loughborough University; 2012. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2134/9966.

Council of Science Editors:

Izosimov A. Singularities of bihamiltonian systems and the multidimensional rigid body. [Doctoral Dissertation]. Loughborough University; 2012. Available from: http://hdl.handle.net/2134/9966

12. Κωνσταντόπουλος, Λεωνίδας. Αλγόριθμοι, ορθογώνια πολυώνυμα και διακριτά ολοκληρώσιμα συστήματα.

Degree: 2008, University of Patras

Στην εργασία αυτή παρουσιάζονται ορισμένοι αλγόριθμοι που συνδέονται με ορθογώνια πολυώνυμα και διακριτά ολοκληρώσιμα συστήματα. Οι κανόνες των αλγορίθμων αυτών είναι ρητού τύπου και συνδέουν… (more)

Subjects/Keywords: Αλγόριθμοι; Διακριτά ολοκληρώσιμα συστήματα; 515.55; Algorithms; Discrete integrable systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Κωνσταντόπουλος, . (2008). Αλγόριθμοι, ορθογώνια πολυώνυμα και διακριτά ολοκληρώσιμα συστήματα. (Masters Thesis). University of Patras. Retrieved from http://nemertes.lis.upatras.gr/jspui/handle/10889/1310

Chicago Manual of Style (16th Edition):

Κωνσταντόπουλος, Λεωνίδας. “Αλγόριθμοι, ορθογώνια πολυώνυμα και διακριτά ολοκληρώσιμα συστήματα.” 2008. Masters Thesis, University of Patras. Accessed September 20, 2020. http://nemertes.lis.upatras.gr/jspui/handle/10889/1310.

MLA Handbook (7th Edition):

Κωνσταντόπουλος, Λεωνίδας. “Αλγόριθμοι, ορθογώνια πολυώνυμα και διακριτά ολοκληρώσιμα συστήματα.” 2008. Web. 20 Sep 2020.

Vancouver:

Κωνσταντόπουλος . Αλγόριθμοι, ορθογώνια πολυώνυμα και διακριτά ολοκληρώσιμα συστήματα. [Internet] [Masters thesis]. University of Patras; 2008. [cited 2020 Sep 20]. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/1310.

Council of Science Editors:

Κωνσταντόπουλος . Αλγόριθμοι, ορθογώνια πολυώνυμα και διακριτά ολοκληρώσιμα συστήματα. [Masters Thesis]. University of Patras; 2008. Available from: http://nemertes.lis.upatras.gr/jspui/handle/10889/1310


University of Sydney

13. Butler, Samuel Thomas James. Inverse Scattering Transform Method for Lattice Equations .

Degree: 2012, University of Sydney

 The main original contribution of this thesis is the development of a fully discrete inverse scattering transform (IST) method for nonlinear partial difference equations. The… (more)

Subjects/Keywords: Discrete Integrable Systems; Inverse Scattering; Lattice Equations; Solitons

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Butler, S. T. J. (2012). Inverse Scattering Transform Method for Lattice Equations . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/8724

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Butler, Samuel Thomas James. “Inverse Scattering Transform Method for Lattice Equations .” 2012. Thesis, University of Sydney. Accessed September 20, 2020. http://hdl.handle.net/2123/8724.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Butler, Samuel Thomas James. “Inverse Scattering Transform Method for Lattice Equations .” 2012. Web. 20 Sep 2020.

Vancouver:

Butler STJ. Inverse Scattering Transform Method for Lattice Equations . [Internet] [Thesis]. University of Sydney; 2012. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2123/8724.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Butler STJ. Inverse Scattering Transform Method for Lattice Equations . [Thesis]. University of Sydney; 2012. Available from: http://hdl.handle.net/2123/8724

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Loughborough University

14. Stoilov, Nikola. Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions and their dispersive deformations.

Degree: PhD, 2011, Loughborough University

 Hamiltonian systems of hydrodynamic type occur in a wide range of applications including fluid dynamics, the Whitham averaging procedure and the theory of Frobenius manifolds.… (more)

Subjects/Keywords: 530.15; Analysis of PDEs; Exactly solvable and integrable systems; Mathematical physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stoilov, N. (2011). Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions and their dispersive deformations. (Doctoral Dissertation). Loughborough University. Retrieved from http://hdl.handle.net/2134/10183

Chicago Manual of Style (16th Edition):

Stoilov, Nikola. “Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions and their dispersive deformations.” 2011. Doctoral Dissertation, Loughborough University. Accessed September 20, 2020. http://hdl.handle.net/2134/10183.

MLA Handbook (7th Edition):

Stoilov, Nikola. “Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions and their dispersive deformations.” 2011. Web. 20 Sep 2020.

Vancouver:

Stoilov N. Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions and their dispersive deformations. [Internet] [Doctoral dissertation]. Loughborough University; 2011. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2134/10183.

Council of Science Editors:

Stoilov N. Hamiltonian systems of hydrodynamic type in 2 + 1 dimensions and their dispersive deformations. [Doctoral Dissertation]. Loughborough University; 2011. Available from: http://hdl.handle.net/2134/10183


Texas Tech University

15. Palamakumbura, Rathnamali. Control of solitons in mems actuator arrays.

Degree: 2006, Texas Tech University

 Signal transmission in large arrays MEMS and NEMS devices will be a major issue due to the sheer complexity, and it is likely that solutions… (more)

Subjects/Keywords: Integrable systems; Control; Toda lattice

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Palamakumbura, R. (2006). Control of solitons in mems actuator arrays. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/10332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Palamakumbura, Rathnamali. “Control of solitons in mems actuator arrays.” 2006. Thesis, Texas Tech University. Accessed September 20, 2020. http://hdl.handle.net/2346/10332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Palamakumbura, Rathnamali. “Control of solitons in mems actuator arrays.” 2006. Web. 20 Sep 2020.

Vancouver:

Palamakumbura R. Control of solitons in mems actuator arrays. [Internet] [Thesis]. Texas Tech University; 2006. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2346/10332.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Palamakumbura R. Control of solitons in mems actuator arrays. [Thesis]. Texas Tech University; 2006. Available from: http://hdl.handle.net/2346/10332

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Melbourne

16. SLEIGH, CALLUM. Eynard-Orantin theory of the A-polynomial.

Degree: 2013, University of Melbourne

 This thesis studies the Eynard-Orantin invariants of an important knot invariant: the A-polynomial. In particular, period integrals of the Eynard-Orantin invariants are studied. First, formulae… (more)

Subjects/Keywords: A-polynomial; Chern-Simons Theory; integrable systems; topological recursion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

SLEIGH, C. (2013). Eynard-Orantin theory of the A-polynomial. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/38442

Chicago Manual of Style (16th Edition):

SLEIGH, CALLUM. “Eynard-Orantin theory of the A-polynomial.” 2013. Doctoral Dissertation, University of Melbourne. Accessed September 20, 2020. http://hdl.handle.net/11343/38442.

MLA Handbook (7th Edition):

SLEIGH, CALLUM. “Eynard-Orantin theory of the A-polynomial.” 2013. Web. 20 Sep 2020.

Vancouver:

SLEIGH C. Eynard-Orantin theory of the A-polynomial. [Internet] [Doctoral dissertation]. University of Melbourne; 2013. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/11343/38442.

Council of Science Editors:

SLEIGH C. Eynard-Orantin theory of the A-polynomial. [Doctoral Dissertation]. University of Melbourne; 2013. Available from: http://hdl.handle.net/11343/38442


Loughborough University

17. Zhao, Guangxiu. Integrability of two-component systems of partial differential equations.

Degree: PhD, 2020, Loughborough University

 This thesis is devoted to the classification of integrable two-component polynomial homogeneous systems of equations. In the framework of the perturbative symmetry approach we derive… (more)

Subjects/Keywords: Integrability; symmetry approach; two-component integrable systems; Lax representations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhao, G. (2020). Integrability of two-component systems of partial differential equations. (Doctoral Dissertation). Loughborough University. Retrieved from https://doi.org/10.26174/thesis.lboro.12385931.v1 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.812961

Chicago Manual of Style (16th Edition):

Zhao, Guangxiu. “Integrability of two-component systems of partial differential equations.” 2020. Doctoral Dissertation, Loughborough University. Accessed September 20, 2020. https://doi.org/10.26174/thesis.lboro.12385931.v1 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.812961.

MLA Handbook (7th Edition):

Zhao, Guangxiu. “Integrability of two-component systems of partial differential equations.” 2020. Web. 20 Sep 2020.

Vancouver:

Zhao G. Integrability of two-component systems of partial differential equations. [Internet] [Doctoral dissertation]. Loughborough University; 2020. [cited 2020 Sep 20]. Available from: https://doi.org/10.26174/thesis.lboro.12385931.v1 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.812961.

Council of Science Editors:

Zhao G. Integrability of two-component systems of partial differential equations. [Doctoral Dissertation]. Loughborough University; 2020. Available from: https://doi.org/10.26174/thesis.lboro.12385931.v1 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.812961


University of California – San Diego

18. Palmer, Joseph. Symplectic invariants and moduli spaces of integrable systems.

Degree: Mathematics, 2016, University of California – San Diego

 In this dissertation I prove a number of results about the symplectic geometry of finite dimensional integrable Hamiltonian systems, especially those of semitoric type. Integrable(more)

Subjects/Keywords: Mathematics; integrable systems; minimal models; semitoric systems; symplectic geometry; sympletic capacities; toric geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Palmer, J. (2016). Symplectic invariants and moduli spaces of integrable systems. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/8fm2b234

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Palmer, Joseph. “Symplectic invariants and moduli spaces of integrable systems.” 2016. Thesis, University of California – San Diego. Accessed September 20, 2020. http://www.escholarship.org/uc/item/8fm2b234.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Palmer, Joseph. “Symplectic invariants and moduli spaces of integrable systems.” 2016. Web. 20 Sep 2020.

Vancouver:

Palmer J. Symplectic invariants and moduli spaces of integrable systems. [Internet] [Thesis]. University of California – San Diego; 2016. [cited 2020 Sep 20]. Available from: http://www.escholarship.org/uc/item/8fm2b234.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Palmer J. Symplectic invariants and moduli spaces of integrable systems. [Thesis]. University of California – San Diego; 2016. Available from: http://www.escholarship.org/uc/item/8fm2b234

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Chicago

19. Bilman, Deniz. On Long-Time Asymptotics for the Toda Lattice and Its Hamiltonian Perturbations.

Degree: 2015, University of Illinois – Chicago

 This dissertation is devoted to the study of long-time asymptotics for solutions of the Toda lattice and its Hamiltonian perturbations. First, we present the results… (more)

Subjects/Keywords: Integrable Systems; Long-Time Asymptotics; Solitons; Scattering; Perturbations; Solitary Waves; Toda lattice; Fermi-Pasta-Ulam

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bilman, D. (2015). On Long-Time Asymptotics for the Toda Lattice and Its Hamiltonian Perturbations. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/19793

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bilman, Deniz. “On Long-Time Asymptotics for the Toda Lattice and Its Hamiltonian Perturbations.” 2015. Thesis, University of Illinois – Chicago. Accessed September 20, 2020. http://hdl.handle.net/10027/19793.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bilman, Deniz. “On Long-Time Asymptotics for the Toda Lattice and Its Hamiltonian Perturbations.” 2015. Web. 20 Sep 2020.

Vancouver:

Bilman D. On Long-Time Asymptotics for the Toda Lattice and Its Hamiltonian Perturbations. [Internet] [Thesis]. University of Illinois – Chicago; 2015. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10027/19793.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bilman D. On Long-Time Asymptotics for the Toda Lattice and Its Hamiltonian Perturbations. [Thesis]. University of Illinois – Chicago; 2015. Available from: http://hdl.handle.net/10027/19793

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Illinois – Urbana-Champaign

20. Anduaga, Inaki P. Many Body Topics in Condensed Matter Physics.

Degree: PhD, 0240, 2011, University of Illinois – Urbana-Champaign

 Two different problems involving many-body systems are presented. A hydrodynamic version of the Calogero system of one-dimensional particles interacting on the line is derived using… (more)

Subjects/Keywords: Calogero Sutherland Model; Integrable systems; Helium 3 angular momentum paradox; p+ip superfluid angular momentum

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Anduaga, I. P. (2011). Many Body Topics in Condensed Matter Physics. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/18225

Chicago Manual of Style (16th Edition):

Anduaga, Inaki P. “Many Body Topics in Condensed Matter Physics.” 2011. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 20, 2020. http://hdl.handle.net/2142/18225.

MLA Handbook (7th Edition):

Anduaga, Inaki P. “Many Body Topics in Condensed Matter Physics.” 2011. Web. 20 Sep 2020.

Vancouver:

Anduaga IP. Many Body Topics in Condensed Matter Physics. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2011. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2142/18225.

Council of Science Editors:

Anduaga IP. Many Body Topics in Condensed Matter Physics. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2011. Available from: http://hdl.handle.net/2142/18225

21. Bourget, Antoine. Vides et modularité dans les théories de jauge supersymétriques N = 1* : Modularity and vacua in N = 1* supersymmetric gauge theory.

Degree: Docteur es, Physique, 2016, Paris Sciences et Lettres

Nous explorons la structure des vides dans une déformation massive de la théorie de Yang-Mills maximalement supersymétrique en quatre dimensions. Sur un espace-temps topologiquement trivial,… (more)

Subjects/Keywords: Théories de jauges supersymétriques; Systèmes intégrables; Modularité; Supersymmetric gauge theories; Integrable systems; Modularity; 530

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bourget, A. (2016). Vides et modularité dans les théories de jauge supersymétriques N = 1* : Modularity and vacua in N = 1* supersymmetric gauge theory. (Doctoral Dissertation). Paris Sciences et Lettres. Retrieved from http://www.theses.fr/2016PSLEE011

Chicago Manual of Style (16th Edition):

Bourget, Antoine. “Vides et modularité dans les théories de jauge supersymétriques N = 1* : Modularity and vacua in N = 1* supersymmetric gauge theory.” 2016. Doctoral Dissertation, Paris Sciences et Lettres. Accessed September 20, 2020. http://www.theses.fr/2016PSLEE011.

MLA Handbook (7th Edition):

Bourget, Antoine. “Vides et modularité dans les théories de jauge supersymétriques N = 1* : Modularity and vacua in N = 1* supersymmetric gauge theory.” 2016. Web. 20 Sep 2020.

Vancouver:

Bourget A. Vides et modularité dans les théories de jauge supersymétriques N = 1* : Modularity and vacua in N = 1* supersymmetric gauge theory. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres; 2016. [cited 2020 Sep 20]. Available from: http://www.theses.fr/2016PSLEE011.

Council of Science Editors:

Bourget A. Vides et modularité dans les théories de jauge supersymétriques N = 1* : Modularity and vacua in N = 1* supersymmetric gauge theory. [Doctoral Dissertation]. Paris Sciences et Lettres; 2016. Available from: http://www.theses.fr/2016PSLEE011


University of Melbourne

22. Vittorini Orgeas, Alessandra. Yang-Baxter integrable dimers and fused restricted-solid-on-solid lattice models.

Degree: 2019, University of Melbourne

 The main objects of investigation in this thesis are two Yang-Baxter integrable lattice models of statistical mechanics in two dimensions: nonunitary RSOS models and dimers.… (more)

Subjects/Keywords: Statistical Mechanics; Yang-Baxter equation; lattice models; integrable systems; RSOS models; dimers; conformal field theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vittorini Orgeas, A. (2019). Yang-Baxter integrable dimers and fused restricted-solid-on-solid lattice models. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/227744

Chicago Manual of Style (16th Edition):

Vittorini Orgeas, Alessandra. “Yang-Baxter integrable dimers and fused restricted-solid-on-solid lattice models.” 2019. Doctoral Dissertation, University of Melbourne. Accessed September 20, 2020. http://hdl.handle.net/11343/227744.

MLA Handbook (7th Edition):

Vittorini Orgeas, Alessandra. “Yang-Baxter integrable dimers and fused restricted-solid-on-solid lattice models.” 2019. Web. 20 Sep 2020.

Vancouver:

Vittorini Orgeas A. Yang-Baxter integrable dimers and fused restricted-solid-on-solid lattice models. [Internet] [Doctoral dissertation]. University of Melbourne; 2019. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/11343/227744.

Council of Science Editors:

Vittorini Orgeas A. Yang-Baxter integrable dimers and fused restricted-solid-on-solid lattice models. [Doctoral Dissertation]. University of Melbourne; 2019. Available from: http://hdl.handle.net/11343/227744


University of South Florida

23. Gu, Xiang. Hamiltonian structures and Riemann-Hilbert problems of integrable systems.

Degree: 2018, University of South Florida

 We begin this dissertation by presenting a brief introduction to the theory of solitons and integrability (plus some classical methods applied in this field) in… (more)

Subjects/Keywords: Hamiltonian Operator; Hamiltonian Structure; Integrable Systems; Matrix Spectral Problem; Riemann-Hilbert Problem; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gu, X. (2018). Hamiltonian structures and Riemann-Hilbert problems of integrable systems. (Thesis). University of South Florida. Retrieved from https://scholarcommons.usf.edu/etd/7677

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gu, Xiang. “Hamiltonian structures and Riemann-Hilbert problems of integrable systems.” 2018. Thesis, University of South Florida. Accessed September 20, 2020. https://scholarcommons.usf.edu/etd/7677.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gu, Xiang. “Hamiltonian structures and Riemann-Hilbert problems of integrable systems.” 2018. Web. 20 Sep 2020.

Vancouver:

Gu X. Hamiltonian structures and Riemann-Hilbert problems of integrable systems. [Internet] [Thesis]. University of South Florida; 2018. [cited 2020 Sep 20]. Available from: https://scholarcommons.usf.edu/etd/7677.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gu X. Hamiltonian structures and Riemann-Hilbert problems of integrable systems. [Thesis]. University of South Florida; 2018. Available from: https://scholarcommons.usf.edu/etd/7677

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Arizona

24. Hadad, Yaron. Integrable Nonlinear Relativistic Equations .

Degree: 2013, University of Arizona

 This work focuses on three nonlinear relativistic equations: the symmetric Chiral field equation, Einstein's field equation for metrics with two commuting Killing vectors and Einstein's… (more)

Subjects/Keywords: General Relativity; Integrable Systems; Partial Differential Equations; Solitons; Stability; Mathematics; Einstein's equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hadad, Y. (2013). Integrable Nonlinear Relativistic Equations . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/293490

Chicago Manual of Style (16th Edition):

Hadad, Yaron. “Integrable Nonlinear Relativistic Equations .” 2013. Doctoral Dissertation, University of Arizona. Accessed September 20, 2020. http://hdl.handle.net/10150/293490.

MLA Handbook (7th Edition):

Hadad, Yaron. “Integrable Nonlinear Relativistic Equations .” 2013. Web. 20 Sep 2020.

Vancouver:

Hadad Y. Integrable Nonlinear Relativistic Equations . [Internet] [Doctoral dissertation]. University of Arizona; 2013. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/10150/293490.

Council of Science Editors:

Hadad Y. Integrable Nonlinear Relativistic Equations . [Doctoral Dissertation]. University of Arizona; 2013. Available from: http://hdl.handle.net/10150/293490


University of Kentucky

25. Ghosh, Archisman. TIME-DEPENDENT SYSTEMS AND CHAOS IN STRING THEORY.

Degree: 2012, University of Kentucky

 One of the phenomenal results emerging from string theory is the AdS/CFT correspondence or gauge-gravity duality: In certain cases a theory of gravity is equivalent… (more)

Subjects/Keywords: String Theory; AdS/CFT Correspondence; Integrable Systems; Chaos; Quantum Chaos; Astrophysics and Astronomy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ghosh, A. (2012). TIME-DEPENDENT SYSTEMS AND CHAOS IN STRING THEORY. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/physastron_etds/9

Chicago Manual of Style (16th Edition):

Ghosh, Archisman. “TIME-DEPENDENT SYSTEMS AND CHAOS IN STRING THEORY.” 2012. Doctoral Dissertation, University of Kentucky. Accessed September 20, 2020. https://uknowledge.uky.edu/physastron_etds/9.

MLA Handbook (7th Edition):

Ghosh, Archisman. “TIME-DEPENDENT SYSTEMS AND CHAOS IN STRING THEORY.” 2012. Web. 20 Sep 2020.

Vancouver:

Ghosh A. TIME-DEPENDENT SYSTEMS AND CHAOS IN STRING THEORY. [Internet] [Doctoral dissertation]. University of Kentucky; 2012. [cited 2020 Sep 20]. Available from: https://uknowledge.uky.edu/physastron_etds/9.

Council of Science Editors:

Ghosh A. TIME-DEPENDENT SYSTEMS AND CHAOS IN STRING THEORY. [Doctoral Dissertation]. University of Kentucky; 2012. Available from: https://uknowledge.uky.edu/physastron_etds/9


Loughborough University

26. Bao, Jinrong. Some generalised models in rigid body dynamics.

Degree: PhD, 2019, Loughborough University

 This thesis contains two main chapters. In the first main chapter we consider free rotation of a body whose parts move slowly with respect to… (more)

Subjects/Keywords: integrable systems; Separatrix crossings; Left-invariant metric; Riemannian metric; Sub-Riemannian structure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bao, J. (2019). Some generalised models in rigid body dynamics. (Doctoral Dissertation). Loughborough University. Retrieved from https://doi.org/10.26174/thesis.lboro.12456524.v1 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.808015

Chicago Manual of Style (16th Edition):

Bao, Jinrong. “Some generalised models in rigid body dynamics.” 2019. Doctoral Dissertation, Loughborough University. Accessed September 20, 2020. https://doi.org/10.26174/thesis.lboro.12456524.v1 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.808015.

MLA Handbook (7th Edition):

Bao, Jinrong. “Some generalised models in rigid body dynamics.” 2019. Web. 20 Sep 2020.

Vancouver:

Bao J. Some generalised models in rigid body dynamics. [Internet] [Doctoral dissertation]. Loughborough University; 2019. [cited 2020 Sep 20]. Available from: https://doi.org/10.26174/thesis.lboro.12456524.v1 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.808015.

Council of Science Editors:

Bao J. Some generalised models in rigid body dynamics. [Doctoral Dissertation]. Loughborough University; 2019. Available from: https://doi.org/10.26174/thesis.lboro.12456524.v1 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.808015

27. Bouloc, Damien. Géométrie et topologie de systèmes dynamiques intégrables : Geometry and topology of integrable dynamical systems.

Degree: Docteur es, Mathématiques fondamentales, 2017, Université Toulouse III – Paul Sabatier

Dans cette thèse, on s'intéresse à deux aspects différents des systèmes dynamiques intégrables. La première partie est dévouée à l'étude de trois familles de systèmes… (more)

Subjects/Keywords: Systèmes intégrables; Singularités; Systèmes hamiltoniens; Systèmes non-hamiltoniens; Actions hyperboliques; Integrable systems; Singularities; Hamiltonian systems; Non-Hamiltonian systems; Hyperbolic actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bouloc, D. (2017). Géométrie et topologie de systèmes dynamiques intégrables : Geometry and topology of integrable dynamical systems. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2017TOU30099

Chicago Manual of Style (16th Edition):

Bouloc, Damien. “Géométrie et topologie de systèmes dynamiques intégrables : Geometry and topology of integrable dynamical systems.” 2017. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed September 20, 2020. http://www.theses.fr/2017TOU30099.

MLA Handbook (7th Edition):

Bouloc, Damien. “Géométrie et topologie de systèmes dynamiques intégrables : Geometry and topology of integrable dynamical systems.” 2017. Web. 20 Sep 2020.

Vancouver:

Bouloc D. Géométrie et topologie de systèmes dynamiques intégrables : Geometry and topology of integrable dynamical systems. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2017. [cited 2020 Sep 20]. Available from: http://www.theses.fr/2017TOU30099.

Council of Science Editors:

Bouloc D. Géométrie et topologie de systèmes dynamiques intégrables : Geometry and topology of integrable dynamical systems. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2017. Available from: http://www.theses.fr/2017TOU30099

28. D'Avanzo, Antonella. On charge 3 cyclic monopoles.

Degree: PhD, 2010, University of Edinburgh

 Monopoles are solutions of an SU(2) gauge theory in R3 satisfying a lower bound for energy and certain asymptotic conditions, which translate as topological properties… (more)

Subjects/Keywords: 519; integrable systems; monopoles; Riemann Surfaces

integrable systems in this context. In particular an algebraic curve can be constructed, the… …functions, introducing methods from the algebraic-geometric theory of integrable systems in the… …using tools from integrable systems, provides a suitable framework for exact monopole… …geometric theory of integrable systems. In particular, we focus on the Lax formulation and, within… …using tools from integrable systems, provides a suitable framework for exact monopole… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

D'Avanzo, A. (2010). On charge 3 cyclic monopoles. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/4728

Chicago Manual of Style (16th Edition):

D'Avanzo, Antonella. “On charge 3 cyclic monopoles.” 2010. Doctoral Dissertation, University of Edinburgh. Accessed September 20, 2020. http://hdl.handle.net/1842/4728.

MLA Handbook (7th Edition):

D'Avanzo, Antonella. “On charge 3 cyclic monopoles.” 2010. Web. 20 Sep 2020.

Vancouver:

D'Avanzo A. On charge 3 cyclic monopoles. [Internet] [Doctoral dissertation]. University of Edinburgh; 2010. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/1842/4728.

Council of Science Editors:

D'Avanzo A. On charge 3 cyclic monopoles. [Doctoral Dissertation]. University of Edinburgh; 2010. Available from: http://hdl.handle.net/1842/4728

29. Addabbo, Darlayne. Q-systems and generalizations in representation theory.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 We study tau-functions given as matrix elements for the action of loop groups, GLn̂ on n-component fermionic Fock space. In the simplest case, n=2, the… (more)

Subjects/Keywords: Q-systems; Representation theory; Integrable systems; Box and ball systems

…such as these appear often in the theory of integrable systems, see for example [4]… …to appear within the context of quantum integrable systems, in crystal bases theory, see… …system within the context of quantum integrable systems. 1.5.4 Orthogonal Polynomials d2 tau… …x5B;11].) 1.5.5 Quantum Integrable Systems In [39] and [51]… …hierarchy the nQ-system and (n) c the GL 1 hierarchy the nT -system. Q-systems [34… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Addabbo, D. (2017). Q-systems and generalizations in representation theory. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/98257

Chicago Manual of Style (16th Edition):

Addabbo, Darlayne. “Q-systems and generalizations in representation theory.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 20, 2020. http://hdl.handle.net/2142/98257.

MLA Handbook (7th Edition):

Addabbo, Darlayne. “Q-systems and generalizations in representation theory.” 2017. Web. 20 Sep 2020.

Vancouver:

Addabbo D. Q-systems and generalizations in representation theory. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Sep 20]. Available from: http://hdl.handle.net/2142/98257.

Council of Science Editors:

Addabbo D. Q-systems and generalizations in representation theory. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/98257

30. Gueudré, Thomas. Physique statistique des systèmes désordonnés : Stochastic growth models : universality and fragility.

Degree: Docteur es, Physique, 2014, Paris, Ecole normale supérieure

Cette thèse présente plusieurs aspects de la croissance stochastique des interfaces, par lebiais de son modèle le plus étudié, l'équation de Kardar-Parisi-Zhang (KPZ). Bien qued'expression… (more)

Subjects/Keywords: Physique Statistique; Systèmes désordonnés; Croissance Stochastique; Polymère Dirigé; Désordre à queue large; Systémes Intégrables; Statistical Physics; Disordered Systems; Stochastic Growth; Directed Polymer; Heavy-tailed distributions; Integrable systems; 530

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gueudré, T. (2014). Physique statistique des systèmes désordonnés : Stochastic growth models : universality and fragility. (Doctoral Dissertation). Paris, Ecole normale supérieure. Retrieved from http://www.theses.fr/2014ENSU0009

Chicago Manual of Style (16th Edition):

Gueudré, Thomas. “Physique statistique des systèmes désordonnés : Stochastic growth models : universality and fragility.” 2014. Doctoral Dissertation, Paris, Ecole normale supérieure. Accessed September 20, 2020. http://www.theses.fr/2014ENSU0009.

MLA Handbook (7th Edition):

Gueudré, Thomas. “Physique statistique des systèmes désordonnés : Stochastic growth models : universality and fragility.” 2014. Web. 20 Sep 2020.

Vancouver:

Gueudré T. Physique statistique des systèmes désordonnés : Stochastic growth models : universality and fragility. [Internet] [Doctoral dissertation]. Paris, Ecole normale supérieure; 2014. [cited 2020 Sep 20]. Available from: http://www.theses.fr/2014ENSU0009.

Council of Science Editors:

Gueudré T. Physique statistique des systèmes désordonnés : Stochastic growth models : universality and fragility. [Doctoral Dissertation]. Paris, Ecole normale supérieure; 2014. Available from: http://www.theses.fr/2014ENSU0009

[1] [2] [3]

.