Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Injectivity domain). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Michigan

1. Calvis, David Timothy. Domain constants of injectivity.

Degree: PhD, Pure Sciences, 1988, University of Michigan

Let f be a locally injective mapping of a simply connected hyperbolic domain D into \barℂ. Under what circumstances is f injective? We assign norms to f in such a way that if \Vertf\Vert is sufficiently small, then f is injective. Using these norms we associate domain constants of injectivity to D. We consider the cases where f is meromorphic and locally K-quasiconformal. For f meromorphic let S f denote the Schwarzian derivative and let ρ D denote the density of the Poincare metric in D. The inner radius of univalence σ(D) is defined as the supremum of the numbers a  ≥  0 such that | Sf(z)|  ≤  aρD(z)2 for all z ∈ D is a sufficient condition for f to be injective. We define normal circular triangles and show that σ(D) = 2k2 if D is a normal circular triangle whose smallest angle is kπ. Using this result we show that if D is a regular n-sided polygon, then σ(D) = 2  ≤ ft[{n - 2\over n})]). For locally K-quasiconformal mappings we define τ(D,K) as the supremum of the numbers b with the property that if \Vertlog J f\Vert\sb\*  ≤  b, then f is injective; when no such constants b exist, we set τ(D,K) = 0. Here \Vert∙\Vert\sb\* denotes the BMO norm in D. Then we define K(D) as the supremum of the numbers K for which τ(D,K) > 0. It is known that K(D) > 1 if and only if D is a quasidisk, and that K(D)  ≤  2 for all D, with equality if D is a disk. We prove that K(D) = 2 also when D = {z: |z| < 1, Re (z) < cos(kπ)} for k < 1/7. For this we show that D has a length-area property which we call the crosscut property. We prove also that domains with this property are convex and are K-quasidisks where K is bounded by an absolute constant. Advisors/Committee Members: Gehring, Frederick W. (advisor).

Subjects/Keywords: Constants; Domain; Injectivity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Calvis, D. T. (1988). Domain constants of injectivity. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/128207

Chicago Manual of Style (16th Edition):

Calvis, David Timothy. “Domain constants of injectivity.” 1988. Doctoral Dissertation, University of Michigan. Accessed March 07, 2021. http://hdl.handle.net/2027.42/128207.

MLA Handbook (7th Edition):

Calvis, David Timothy. “Domain constants of injectivity.” 1988. Web. 07 Mar 2021.

Vancouver:

Calvis DT. Domain constants of injectivity. [Internet] [Doctoral dissertation]. University of Michigan; 1988. [cited 2021 Mar 07]. Available from: http://hdl.handle.net/2027.42/128207.

Council of Science Editors:

Calvis DT. Domain constants of injectivity. [Doctoral Dissertation]. University of Michigan; 1988. Available from: http://hdl.handle.net/2027.42/128207

2. Gallouët, Thomas. Transport optimal : régularité et applications : Optimal Transport : Regularity and applications.

Degree: Docteur es, Mathématiques, 2012, Lyon, École normale supérieure

Cette thèse comporte deux parties distinctes, toutes les deux liées à la théorie du transport optimal. Dans la première partie, nous considérons une variété riemannienne, deux mesures à densité régulière et un coût de transport, typiquement la distance géodésique quadratique et nous nous intéressons à la régularité de l’application de transport optimal. Le critère décisif à cette régularité s’avère être le signe du tenseur de Ma-Trudinger-Wang (MTW). Nous présentons tout d’abord une synthèse des travaux réalisés sur ce tenseur. Nous nous intéressons ensuite au lien entre la géométrie des lieux d’injectivité et le tenseur MTW. Nous montrons que dans de nombreux cas, la positivité du tenseur MTW implique la convexité des lieux d’injectivité. La deuxième partie de cette thèse est liée aux équations aux dérivées partielles. Certaines peuvent être considérées comme des flots gradients dans l’espace de Wasserstein W2. C’est le cas de l’équation de Keller-Segel en dimension 2. Pour cette équation nous nous intéressons au problème de quantification de la masse lors de l’explosion des solutions ; cette explosion apparaît lorsque la masse initiale est supérieure à un seuil critique Mc. Nous cherchons alors à montrer qu’elle consiste en la formation d’un Dirac de masse Mc. Nous considérons ici un modèle particulaire en dimension 1 ayant le même comportement que l’équation de Keller-Segel. Pour ce modèle nous exhibons des bassins d’attractions à l’intérieur desquels l’explosion se produit avec seulement le nombre critique de particules. Finalement nous nous intéressons au profil d’explosion : à l’aide d’un changement d’échelle parabolique nous montrons que la structure de l’explosion correspond aux points critiques d’une certaine fonctionnelle.

This thesis consists in two distinct parts both related to the optimal transport theory.The first part deals with the regularity of the optimal transport map. The key tool is the Ma-Trundinger-Wang tensor and especially its positivity. We first give a review of the known results about the MTW tensor. We then explore the geometrical consequences of the MTW tensor on the injectivity domain. We prove that in many cases the positivity of MTW implies the convexity of the injectivity domain. The second part is devoted to the behaviour of a Keller-Segel solution in the super critical case. In particular we are interested in the mass quantization problem: we wish to quantify the mass aggregated when the blow-up occurs. In order to study the behaviour of the solution we consider a particle approximation of a Keller-Segel type equation in dimension 1. We define this approximation using the gradient flow interpretation of the Keller-Segel equation and the particular structure of the Wasserstein space in dimension 1. We show two kinds of results; we first prove a stability theorem for the blow-up mechanism: we exhibit basins of attraction in which the solution blows up with only the critical number of particles. We then prove a rigidity theorem for the blow-up mechanism: thanks to a parabolic…

Advisors/Committee Members: Villani, Cédric (thesis director).

Subjects/Keywords: Transport optimal; Régularité; Ma-Trundinger-Wang; MTW; Coût; Variété riemannienne; Convexité; Domaine d'injectivité; Lipschitz; C-convexité; Keller-Segel; Quantification de la masse; Particules; 1D; Explosion; Wasserstein; Flot gradient; Espace métrique; Masse critique; Optimal transport; Regularity; Ma-Trundinger-Wang; MTW; Cost; Riemannian manifold; Convexity; Injectivity domain; Lipschitz continuous; C-convexity; Keller-Segel; Mass quantization; Particles; 1D; Blow-up; Wasserstein; Gradient flow; Metric space; Critical mass

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gallouët, T. (2012). Transport optimal : régularité et applications : Optimal Transport : Regularity and applications. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2012ENSL0797

Chicago Manual of Style (16th Edition):

Gallouët, Thomas. “Transport optimal : régularité et applications : Optimal Transport : Regularity and applications.” 2012. Doctoral Dissertation, Lyon, École normale supérieure. Accessed March 07, 2021. http://www.theses.fr/2012ENSL0797.

MLA Handbook (7th Edition):

Gallouët, Thomas. “Transport optimal : régularité et applications : Optimal Transport : Regularity and applications.” 2012. Web. 07 Mar 2021.

Vancouver:

Gallouët T. Transport optimal : régularité et applications : Optimal Transport : Regularity and applications. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2012. [cited 2021 Mar 07]. Available from: http://www.theses.fr/2012ENSL0797.

Council of Science Editors:

Gallouët T. Transport optimal : régularité et applications : Optimal Transport : Regularity and applications. [Doctoral Dissertation]. Lyon, École normale supérieure; 2012. Available from: http://www.theses.fr/2012ENSL0797

.