Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

Dates: Last 2 Years

You searched for subject:(Incremental conductance). Showing records 1 – 2 of 2 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Rochester Institute of Technology

1. Khallaf, Mohamed. Enhanced MPPT Controllers for Smart Grid Applications.

Degree: MS, Electrical Engineering, 2019, Rochester Institute of Technology

Over the past years, the energy demand has been steadily growing and so methods of how to cope with this staggering increase are being researched and utilized. One method of injecting more energy to the grid is renewable energy, which has become in recent years an integral part of any country’s power generation plan. Thus, it is a necessity to enhance renewable energy resources and maximize their grid utilization, so that these resources can step up and reduce the over dependency of global energy production on depleting energy resources. This thesis focuses on solar power and effective means to enhance its efficiency through the use of different controllers. In this regard, substantial research efforts have been done. However, due to the current market and technological development, more options are made available that are able to boast the efficiency and utilization of renewables in the power mix. In this thesis, an enhanced maximum power point tracking (MPPT) controller has been designed as part of a Photovoltaic (PV) system to generate maximum power to satisfy load demand. The PV system is designed and simulated using MATLAB (consisting of a solar panel array, MPPT controller, boost converter, and a resistive load). The solar panel chosen for the array is Sun Power SPR- 440NE-WHT-D and the array is designed to produce 150 kW of power. The MPPT controller is designed using three different algorithms and the results are compared to identify each controller’s fortes and drawbacks. The three designed controllers used are based on Perturb and Observe (P&O) algorithm, Incremental Conductance (INC) with an Integral Regulator (IR) and Fuzzy Logic Control (FLC). Each controller was tested under two different scenarios; the first is when the panel array is subjected to constant amount of solar irradiance along with a constant atmospheric temperature and the second scenario has varying solar irradiance and atmospheric temperature. The performance of these controllers is analyzed and compared in terms of the output power efficiency, system dynamic response and finally the oscillations behavior. After analyzing the results, it is shown that Fuzzy Logic Controller design performed better compared to the other controllers as it had in most cases the highest mean power efficiency and fastest response. Advisors/Committee Members: Abdulla Ismail.

Subjects/Keywords: Fuzzy logic; Incremental conductance; MPPT; P&O; PV; Renewable energy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khallaf, M. (2019). Enhanced MPPT Controllers for Smart Grid Applications. (Masters Thesis). Rochester Institute of Technology. Retrieved from https://scholarworks.rit.edu/theses/10018

Chicago Manual of Style (16th Edition):

Khallaf, Mohamed. “Enhanced MPPT Controllers for Smart Grid Applications.” 2019. Masters Thesis, Rochester Institute of Technology. Accessed December 03, 2020. https://scholarworks.rit.edu/theses/10018.

MLA Handbook (7th Edition):

Khallaf, Mohamed. “Enhanced MPPT Controllers for Smart Grid Applications.” 2019. Web. 03 Dec 2020.

Vancouver:

Khallaf M. Enhanced MPPT Controllers for Smart Grid Applications. [Internet] [Masters thesis]. Rochester Institute of Technology; 2019. [cited 2020 Dec 03]. Available from: https://scholarworks.rit.edu/theses/10018.

Council of Science Editors:

Khallaf M. Enhanced MPPT Controllers for Smart Grid Applications. [Masters Thesis]. Rochester Institute of Technology; 2019. Available from: https://scholarworks.rit.edu/theses/10018

2. Bergroth, Simon. Implementering av MPPT-enhet med återkoppling : avsedd för solceller.

Degree: Electronics, 2019, University of Gävle

Subjects/Keywords: MPPT; Maximum power point tracking; incremental conductance; solar; MPPT; solceller; effektivisering; inbyggda system; inkrementell konduktans; fyllnadsfaktor; Other Electrical Engineering, Electronic Engineering, Information Engineering; Annan elektroteknik och elektronik; Embedded Systems; Inbäddad systemteknik

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bergroth, S. (2019). Implementering av MPPT-enhet med återkoppling : avsedd för solceller. (Thesis). University of Gävle. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-30492

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bergroth, Simon. “Implementering av MPPT-enhet med återkoppling : avsedd för solceller.” 2019. Thesis, University of Gävle. Accessed December 03, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-30492.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bergroth, Simon. “Implementering av MPPT-enhet med återkoppling : avsedd för solceller.” 2019. Web. 03 Dec 2020.

Vancouver:

Bergroth S. Implementering av MPPT-enhet med återkoppling : avsedd för solceller. [Internet] [Thesis]. University of Gävle; 2019. [cited 2020 Dec 03]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-30492.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bergroth S. Implementering av MPPT-enhet med återkoppling : avsedd för solceller. [Thesis]. University of Gävle; 2019. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-30492

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.