Advanced search options
You searched for subject:(Hypertoric)
.
Showing records 1 – 5 of
5 total matches.
▼ Search Limiters
University of Oregon
1. Kutler, Max. Faithful tropicalization of hypertoric varieties.
Degree: PhD, Department of Mathematics, 2017, University of Oregon
URL: http://hdl.handle.net/1794/22756
Subjects/Keywords: Hypertoric varieties; Matroids; Non-Archimedean Geometry; Tropical geometry
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Kutler, M. (2017). Faithful tropicalization of hypertoric varieties. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/22756
Chicago Manual of Style (16th Edition):
Kutler, Max. “Faithful tropicalization of hypertoric varieties.” 2017. Doctoral Dissertation, University of Oregon. Accessed January 23, 2021. http://hdl.handle.net/1794/22756.
MLA Handbook (7th Edition):
Kutler, Max. “Faithful tropicalization of hypertoric varieties.” 2017. Web. 23 Jan 2021.
Vancouver:
Kutler M. Faithful tropicalization of hypertoric varieties. [Internet] [Doctoral dissertation]. University of Oregon; 2017. [cited 2021 Jan 23]. Available from: http://hdl.handle.net/1794/22756.
Council of Science Editors:
Kutler M. Faithful tropicalization of hypertoric varieties. [Doctoral Dissertation]. University of Oregon; 2017. Available from: http://hdl.handle.net/1794/22756
2. Shenfeld, Daniel. Abelianization of Stable Envelopes in Symplectic Resolutions .
Degree: PhD, 2013, Princeton University
URL: http://arks.princeton.edu/ark:/88435/dsp01ws859f77c
Subjects/Keywords: hypertoric varieties; symmetric polynomials; symplectic resolutions
…53 The Hypertoric Hilbert Scheme . . . . . . . . . . . . . . . . . . . . . 55 6.2.1… …called hypertoric varieties; much like toric varieties, their geometry can be described by… …combinatorial methods, in this case by using hyperplane arrangements. Smooth hypertoric varieties are… …cohomology ring of hypertoric varieties, appears in [23]. From the point of view of the… …in [22]. In chapter 3 we introduce hypertoric varieties and give some background…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Shenfeld, D. (2013). Abelianization of Stable Envelopes in Symplectic Resolutions . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01ws859f77c
Chicago Manual of Style (16th Edition):
Shenfeld, Daniel. “Abelianization of Stable Envelopes in Symplectic Resolutions .” 2013. Doctoral Dissertation, Princeton University. Accessed January 23, 2021. http://arks.princeton.edu/ark:/88435/dsp01ws859f77c.
MLA Handbook (7th Edition):
Shenfeld, Daniel. “Abelianization of Stable Envelopes in Symplectic Resolutions .” 2013. Web. 23 Jan 2021.
Vancouver:
Shenfeld D. Abelianization of Stable Envelopes in Symplectic Resolutions . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2021 Jan 23]. Available from: http://arks.princeton.edu/ark:/88435/dsp01ws859f77c.
Council of Science Editors:
Shenfeld D. Abelianization of Stable Envelopes in Symplectic Resolutions . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01ws859f77c
Kyoto University / 京都大学
3. Hikita, Tatsuyuki. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について.
Degree: 博士(理学), 2015, Kyoto University / 京都大学
URL: http://hdl.handle.net/2433/200429
;
http://dx.doi.org/10.14989/doctor.k19166
新制・課程博士
甲第19166号
理博第4106号
Subjects/Keywords: symplectic duality; Spaltenstein variety; hypertoric variety; Hilbert scheme of points in the affine plane
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hikita, T. (2015). On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について.” 2015. Thesis, Kyoto University / 京都大学. Accessed January 23, 2021. http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について.” 2015. Web. 23 Jan 2021.
Vancouver:
Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について. [Internet] [Thesis]. Kyoto University / 京都大学; 2015. [cited 2021 Jan 23]. Available from: http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について. [Thesis]. Kyoto University / 京都大学; 2015. Available from: http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
4. Hilburn, Justin. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.
Degree: PhD, Department of Mathematics, 2016, University of Oregon
URL: http://hdl.handle.net/1794/20456
Subjects/Keywords: 3d N=4; Boundary condition; Category O; Hypertoric; Symplectic duality; Symplectic resolution
…HYPERTORIC CATEGORY O . . . . . . . . . . . . . . . . . . . . . . 14 3.1. Hypertoric varieties… …14 3.2. The hypertoric enveloping algebra . . . . . . . . . . . . . . . . 17 3.3… …abelian gauge theories: First by [9] the Higgs and Coulomb branches are hypertoric… …hypertoric categories O as defined in [10, 11]. Third, the duality between OH and OC… …the construction of hypertoric category Oηξ . In particular we follow [16] by…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hilburn, J. (2016). GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/20456
Chicago Manual of Style (16th Edition):
Hilburn, Justin. “GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.” 2016. Doctoral Dissertation, University of Oregon. Accessed January 23, 2021. http://hdl.handle.net/1794/20456.
MLA Handbook (7th Edition):
Hilburn, Justin. “GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.” 2016. Web. 23 Jan 2021.
Vancouver:
Hilburn J. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. [Internet] [Doctoral dissertation]. University of Oregon; 2016. [cited 2021 Jan 23]. Available from: http://hdl.handle.net/1794/20456.
Council of Science Editors:
Hilburn J. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. [Doctoral Dissertation]. University of Oregon; 2016. Available from: http://hdl.handle.net/1794/20456
Kyoto University
5. Hikita, Tatsuyuki. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions .
Degree: 2015, Kyoto University
URL: http://hdl.handle.net/2433/200429
Subjects/Keywords: symplectic duality; Spaltenstein variety; hypertoric variety; Hilbert scheme of points in the affine plane
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Hikita, T. (2015). On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/200429
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions .” 2015. Thesis, Kyoto University. Accessed January 23, 2021. http://hdl.handle.net/2433/200429.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions .” 2015. Web. 23 Jan 2021.
Vancouver:
Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions . [Internet] [Thesis]. Kyoto University; 2015. [cited 2021 Jan 23]. Available from: http://hdl.handle.net/2433/200429.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions . [Thesis]. Kyoto University; 2015. Available from: http://hdl.handle.net/2433/200429
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation