Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Hypertoric)`

.
Showing records 1 – 5 of
5 total matches.

▼ Search Limiters

University of Oregon

1.
Kutler, Max.
Faithful tropicalization of *hypertoric* varieties.

Degree: PhD, Department of Mathematics, 2017, University of Oregon

URL: http://hdl.handle.net/1794/22756

► The *hypertoric* variety M_A defined by an arrangement A of affine hyperplanes admits a natural tropicalization, induced by its embedding in a Lawrence toric variety.…
(more)

Subjects/Keywords: Hypertoric varieties; Matroids; Non-Archimedean Geometry; Tropical geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kutler, M. (2017). Faithful tropicalization of hypertoric varieties. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/22756

Chicago Manual of Style (16^{th} Edition):

Kutler, Max. “Faithful tropicalization of hypertoric varieties.” 2017. Doctoral Dissertation, University of Oregon. Accessed January 23, 2021. http://hdl.handle.net/1794/22756.

MLA Handbook (7^{th} Edition):

Kutler, Max. “Faithful tropicalization of hypertoric varieties.” 2017. Web. 23 Jan 2021.

Vancouver:

Kutler M. Faithful tropicalization of hypertoric varieties. [Internet] [Doctoral dissertation]. University of Oregon; 2017. [cited 2021 Jan 23]. Available from: http://hdl.handle.net/1794/22756.

Council of Science Editors:

Kutler M. Faithful tropicalization of hypertoric varieties. [Doctoral Dissertation]. University of Oregon; 2017. Available from: http://hdl.handle.net/1794/22756

2. Shenfeld, Daniel. Abelianization of Stable Envelopes in Symplectic Resolutions .

Degree: PhD, 2013, Princeton University

URL: http://arks.princeton.edu/ark:/88435/dsp01ws859f77c

► Stable envelopes, introduced by Maulik and Okounkov, form a basis for the equivariant cohomology of symplectic resolutions. We study the case of Nakajima quiver varieties,…
(more)

Subjects/Keywords: hypertoric varieties; symmetric polynomials; symplectic resolutions

…53
The *Hypertoric* Hilbert Scheme . . . . . . . . . . . . . . . . . . . . .
55
6.2.1… …called *hypertoric* varieties;
much like toric varieties, their geometry can be described by… …combinatorial methods,
in this case by using hyperplane arrangements. Smooth *hypertoric* varieties are… …cohomology ring of *hypertoric* varieties, appears in [23].
From the point of view of the… …in [22]. In chapter
3 we introduce *hypertoric* varieties and give some background…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shenfeld, D. (2013). Abelianization of Stable Envelopes in Symplectic Resolutions . (Doctoral Dissertation). Princeton University. Retrieved from http://arks.princeton.edu/ark:/88435/dsp01ws859f77c

Chicago Manual of Style (16^{th} Edition):

Shenfeld, Daniel. “Abelianization of Stable Envelopes in Symplectic Resolutions .” 2013. Doctoral Dissertation, Princeton University. Accessed January 23, 2021. http://arks.princeton.edu/ark:/88435/dsp01ws859f77c.

MLA Handbook (7^{th} Edition):

Shenfeld, Daniel. “Abelianization of Stable Envelopes in Symplectic Resolutions .” 2013. Web. 23 Jan 2021.

Vancouver:

Shenfeld D. Abelianization of Stable Envelopes in Symplectic Resolutions . [Internet] [Doctoral dissertation]. Princeton University; 2013. [cited 2021 Jan 23]. Available from: http://arks.princeton.edu/ark:/88435/dsp01ws859f77c.

Council of Science Editors:

Shenfeld D. Abelianization of Stable Envelopes in Symplectic Resolutions . [Doctoral Dissertation]. Princeton University; 2013. Available from: http://arks.princeton.edu/ark:/88435/dsp01ws859f77c

Kyoto University / 京都大学

3. Hikita, Tatsuyuki. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について.

Degree: 博士(理学), 2015, Kyoto University / 京都大学

URL: http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166

新制・課程博士

甲第19166号

理博第4106号

Subjects/Keywords: symplectic duality; Spaltenstein variety; hypertoric variety; Hilbert scheme of points in the affine plane

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hikita, T. (2015). On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について.” 2015. Thesis, Kyoto University / 京都大学. Accessed January 23, 2021. http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について.” 2015. Web. 23 Jan 2021.

Vancouver:

Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について. [Internet] [Thesis]. Kyoto University / 京都大学; 2015. [cited 2021 Jan 23]. Available from: http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions : 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現について. [Thesis]. Kyoto University / 京都大学; 2015. Available from: http://hdl.handle.net/2433/200429 ; http://dx.doi.org/10.14989/doctor.k19166

Not specified: Masters Thesis or Doctoral Dissertation

4.
Hilburn, Justin.
GKZ Hypergeometric Systems and Projective Modules in *Hypertoric* Category O.

Degree: PhD, Department of Mathematics, 2016, University of Oregon

URL: http://hdl.handle.net/1794/20456

► In this thesis I show that indecomposable projective and tilting modules in *hypertoric* category O are obtained by applying a variant of the geometric Jacquet…
(more)

Subjects/Keywords: 3d N=4; Boundary condition; Category O; Hypertoric; Symplectic duality; Symplectic resolution

…*HYPERTORIC* CATEGORY O . . . . . . . . . . . . . . . . . . . . . .
14
3.1.
*Hypertoric* varieties… …14
3.2.
The *hypertoric* enveloping algebra . . . . . . . . . . . . . . . .
17
3.3… …abelian gauge theories: First by [9] the Higgs and Coulomb
branches are *hypertoric*… …*hypertoric* categories O as defined in [10, 11]. Third,
the duality between OH and OC… …the construction of *hypertoric* category Oηξ .
In particular we follow [16] by…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hilburn, J. (2016). GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/20456

Chicago Manual of Style (16^{th} Edition):

Hilburn, Justin. “GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.” 2016. Doctoral Dissertation, University of Oregon. Accessed January 23, 2021. http://hdl.handle.net/1794/20456.

MLA Handbook (7^{th} Edition):

Hilburn, Justin. “GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O.” 2016. Web. 23 Jan 2021.

Vancouver:

Hilburn J. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. [Internet] [Doctoral dissertation]. University of Oregon; 2016. [cited 2021 Jan 23]. Available from: http://hdl.handle.net/1794/20456.

Council of Science Editors:

Hilburn J. GKZ Hypergeometric Systems and Projective Modules in Hypertoric Category O. [Doctoral Dissertation]. University of Oregon; 2016. Available from: http://hdl.handle.net/1794/20456

Kyoto University

5. Hikita, Tatsuyuki. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions .

Degree: 2015, Kyoto University

URL: http://hdl.handle.net/2433/200429

Subjects/Keywords: symplectic duality; Spaltenstein variety; hypertoric variety; Hilbert scheme of points in the affine plane

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hikita, T. (2015). On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/200429

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions .” 2015. Thesis, Kyoto University. Accessed January 23, 2021. http://hdl.handle.net/2433/200429.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hikita, Tatsuyuki. “On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions .” 2015. Web. 23 Jan 2021.

Vancouver:

Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions . [Internet] [Thesis]. Kyoto University; 2015. [cited 2021 Jan 23]. Available from: http://hdl.handle.net/2433/200429.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hikita T. On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions . [Thesis]. Kyoto University; 2015. Available from: http://hdl.handle.net/2433/200429

Not specified: Masters Thesis or Doctoral Dissertation