Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hyperbolic systems of conservation laws with relaxation). Showing records 1 – 30 of 381075 total matches.

[1] [2] [3] [4] [5] … [12703]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters

1. Laurent-Brouty, Nicolas. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.

Degree: Docteur es, Mathématiques, 2019, Université Côte d'Azur (ComUE)

 Cette thèse se consacre à la modélisation mathématique du trafic routier à l'aide des lois de conservation hyperboliques. Nous nous intéressons plus particulièrement à l’application… (more)

Subjects/Keywords: Lois de conservation hyperboliques; Systèmes de conservation hyperboliques avec relaxation; Modèles macroscopiques de trafic routier; Suivi de fronts d'onde; Systèmes de Temple; Couplage EDP-EDO; Contraintes de flux; Trafic routier sur les réseaux; Équations d'Hamilton-Jacobi; Méthodes de point fixe; Hyperbolic conservation laws; Hyperbolic systems of conservation laws with relaxation; Macroscopic traffic flow models; Wave-front tracking; Temple class systems; PDE-ODE coupling; Flux constraints; Traffic flow on networks; Hamilton-Jacobi equations; Fixed-point problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laurent-Brouty, N. (2019). Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2019AZUR4056

Chicago Manual of Style (16th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed April 15, 2021. http://www.theses.fr/2019AZUR4056.

MLA Handbook (7th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Web. 15 Apr 2021.

Vancouver:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2019. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2019AZUR4056.

Council of Science Editors:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2019. Available from: http://www.theses.fr/2019AZUR4056


Indian Institute of Science

2. Kaushik, K N. A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws.

Degree: MSc Engg, Faculty of Engineering, 2012, Indian Institute of Science

Subjects/Keywords: Relaxation Dynamics; Hyperbolic Conservation Laws; Magneto Hydrodynamic Flows; Compressible Flows; Relaxation Systems; Aerodynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kaushik, K. N. (2012). A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/1661

Chicago Manual of Style (16th Edition):

Kaushik, K N. “A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws.” 2012. Masters Thesis, Indian Institute of Science. Accessed April 15, 2021. http://etd.iisc.ac.in/handle/2005/1661.

MLA Handbook (7th Edition):

Kaushik, K N. “A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws.” 2012. Web. 15 Apr 2021.

Vancouver:

Kaushik KN. A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws. [Internet] [Masters thesis]. Indian Institute of Science; 2012. [cited 2021 Apr 15]. Available from: http://etd.iisc.ac.in/handle/2005/1661.

Council of Science Editors:

Kaushik KN. A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws. [Masters Thesis]. Indian Institute of Science; 2012. Available from: http://etd.iisc.ac.in/handle/2005/1661


Indian Institute of Science

3. Garg, Naveen Kumar. Novel Upwind and Central Schemes for Various Hyperbolic Systems.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 The class of hyperbolic conservation laws model the phenomena of non-linear wave propagation, including the presence and propagation of discontinuities and expansion waves. Such nonlinear… (more)

Subjects/Keywords: Hyperbolic PDEs; Hyperbolic Conservation Laws; Pressureless Gas Dynamics System; Jordan Canonical Forms; Pressureless Gas Dynamics; Hyperbolic Systems; Euler Solver; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garg, N. K. (2018). Novel Upwind and Central Schemes for Various Hyperbolic Systems. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3564

Chicago Manual of Style (16th Edition):

Garg, Naveen Kumar. “Novel Upwind and Central Schemes for Various Hyperbolic Systems.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed April 15, 2021. http://etd.iisc.ac.in/handle/2005/3564.

MLA Handbook (7th Edition):

Garg, Naveen Kumar. “Novel Upwind and Central Schemes for Various Hyperbolic Systems.” 2018. Web. 15 Apr 2021.

Vancouver:

Garg NK. Novel Upwind and Central Schemes for Various Hyperbolic Systems. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Apr 15]. Available from: http://etd.iisc.ac.in/handle/2005/3564.

Council of Science Editors:

Garg NK. Novel Upwind and Central Schemes for Various Hyperbolic Systems. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3564


Tulane University

4. Dewar, Jeremy. Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption.

Degree: PhD, 2013, Tulane University

This thesis examines the Euler equations of gas dynamics and develops a new adaption indicator, which is based on the weak local residual measured for… (more)

Subjects/Keywords: Numerical methods; Hyperbolic conservation laws; School of Science & Engineering; Mathematics; Ph.D

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dewar, J. (2013). Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption. (Doctoral Dissertation). Tulane University. Retrieved from https://digitallibrary.tulane.edu/islandora/object/tulane:27600

Chicago Manual of Style (16th Edition):

Dewar, Jeremy. “Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption.” 2013. Doctoral Dissertation, Tulane University. Accessed April 15, 2021. https://digitallibrary.tulane.edu/islandora/object/tulane:27600.

MLA Handbook (7th Edition):

Dewar, Jeremy. “Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption.” 2013. Web. 15 Apr 2021.

Vancouver:

Dewar J. Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption. [Internet] [Doctoral dissertation]. Tulane University; 2013. [cited 2021 Apr 15]. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27600.

Council of Science Editors:

Dewar J. Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption. [Doctoral Dissertation]. Tulane University; 2013. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27600


University of Maryland

5. Miroshnikov, Alexey. A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS.

Degree: Mathematics, 2012, University of Maryland

 We study the equations describing the dynamics of radial motions for isotropic elastic materials; these form a system of non-homogeneous conservation laws. We construct a… (more)

Subjects/Keywords: Mathematics; calculus of variations; hyperbolic conservation laws; nonlinear elasticity; nonlinear elastodynamics; polyconvexity; variational approximation scheme

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Miroshnikov, A. (2012). A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/13168

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Miroshnikov, Alexey. “A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS.” 2012. Thesis, University of Maryland. Accessed April 15, 2021. http://hdl.handle.net/1903/13168.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Miroshnikov, Alexey. “A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS.” 2012. Web. 15 Apr 2021.

Vancouver:

Miroshnikov A. A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS. [Internet] [Thesis]. University of Maryland; 2012. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/1903/13168.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Miroshnikov A. A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS. [Thesis]. University of Maryland; 2012. Available from: http://hdl.handle.net/1903/13168

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Tang, Ying. Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés.

Degree: Docteur es, Automatique et productique, 2015, Université Grenoble Alpes (ComUE)

 Les dynamiques des systèmes modélisés par des équations aux dérivées partielles (EDPs) en dimension infinie sont largement liées aux réseaux physiques. La synthèse de la… (more)

Subjects/Keywords: Systèmes hyperboliques; Approximation de Tikhonov; Singulièrement perturbé; Lois de conservation; Lois d'équilibre; Fonction de Lyapunov; Hyperbolic systems; Tikhonov approximation; Singular perturbation; Conservation laws; Balance laws; Lyapunov function; 620

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tang, Y. (2015). Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2015GREAT054

Chicago Manual of Style (16th Edition):

Tang, Ying. “Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés.” 2015. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed April 15, 2021. http://www.theses.fr/2015GREAT054.

MLA Handbook (7th Edition):

Tang, Ying. “Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés.” 2015. Web. 15 Apr 2021.

Vancouver:

Tang Y. Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2015. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2015GREAT054.

Council of Science Editors:

Tang Y. Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2015. Available from: http://www.theses.fr/2015GREAT054


University of Michigan

7. Xin, Zhouping. Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws.

Degree: PhD, Pure Sciences, 1988, University of Michigan

 We study the asymptotic convergence to rarefaction waves of the solution for the initial value problem for some systems of hyperbolic conservation laws with positive… (more)

Subjects/Keywords: Conservation; Hyperbolic; Laws; Nonlinear; Rarefaction; Stability; Systems; Viscous; Waves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xin, Z. (1988). Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/128295

Chicago Manual of Style (16th Edition):

Xin, Zhouping. “Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws.” 1988. Doctoral Dissertation, University of Michigan. Accessed April 15, 2021. http://hdl.handle.net/2027.42/128295.

MLA Handbook (7th Edition):

Xin, Zhouping. “Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws.” 1988. Web. 15 Apr 2021.

Vancouver:

Xin Z. Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws. [Internet] [Doctoral dissertation]. University of Michigan; 1988. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/2027.42/128295.

Council of Science Editors:

Xin Z. Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws. [Doctoral Dissertation]. University of Michigan; 1988. Available from: http://hdl.handle.net/2027.42/128295

8. Chaisemartin, Stéphane de. Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation.

Degree: Docteur es, Energétique, 2009, Châtenay-Malabry, Ecole centrale de Paris

Le modèle multi-fluide permet de décrire par une approche Eulérienne les sprays polydispersés et apparaît donc comme une méthode indiquée pour les applications de combustion… (more)

Subjects/Keywords: Écoulements diphasiques; Sprays polydispersés; Méthode multi-fluide; Systèmes de lois de conservation faiblement hyperboliques; Schémas numériques cinétiques; Informatique scientifique; Calcul parallèle; Two-phase flows; Polydisperse sprays; Multi-fluid method; Weakly hyperbolic systems of conservation laws; Kinetic numerical schemes; Scientific computing; Parallel computing

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chaisemartin, S. d. (2009). Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation. (Doctoral Dissertation). Châtenay-Malabry, Ecole centrale de Paris. Retrieved from http://www.theses.fr/2009ECAP0011

Chicago Manual of Style (16th Edition):

Chaisemartin, Stéphane de. “Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation.” 2009. Doctoral Dissertation, Châtenay-Malabry, Ecole centrale de Paris. Accessed April 15, 2021. http://www.theses.fr/2009ECAP0011.

MLA Handbook (7th Edition):

Chaisemartin, Stéphane de. “Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation.” 2009. Web. 15 Apr 2021.

Vancouver:

Chaisemartin Sd. Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation. [Internet] [Doctoral dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2009. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2009ECAP0011.

Council of Science Editors:

Chaisemartin Sd. Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation. [Doctoral Dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2009. Available from: http://www.theses.fr/2009ECAP0011


Tulane University

9. Kurochkin, Dmitry V. Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes.

Degree: PhD, Tulane University

We develop novel numerical methods for optimization problems subject to constraints given by nonlinear hyperbolic systems of conservation and balance laws in one space dimension.… (more)

Subjects/Keywords: PDE-constrained Optimization Problems; Hyperbolic Systems Of Conservation And Balance Laws; Linear Adjoint System; School of Science & Engineering; Mathematics; Ph.D

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kurochkin, D. V. (n.d.). Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes. (Doctoral Dissertation). Tulane University. Retrieved from https://digitallibrary.tulane.edu/islandora/object/tulane:27958

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Chicago Manual of Style (16th Edition):

Kurochkin, Dmitry V. “Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes.” Doctoral Dissertation, Tulane University. Accessed April 15, 2021. https://digitallibrary.tulane.edu/islandora/object/tulane:27958.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

MLA Handbook (7th Edition):

Kurochkin, Dmitry V. “Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes.” Web. 15 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Kurochkin DV. Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes. [Internet] [Doctoral dissertation]. Tulane University; [cited 2021 Apr 15]. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27958.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Council of Science Editors:

Kurochkin DV. Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes. [Doctoral Dissertation]. Tulane University; Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27958

Note: this citation may be lacking information needed for this citation format:
No year of publication.


Virginia Tech

10. Weinhart, Thomas. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws.

Degree: PhD, Mathematics, 2009, Virginia Tech

 In this dissertation we present an analysis for the discontinuous Galerkin discretization error of multi-dimensional first-order linear symmetric and symmetrizable hyperbolic systems of conservation laws.… (more)

Subjects/Keywords: hyperbolic systems of conservation laws; a posteriori error estimation; superconvergence; adaptivity; discontinuous Galerkin method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Weinhart, T. (2009). A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26571

Chicago Manual of Style (16th Edition):

Weinhart, Thomas. “A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws.” 2009. Doctoral Dissertation, Virginia Tech. Accessed April 15, 2021. http://hdl.handle.net/10919/26571.

MLA Handbook (7th Edition):

Weinhart, Thomas. “A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws.” 2009. Web. 15 Apr 2021.

Vancouver:

Weinhart T. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws. [Internet] [Doctoral dissertation]. Virginia Tech; 2009. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/10919/26571.

Council of Science Editors:

Weinhart T. A Posteriori Error Analysis of the Discontinuous Galerkin Method for Linear Hyperbolic Systems of Conservation Laws. [Doctoral Dissertation]. Virginia Tech; 2009. Available from: http://hdl.handle.net/10919/26571


Cornell University

11. Choi, Woo Song. The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics.

Degree: PhD, Physics, 2013, Cornell University

 Dislocations play an important role in the deformation behaviors of metals. They not only interact via long-range elastic stress, but also interact with shortrange interactions;… (more)

Subjects/Keywords: Dislocation dynamics; Hyperbolic conservation laws; Singular dislocation structures

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Choi, W. S. (2013). The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/33959

Chicago Manual of Style (16th Edition):

Choi, Woo Song. “The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics.” 2013. Doctoral Dissertation, Cornell University. Accessed April 15, 2021. http://hdl.handle.net/1813/33959.

MLA Handbook (7th Edition):

Choi, Woo Song. “The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics.” 2013. Web. 15 Apr 2021.

Vancouver:

Choi WS. The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics. [Internet] [Doctoral dissertation]. Cornell University; 2013. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/1813/33959.

Council of Science Editors:

Choi WS. The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics. [Doctoral Dissertation]. Cornell University; 2013. Available from: http://hdl.handle.net/1813/33959


University of Waterloo

12. Ashbourne, Alexander. Efficient Runge-Kutta Based Local Time-Stepping Methods.

Degree: 2016, University of Waterloo

 The method of lines approach to the numerical solution of transient hyperbolic partial differential equations (PDEs) allows us to write the PDE as a system… (more)

Subjects/Keywords: Runge-Kutta; Discontinuous Galerkin; Hyperbolic Conservation Laws; Local Time-Stepping

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ashbourne, A. (2016). Efficient Runge-Kutta Based Local Time-Stepping Methods. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10405

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ashbourne, Alexander. “Efficient Runge-Kutta Based Local Time-Stepping Methods.” 2016. Thesis, University of Waterloo. Accessed April 15, 2021. http://hdl.handle.net/10012/10405.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ashbourne, Alexander. “Efficient Runge-Kutta Based Local Time-Stepping Methods.” 2016. Web. 15 Apr 2021.

Vancouver:

Ashbourne A. Efficient Runge-Kutta Based Local Time-Stepping Methods. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/10012/10405.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ashbourne A. Efficient Runge-Kutta Based Local Time-Stepping Methods. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10405

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Rambaud, Amélie. Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échelles : Modelling, mathematical analysis and numerical simulations for some multiscale partial differential equations.

Degree: Docteur es, Mathématiques, 2011, Université Claude Bernard – Lyon I

Nous étudions plusieurs aspects d'équations aux dérivées partielles multi-échelles. Pour trois exemples, la présence de multiples échelles, spatiales ou temporelles, motive un travail de modélisation… (more)

Subjects/Keywords: Analyse d'échelles; Modèle multicouche de Saint-Venant; Systèmes hyperboliques; Volumes finis; Relaxation; Schéma préservant l'asymptotique; Loi de paroi; Couche limite; Scale analysis; Multilayer shallow water; Hyperbolic systems; Finite volumes; Relaxation; Asymptotic preserving schemes; Wall-laws; Boundary layer; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rambaud, A. (2011). Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échelles : Modelling, mathematical analysis and numerical simulations for some multiscale partial differential equations. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2011LYO10317

Chicago Manual of Style (16th Edition):

Rambaud, Amélie. “Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échelles : Modelling, mathematical analysis and numerical simulations for some multiscale partial differential equations.” 2011. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed April 15, 2021. http://www.theses.fr/2011LYO10317.

MLA Handbook (7th Edition):

Rambaud, Amélie. “Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échelles : Modelling, mathematical analysis and numerical simulations for some multiscale partial differential equations.” 2011. Web. 15 Apr 2021.

Vancouver:

Rambaud A. Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échelles : Modelling, mathematical analysis and numerical simulations for some multiscale partial differential equations. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2011. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2011LYO10317.

Council of Science Editors:

Rambaud A. Modélisation, analyse mathématique et simulations numériques de quelques problèmes aux dérivées partielles multi-échelles : Modelling, mathematical analysis and numerical simulations for some multiscale partial differential equations. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2011. Available from: http://www.theses.fr/2011LYO10317

14. Roux, Raphaël. Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire : Probabilistic study of interacting particle systems : applications to molecular simulation.

Degree: Docteur es, Mathématiques appliquées et applications des mathématiques, 2010, Université Paris-Est

Ce travail présente quelques résultats sur les systèmes de particules en interaction pour l'interprétation probabiliste des équations aux dérivées partielles, avec des applications à des… (more)

Subjects/Keywords: Systèmes de particules en intéraction; Interprétation probabiliste des équations aux dérivées partielles; Calculs d'énergies libres; Méthodes de Monte Carlo en chimie quantique; Processus de Lévy; Lois de conservation hyperboliques; Interacting particle systems; Probabilistic interpretation of partial differential equations; Free energy calculations; Quantum Monte Carlo methods; Lévy processes; Hyperbolic conservation laws

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roux, R. (2010). Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire : Probabilistic study of interacting particle systems : applications to molecular simulation. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2010PEST1040

Chicago Manual of Style (16th Edition):

Roux, Raphaël. “Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire : Probabilistic study of interacting particle systems : applications to molecular simulation.” 2010. Doctoral Dissertation, Université Paris-Est. Accessed April 15, 2021. http://www.theses.fr/2010PEST1040.

MLA Handbook (7th Edition):

Roux, Raphaël. “Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire : Probabilistic study of interacting particle systems : applications to molecular simulation.” 2010. Web. 15 Apr 2021.

Vancouver:

Roux R. Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire : Probabilistic study of interacting particle systems : applications to molecular simulation. [Internet] [Doctoral dissertation]. Université Paris-Est; 2010. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2010PEST1040.

Council of Science Editors:

Roux R. Étude probabiliste de systèmes de particules en interaction : applications à la simulation moléculaire : Probabilistic study of interacting particle systems : applications to molecular simulation. [Doctoral Dissertation]. Université Paris-Est; 2010. Available from: http://www.theses.fr/2010PEST1040


University of Michigan

15. Khodja, Mohamed. Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws.

Degree: PhD, Pure Sciences, 1989, University of Michigan

 In this thesis, we study the nonlinear stability of oscillatory traveling wave solutions to a class of hyperbolic systems of conservation laws with both dissipation… (more)

Subjects/Keywords: Conservation; Hyperbolic; Laws; Nonlinear; Oscillatory; Some; Stability; Systems; Traveling; Waves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khodja, M. (1989). Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/128369

Chicago Manual of Style (16th Edition):

Khodja, Mohamed. “Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws.” 1989. Doctoral Dissertation, University of Michigan. Accessed April 15, 2021. http://hdl.handle.net/2027.42/128369.

MLA Handbook (7th Edition):

Khodja, Mohamed. “Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws.” 1989. Web. 15 Apr 2021.

Vancouver:

Khodja M. Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws. [Internet] [Doctoral dissertation]. University of Michigan; 1989. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/2027.42/128369.

Council of Science Editors:

Khodja M. Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws. [Doctoral Dissertation]. University of Michigan; 1989. Available from: http://hdl.handle.net/2027.42/128369

16. Le, Minh Hoang. Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant : Multiscale modelling and numerical simulation of soil erosion by water from the plot scale to the catchment scale.

Degree: Docteur es, Mathématiques appliquées, 2012, Université d'Orléans

L’objectif global de ce travail est d’étudier une modélisation multi échelle et de développer une méthode adaptée pour la simulation numérique du processus d’érosion à… (more)

Subjects/Keywords: Ruissellement; Erosion; Charriage; Suspension; Modélisation multi échelle; Taux d’inondation; Système hyperbolique; Equations de Saint-Venant avec porosité; Modèle d’Hairsine et Rose; Méthode de volumes finis; Schéma bien équilibré; Calcul parallèle; Overland flow; Soil erosion; Bedload; Suspension; Multiscale modelling; Inundation ratio; Hyperbolic system of conservation laws; Shallow-Water equations with porosity; Hairsine and Rose’s model; Finite volume method; Well-balanced scheme; Parallel computing

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Le, M. H. (2012). Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant : Multiscale modelling and numerical simulation of soil erosion by water from the plot scale to the catchment scale. (Doctoral Dissertation). Université d'Orléans. Retrieved from http://www.theses.fr/2012ORLE2059

Chicago Manual of Style (16th Edition):

Le, Minh Hoang. “Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant : Multiscale modelling and numerical simulation of soil erosion by water from the plot scale to the catchment scale.” 2012. Doctoral Dissertation, Université d'Orléans. Accessed April 15, 2021. http://www.theses.fr/2012ORLE2059.

MLA Handbook (7th Edition):

Le, Minh Hoang. “Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant : Multiscale modelling and numerical simulation of soil erosion by water from the plot scale to the catchment scale.” 2012. Web. 15 Apr 2021.

Vancouver:

Le MH. Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant : Multiscale modelling and numerical simulation of soil erosion by water from the plot scale to the catchment scale. [Internet] [Doctoral dissertation]. Université d'Orléans; 2012. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2012ORLE2059.

Council of Science Editors:

Le MH. Modélisation multi-échelle et simulation numérique de l’érosion des sols de la parcelle au bassin versant : Multiscale modelling and numerical simulation of soil erosion by water from the plot scale to the catchment scale. [Doctoral Dissertation]. Université d'Orléans; 2012. Available from: http://www.theses.fr/2012ORLE2059

17. Mousikou, Ioanna. Discontinuous Galerkin Method for Hyperbolic Conservation Laws.

Degree: Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, 2016, King Abdullah University of Science and Technology

Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect… (more)

Subjects/Keywords: Discontinuous Galerkin; Hyperbolic conservation laws; system of elastodynamics

conservation laws as well as linear hyperbolic systems. The development of theoretical research in… …conservation laws. Conservation laws are systems of partial di↵erential equations in divergence form… …used to produce approximations of the solutions of hyperbolic conservation laws. The idea of… …Recently, finite element methods found application to hyperbolic conservation laws in the form of… …solid background in the field of numerical analysis for solving hyperbolic conservation laws… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mousikou, I. (2016). Discontinuous Galerkin Method for Hyperbolic Conservation Laws. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/621929

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mousikou, Ioanna. “Discontinuous Galerkin Method for Hyperbolic Conservation Laws.” 2016. Thesis, King Abdullah University of Science and Technology. Accessed April 15, 2021. http://hdl.handle.net/10754/621929.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mousikou, Ioanna. “Discontinuous Galerkin Method for Hyperbolic Conservation Laws.” 2016. Web. 15 Apr 2021.

Vancouver:

Mousikou I. Discontinuous Galerkin Method for Hyperbolic Conservation Laws. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2016. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/10754/621929.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mousikou I. Discontinuous Galerkin Method for Hyperbolic Conservation Laws. [Thesis]. King Abdullah University of Science and Technology; 2016. Available from: http://hdl.handle.net/10754/621929

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Berkeley

18. McMillan, Benjamin Blake. Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations.

Degree: Mathematics, 2016, University of California – Berkeley

 I study the geometry and the conservation laws of second-order partial differential equations of parabolic type. The general strategy is to replace the differential equation… (more)

Subjects/Keywords: Mathematics; Conservation Laws; Exterior Differential Systems; Method of Equivalence; Parabolic Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McMillan, B. B. (2016). Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/95s1q8c5

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McMillan, Benjamin Blake. “Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations.” 2016. Thesis, University of California – Berkeley. Accessed April 15, 2021. http://www.escholarship.org/uc/item/95s1q8c5.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McMillan, Benjamin Blake. “Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations.” 2016. Web. 15 Apr 2021.

Vancouver:

McMillan BB. Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations. [Internet] [Thesis]. University of California – Berkeley; 2016. [cited 2021 Apr 15]. Available from: http://www.escholarship.org/uc/item/95s1q8c5.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McMillan BB. Geometry and Conservation Laws for a Class of Second-Order Parabolic Equations. [Thesis]. University of California – Berkeley; 2016. Available from: http://www.escholarship.org/uc/item/95s1q8c5

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Washington

19. Moe, Scott. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.

Degree: PhD, 2017, University of Washington

 This thesis focuses on several developments toward creating a high order shock capturing method that can be used on mapped grids with block-structured adaptive mesh… (more)

Subjects/Keywords: Conservation Laws; Discontinuous Galerkin Methods; Finite Element Methods; Hyperbolic PDEs; Applied mathematics; Applied mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moe, S. (2017). High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/39932

Chicago Manual of Style (16th Edition):

Moe, Scott. “High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.” 2017. Doctoral Dissertation, University of Washington. Accessed April 15, 2021. http://hdl.handle.net/1773/39932.

MLA Handbook (7th Edition):

Moe, Scott. “High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.” 2017. Web. 15 Apr 2021.

Vancouver:

Moe S. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. [Internet] [Doctoral dissertation]. University of Washington; 2017. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/1773/39932.

Council of Science Editors:

Moe S. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. [Doctoral Dissertation]. University of Washington; 2017. Available from: http://hdl.handle.net/1773/39932


Indian Institute of Science

20. Maruthi, N H. Hybird Central Solvers for Hyperbolic Conservation Laws.

Degree: PhD, Faculty of Engineering, 2018, Indian Institute of Science

 The hyperbolic conservation laws model the phenomena of nonlinear waves including discontinuities. The coupled nonlinear equations representing such conservation laws may lead to discontinuous solutions… (more)

Subjects/Keywords: Hyperbolic Conservation Laws; Hyperbolic Partial Differential Equations; Magnetohydrodynamics Equations; Shallow-Water Equations; Euler Equations; Methods of Optimal Viscosity for Enhanced Resolution of Shocks; Numerical Diffusion; Finite Volume Method; Hybrid Central Solver; MOVERS; Aerospace Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maruthi, N. H. (2018). Hybird Central Solvers for Hyperbolic Conservation Laws. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3523

Chicago Manual of Style (16th Edition):

Maruthi, N H. “Hybird Central Solvers for Hyperbolic Conservation Laws.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed April 15, 2021. http://etd.iisc.ac.in/handle/2005/3523.

MLA Handbook (7th Edition):

Maruthi, N H. “Hybird Central Solvers for Hyperbolic Conservation Laws.” 2018. Web. 15 Apr 2021.

Vancouver:

Maruthi NH. Hybird Central Solvers for Hyperbolic Conservation Laws. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Apr 15]. Available from: http://etd.iisc.ac.in/handle/2005/3523.

Council of Science Editors:

Maruthi NH. Hybird Central Solvers for Hyperbolic Conservation Laws. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3523

21. Boukili, Hamza. Schémas de simulation d'un modèle à trois phases immiscibles pour application à l'explosion vapeur : Simulation schemes of an immiscible three-phase flow model for vapour explosion applications.

Degree: Docteur es, Mathématiques appliquées, 2020, Aix Marseille Université

Dans ce travail, on étudie la modélisation d'écoulement à trois phases non miscibles. L'application visée est l'explosion vapeur, qui risque de se produire lorsqu'un constituant… (more)

Subjects/Keywords: Systèmes hyperboliques; Convection; Relaxation; Triphasique; Explosion vapeur; Hyperbolic systems; Convection; Relaxation; Three-Phase flow; Vapour explosion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Boukili, H. (2020). Schémas de simulation d'un modèle à trois phases immiscibles pour application à l'explosion vapeur : Simulation schemes of an immiscible three-phase flow model for vapour explosion applications. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2020AIXM0077

Chicago Manual of Style (16th Edition):

Boukili, Hamza. “Schémas de simulation d'un modèle à trois phases immiscibles pour application à l'explosion vapeur : Simulation schemes of an immiscible three-phase flow model for vapour explosion applications.” 2020. Doctoral Dissertation, Aix Marseille Université. Accessed April 15, 2021. http://www.theses.fr/2020AIXM0077.

MLA Handbook (7th Edition):

Boukili, Hamza. “Schémas de simulation d'un modèle à trois phases immiscibles pour application à l'explosion vapeur : Simulation schemes of an immiscible three-phase flow model for vapour explosion applications.” 2020. Web. 15 Apr 2021.

Vancouver:

Boukili H. Schémas de simulation d'un modèle à trois phases immiscibles pour application à l'explosion vapeur : Simulation schemes of an immiscible three-phase flow model for vapour explosion applications. [Internet] [Doctoral dissertation]. Aix Marseille Université 2020. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2020AIXM0077.

Council of Science Editors:

Boukili H. Schémas de simulation d'un modèle à trois phases immiscibles pour application à l'explosion vapeur : Simulation schemes of an immiscible three-phase flow model for vapour explosion applications. [Doctoral Dissertation]. Aix Marseille Université 2020. Available from: http://www.theses.fr/2020AIXM0077

22. Fiorini, Camilla. Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws.

Degree: Docteur es, Mathématiques appliquées, 2018, Université Paris-Saclay (ComUE)

L’analyse de sensibilité (AS) concerne la quantification des changements dans la solution d’un système d’équations aux dérivées partielles (EDP) dus aux varia- tions des paramètres… (more)

Subjects/Keywords: Analyse de sensibilité; EDP hyperboliques; Optimisation; Quantification d'incertitude; Lois de conservation; Sensitivity analysis; Hyperbolic PDEs; Optimization; Uncertainty quantification; Conservation laws; 515.35

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fiorini, C. (2018). Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLV034

Chicago Manual of Style (16th Edition):

Fiorini, Camilla. “Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed April 15, 2021. http://www.theses.fr/2018SACLV034.

MLA Handbook (7th Edition):

Fiorini, Camilla. “Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws.” 2018. Web. 15 Apr 2021.

Vancouver:

Fiorini C. Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2018SACLV034.

Council of Science Editors:

Fiorini C. Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLV034


Indian Institute of Science

23. Ranjan Krishna, M. Thermalization and its Relation to Localization, Conservation Laws and Integrability in Quantum Systems.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 In this thesis, we have explored the commonalities and connections between different classes of quantum systems that do not thermalize. Specifically, we have (1) shown… (more)

Subjects/Keywords: Quantum Systems; Thermalization of Classical Systems; Quantum Chaos; Microscopic Lattice Models; Random Matrix Ensembles; Conservation Laws; Single Particle Mobility Edge; Physics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ranjan Krishna, M. (2018). Thermalization and its Relation to Localization, Conservation Laws and Integrability in Quantum Systems. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3888

Chicago Manual of Style (16th Edition):

Ranjan Krishna, M. “Thermalization and its Relation to Localization, Conservation Laws and Integrability in Quantum Systems.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed April 15, 2021. http://etd.iisc.ac.in/handle/2005/3888.

MLA Handbook (7th Edition):

Ranjan Krishna, M. “Thermalization and its Relation to Localization, Conservation Laws and Integrability in Quantum Systems.” 2018. Web. 15 Apr 2021.

Vancouver:

Ranjan Krishna M. Thermalization and its Relation to Localization, Conservation Laws and Integrability in Quantum Systems. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Apr 15]. Available from: http://etd.iisc.ac.in/handle/2005/3888.

Council of Science Editors:

Ranjan Krishna M. Thermalization and its Relation to Localization, Conservation Laws and Integrability in Quantum Systems. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3888


Université de Grenoble

24. Pham, Van Thang. Contributions à la commande prédictive des systèmes de lois de conservation : Contribution to predictive control for systems of conservation laws.

Degree: Docteur es, Sciences et technologie industrielles, 2012, Université de Grenoble

La Commande prédictive ou Commande Optimale à Horizon Glissant (COHG) devient de plus en plus populaire dans de nombreuses applications pratiques en raison de ses… (more)

Subjects/Keywords: Commande prédictive; Système de lois de conservation de l’adjoint; Système hyperbolique; Semi-groupe; Canal d'irrigation; Canalisation sous pression; Predictive control; Systems of conservation lawsthod; Hyperbolic systems; Semi-group; Open channel; Mots-clés de la thèse en anglais: Predictive control,Systems of conservation lawsthod,hyperbolic systems,semi-group,open channel,water-hammer equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pham, V. T. (2012). Contributions à la commande prédictive des systèmes de lois de conservation : Contribution to predictive control for systems of conservation laws. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2012GRENT051

Chicago Manual of Style (16th Edition):

Pham, Van Thang. “Contributions à la commande prédictive des systèmes de lois de conservation : Contribution to predictive control for systems of conservation laws.” 2012. Doctoral Dissertation, Université de Grenoble. Accessed April 15, 2021. http://www.theses.fr/2012GRENT051.

MLA Handbook (7th Edition):

Pham, Van Thang. “Contributions à la commande prédictive des systèmes de lois de conservation : Contribution to predictive control for systems of conservation laws.” 2012. Web. 15 Apr 2021.

Vancouver:

Pham VT. Contributions à la commande prédictive des systèmes de lois de conservation : Contribution to predictive control for systems of conservation laws. [Internet] [Doctoral dissertation]. Université de Grenoble; 2012. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2012GRENT051.

Council of Science Editors:

Pham VT. Contributions à la commande prédictive des systèmes de lois de conservation : Contribution to predictive control for systems of conservation laws. [Doctoral Dissertation]. Université de Grenoble; 2012. Available from: http://www.theses.fr/2012GRENT051

25. Chiapolino, Alexandre. Quelques contributions à la modélisation et simulation numérique des écoulements diphasiques compressibles : Some contributions to the theoretical modeling and numerical simulation of compressible two-phase flows.

Degree: Docteur es, Mécanique énergétique, 2018, Aix Marseille Université

Ce manuscrit porte sur la modélisation et la simulation numérique d’écoulements diphasiques compressibles. Dans ce contexte, les méthodes d’interfaces diffuses sont aujourd’hui bien acceptées. Cependant,… (more)

Subjects/Keywords: Ecoulements diphasiques; Changement de phase; Équations d'état; Interfaces; Systèmes hyperboliques; Relaxation; Méthodes numériques; Solveurs de Riemann; Termes non-Conservatifs; Shallow water bi-Couche; Two-Phase flows; Phase transition; Equations of state; Interfaces; Hyperbolic systems; Relaxation; Numerical methods; Riemann solvers; Non-Conservative terms; Two-Layer shallow water flows

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chiapolino, A. (2018). Quelques contributions à la modélisation et simulation numérique des écoulements diphasiques compressibles : Some contributions to the theoretical modeling and numerical simulation of compressible two-phase flows. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2018AIXM0757

Chicago Manual of Style (16th Edition):

Chiapolino, Alexandre. “Quelques contributions à la modélisation et simulation numérique des écoulements diphasiques compressibles : Some contributions to the theoretical modeling and numerical simulation of compressible two-phase flows.” 2018. Doctoral Dissertation, Aix Marseille Université. Accessed April 15, 2021. http://www.theses.fr/2018AIXM0757.

MLA Handbook (7th Edition):

Chiapolino, Alexandre. “Quelques contributions à la modélisation et simulation numérique des écoulements diphasiques compressibles : Some contributions to the theoretical modeling and numerical simulation of compressible two-phase flows.” 2018. Web. 15 Apr 2021.

Vancouver:

Chiapolino A. Quelques contributions à la modélisation et simulation numérique des écoulements diphasiques compressibles : Some contributions to the theoretical modeling and numerical simulation of compressible two-phase flows. [Internet] [Doctoral dissertation]. Aix Marseille Université 2018. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2018AIXM0757.

Council of Science Editors:

Chiapolino A. Quelques contributions à la modélisation et simulation numérique des écoulements diphasiques compressibles : Some contributions to the theoretical modeling and numerical simulation of compressible two-phase flows. [Doctoral Dissertation]. Aix Marseille Université 2018. Available from: http://www.theses.fr/2018AIXM0757


ETH Zürich

26. Lye, Kjetil Olsen. Computation of statistical solutions of hyperbolic systems of conservation laws.

Degree: 2020, ETH Zürich

 Statistical solutions are time-parameterized probability measures on spaces of integrable functions, that have been proposed recently as a framework for global solutions and uncertainty quantification… (more)

Subjects/Keywords: Uncertainty Quantification; Hyperbolic conservation laws; Monte Carlo simulation; high performance computing; info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lye, K. O. (2020). Computation of statistical solutions of hyperbolic systems of conservation laws. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/432014

Chicago Manual of Style (16th Edition):

Lye, Kjetil Olsen. “Computation of statistical solutions of hyperbolic systems of conservation laws.” 2020. Doctoral Dissertation, ETH Zürich. Accessed April 15, 2021. http://hdl.handle.net/20.500.11850/432014.

MLA Handbook (7th Edition):

Lye, Kjetil Olsen. “Computation of statistical solutions of hyperbolic systems of conservation laws.” 2020. Web. 15 Apr 2021.

Vancouver:

Lye KO. Computation of statistical solutions of hyperbolic systems of conservation laws. [Internet] [Doctoral dissertation]. ETH Zürich; 2020. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/20.500.11850/432014.

Council of Science Editors:

Lye KO. Computation of statistical solutions of hyperbolic systems of conservation laws. [Doctoral Dissertation]. ETH Zürich; 2020. Available from: http://hdl.handle.net/20.500.11850/432014


Iowa State University

27. Jiang, Yi. Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws.

Degree: 2018, Iowa State University

 This thesis is aimed at developing high order invariant-region-preserving (IRP) discontinuous Galerkin (DG) schemes solving hyperbolic conservation law systems. In particular, our focus is on… (more)

Subjects/Keywords: compressible Euler equations; discontinuous Galerkin method; gas dynamics; hyperbolic conservation laws; invariant region; p-system; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jiang, Y. (2018). Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/16599

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jiang, Yi. “Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws.” 2018. Thesis, Iowa State University. Accessed April 15, 2021. https://lib.dr.iastate.edu/etd/16599.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jiang, Yi. “Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws.” 2018. Web. 15 Apr 2021.

Vancouver:

Jiang Y. Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws. [Internet] [Thesis]. Iowa State University; 2018. [cited 2021 Apr 15]. Available from: https://lib.dr.iastate.edu/etd/16599.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jiang Y. Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws. [Thesis]. Iowa State University; 2018. Available from: https://lib.dr.iastate.edu/etd/16599

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

28. Fikl, Alexandru. Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities.

Degree: MS, Aerospace Engineering, 2016, University of Illinois – Urbana-Champaign

 In this thesis, we are interested in optimization in multiphase flows using discrete adjoint-based methods. The main issues we will endeavor to study are the… (more)

Subjects/Keywords: Adjoint; Optimization; Hyperbolic; Conservation laws; Interface; Thinc

…solutions have been thoroughly studied in the case of hyperbolic systems of conservation laws… …analysis of discontinuous solutions to hyperbolic balance laws and applications to interface… …Chapter 3 Adjoint Equations of Hyperbolic Balance Laws In the previous chapter we have seen a… …solutions naturally appear in most hyperbolic equations with the development of different wave… …hyperbolic systems. We are interested in contact discontinuities because they appear in models of… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fikl, A. (2016). Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/95395

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fikl, Alexandru. “Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities.” 2016. Thesis, University of Illinois – Urbana-Champaign. Accessed April 15, 2021. http://hdl.handle.net/2142/95395.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fikl, Alexandru. “Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities.” 2016. Web. 15 Apr 2021.

Vancouver:

Fikl A. Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2016. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/2142/95395.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fikl A. Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities. [Thesis]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/95395

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade do Estado do Rio de Janeiro

29. Nelson Machado Barbosa. Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo.

Degree: Master, 2010, Universidade do Estado do Rio de Janeiro

O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água no reservatório a fim de manter a pressão necessária para… (more)

Subjects/Keywords: Recuperação secundária do petróleo Modelos matemáticos; Equações diferenciais hiperbólicas Soluções numéricas; Burgers, Equação de; Lei da conservação (Matemática); Equações hiperbólicas não lineares; Problemas de Burgers e Buckley-Leverett; Método composto LWLF-k; Secondary recovery of oil - Mathematical models; Differential equations, Hyperbolic - Numerical solutions; Burgers equation; Conservation laws (Mathematics); Nonlinear hyperbolic equations; Burgers and Buckley-Leverett problems; LWLF-k Composite Scheme; MATEMATICA APLICADA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barbosa, N. M. (2010). Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo. (Masters Thesis). Universidade do Estado do Rio de Janeiro. Retrieved from http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;

Chicago Manual of Style (16th Edition):

Barbosa, Nelson Machado. “Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo.” 2010. Masters Thesis, Universidade do Estado do Rio de Janeiro. Accessed April 15, 2021. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;.

MLA Handbook (7th Edition):

Barbosa, Nelson Machado. “Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo.” 2010. Web. 15 Apr 2021.

Vancouver:

Barbosa NM. Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo. [Internet] [Masters thesis]. Universidade do Estado do Rio de Janeiro; 2010. [cited 2021 Apr 15]. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;.

Council of Science Editors:

Barbosa NM. Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo. [Masters Thesis]. Universidade do Estado do Rio de Janeiro; 2010. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;

30. Lamare, Pierre-Olivier. Contrôle de systèmes hyperboliques par analyse Lyapunov : Control of Hyperbolic Systems by Lyapunov Analysis.

Degree: Docteur es, Mathématiques appliquées, 2015, Université Grenoble Alpes (ComUE)

Dans cette thèse nous avons étudié différents aspects pour le contrôle de systèmes hyperboliques.Tout d'abord, nous nous sommes intéressés à des systèmes hyperboliques à commutations.… (more)

Subjects/Keywords: Systèmes Hybrides; Systèmes Hyperboliques; Lois de contrôle; Stabilisation; Switched Systems; Hyperbolic Systems; Control laws; Stabilization; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lamare, P. (2015). Contrôle de systèmes hyperboliques par analyse Lyapunov : Control of Hyperbolic Systems by Lyapunov Analysis. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2015GREAM062

Chicago Manual of Style (16th Edition):

Lamare, Pierre-Olivier. “Contrôle de systèmes hyperboliques par analyse Lyapunov : Control of Hyperbolic Systems by Lyapunov Analysis.” 2015. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed April 15, 2021. http://www.theses.fr/2015GREAM062.

MLA Handbook (7th Edition):

Lamare, Pierre-Olivier. “Contrôle de systèmes hyperboliques par analyse Lyapunov : Control of Hyperbolic Systems by Lyapunov Analysis.” 2015. Web. 15 Apr 2021.

Vancouver:

Lamare P. Contrôle de systèmes hyperboliques par analyse Lyapunov : Control of Hyperbolic Systems by Lyapunov Analysis. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2015. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2015GREAM062.

Council of Science Editors:

Lamare P. Contrôle de systèmes hyperboliques par analyse Lyapunov : Control of Hyperbolic Systems by Lyapunov Analysis. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2015. Available from: http://www.theses.fr/2015GREAM062

[1] [2] [3] [4] [5] … [12703]

.