Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hyperbolic conservation laws). Showing records 1 – 30 of 51 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

▼ Search Limiters


Tulane University

1. Dewar, Jeremy. Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption.

Degree: PhD, 2013, Tulane University

This thesis examines the Euler equations of gas dynamics and develops a new adaption indicator, which is based on the weak local residual measured for… (more)

Subjects/Keywords: Numerical methods; Hyperbolic conservation laws; School of Science & Engineering; Mathematics; Ph.D

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dewar, J. (2013). Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption. (Doctoral Dissertation). Tulane University. Retrieved from https://digitallibrary.tulane.edu/islandora/object/tulane:27600

Chicago Manual of Style (16th Edition):

Dewar, Jeremy. “Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption.” 2013. Doctoral Dissertation, Tulane University. Accessed April 15, 2021. https://digitallibrary.tulane.edu/islandora/object/tulane:27600.

MLA Handbook (7th Edition):

Dewar, Jeremy. “Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption.” 2013. Web. 15 Apr 2021.

Vancouver:

Dewar J. Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption. [Internet] [Doctoral dissertation]. Tulane University; 2013. [cited 2021 Apr 15]. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27600.

Council of Science Editors:

Dewar J. Pressure-based Indicator for Hyperbolic Conservation Laws and Its Use in Scheme Adaption. [Doctoral Dissertation]. Tulane University; 2013. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27600


Cornell University

2. Choi, Woo Song. The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics.

Degree: PhD, Physics, 2013, Cornell University

 Dislocations play an important role in the deformation behaviors of metals. They not only interact via long-range elastic stress, but also interact with shortrange interactions;… (more)

Subjects/Keywords: Dislocation dynamics; Hyperbolic conservation laws; Singular dislocation structures

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Choi, W. S. (2013). The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics. (Doctoral Dissertation). Cornell University. Retrieved from http://hdl.handle.net/1813/33959

Chicago Manual of Style (16th Edition):

Choi, Woo Song. “The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics.” 2013. Doctoral Dissertation, Cornell University. Accessed April 15, 2021. http://hdl.handle.net/1813/33959.

MLA Handbook (7th Edition):

Choi, Woo Song. “The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics.” 2013. Web. 15 Apr 2021.

Vancouver:

Choi WS. The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics. [Internet] [Doctoral dissertation]. Cornell University; 2013. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/1813/33959.

Council of Science Editors:

Choi WS. The Physics Of Singular Dislocation Structures In Continuum Dislocation Dynamics. [Doctoral Dissertation]. Cornell University; 2013. Available from: http://hdl.handle.net/1813/33959


University of Waterloo

3. Ashbourne, Alexander. Efficient Runge-Kutta Based Local Time-Stepping Methods.

Degree: 2016, University of Waterloo

 The method of lines approach to the numerical solution of transient hyperbolic partial differential equations (PDEs) allows us to write the PDE as a system… (more)

Subjects/Keywords: Runge-Kutta; Discontinuous Galerkin; Hyperbolic Conservation Laws; Local Time-Stepping

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ashbourne, A. (2016). Efficient Runge-Kutta Based Local Time-Stepping Methods. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10405

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ashbourne, Alexander. “Efficient Runge-Kutta Based Local Time-Stepping Methods.” 2016. Thesis, University of Waterloo. Accessed April 15, 2021. http://hdl.handle.net/10012/10405.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ashbourne, Alexander. “Efficient Runge-Kutta Based Local Time-Stepping Methods.” 2016. Web. 15 Apr 2021.

Vancouver:

Ashbourne A. Efficient Runge-Kutta Based Local Time-Stepping Methods. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/10012/10405.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ashbourne A. Efficient Runge-Kutta Based Local Time-Stepping Methods. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10405

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

4. Garg, Naveen Kumar. Novel Upwind and Central Schemes for Various Hyperbolic Systems.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 The class of hyperbolic conservation laws model the phenomena of non-linear wave propagation, including the presence and propagation of discontinuities and expansion waves. Such nonlinear… (more)

Subjects/Keywords: Hyperbolic PDEs; Hyperbolic Conservation Laws; Pressureless Gas Dynamics System; Jordan Canonical Forms; Pressureless Gas Dynamics; Hyperbolic Systems; Euler Solver; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garg, N. K. (2018). Novel Upwind and Central Schemes for Various Hyperbolic Systems. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3564

Chicago Manual of Style (16th Edition):

Garg, Naveen Kumar. “Novel Upwind and Central Schemes for Various Hyperbolic Systems.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed April 15, 2021. http://etd.iisc.ac.in/handle/2005/3564.

MLA Handbook (7th Edition):

Garg, Naveen Kumar. “Novel Upwind and Central Schemes for Various Hyperbolic Systems.” 2018. Web. 15 Apr 2021.

Vancouver:

Garg NK. Novel Upwind and Central Schemes for Various Hyperbolic Systems. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Apr 15]. Available from: http://etd.iisc.ac.in/handle/2005/3564.

Council of Science Editors:

Garg NK. Novel Upwind and Central Schemes for Various Hyperbolic Systems. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3564


University of Washington

5. Moe, Scott. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.

Degree: PhD, 2017, University of Washington

 This thesis focuses on several developments toward creating a high order shock capturing method that can be used on mapped grids with block-structured adaptive mesh… (more)

Subjects/Keywords: Conservation Laws; Discontinuous Galerkin Methods; Finite Element Methods; Hyperbolic PDEs; Applied mathematics; Applied mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moe, S. (2017). High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. (Doctoral Dissertation). University of Washington. Retrieved from http://hdl.handle.net/1773/39932

Chicago Manual of Style (16th Edition):

Moe, Scott. “High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.” 2017. Doctoral Dissertation, University of Washington. Accessed April 15, 2021. http://hdl.handle.net/1773/39932.

MLA Handbook (7th Edition):

Moe, Scott. “High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids.” 2017. Web. 15 Apr 2021.

Vancouver:

Moe S. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. [Internet] [Doctoral dissertation]. University of Washington; 2017. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/1773/39932.

Council of Science Editors:

Moe S. High order shock capturing methods with compact stencils for use with adaptive mesh refinement and mapped grids. [Doctoral Dissertation]. University of Washington; 2017. Available from: http://hdl.handle.net/1773/39932


University of Maryland

6. Miroshnikov, Alexey. A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS.

Degree: Mathematics, 2012, University of Maryland

 We study the equations describing the dynamics of radial motions for isotropic elastic materials; these form a system of non-homogeneous conservation laws. We construct a… (more)

Subjects/Keywords: Mathematics; calculus of variations; hyperbolic conservation laws; nonlinear elasticity; nonlinear elastodynamics; polyconvexity; variational approximation scheme

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Miroshnikov, A. (2012). A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/13168

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Miroshnikov, Alexey. “A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS.” 2012. Thesis, University of Maryland. Accessed April 15, 2021. http://hdl.handle.net/1903/13168.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Miroshnikov, Alexey. “A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS.” 2012. Web. 15 Apr 2021.

Vancouver:

Miroshnikov A. A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS. [Internet] [Thesis]. University of Maryland; 2012. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/1903/13168.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Miroshnikov A. A VARIATIONAL APPROXIMATION SCHEME FOR RADIAL POLYCONVEX ELASTICITY THAT PRESERVES THE POSITIVITY OF DETERMINANTS. [Thesis]. University of Maryland; 2012. Available from: http://hdl.handle.net/1903/13168

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Fiorini, Camilla. Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws.

Degree: Docteur es, Mathématiques appliquées, 2018, Université Paris-Saclay (ComUE)

L’analyse de sensibilité (AS) concerne la quantification des changements dans la solution d’un système d’équations aux dérivées partielles (EDP) dus aux varia- tions des paramètres… (more)

Subjects/Keywords: Analyse de sensibilité; EDP hyperboliques; Optimisation; Quantification d'incertitude; Lois de conservation; Sensitivity analysis; Hyperbolic PDEs; Optimization; Uncertainty quantification; Conservation laws; 515.35

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fiorini, C. (2018). Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws. (Doctoral Dissertation). Université Paris-Saclay (ComUE). Retrieved from http://www.theses.fr/2018SACLV034

Chicago Manual of Style (16th Edition):

Fiorini, Camilla. “Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE). Accessed April 15, 2021. http://www.theses.fr/2018SACLV034.

MLA Handbook (7th Edition):

Fiorini, Camilla. “Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws.” 2018. Web. 15 Apr 2021.

Vancouver:

Fiorini C. Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); 2018. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2018SACLV034.

Council of Science Editors:

Fiorini C. Analyse de sensibilité pour systèmes hyperboliques non linéaires : Sensitivity analysis for nonlinear hyperbolic equations of conservation laws. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); 2018. Available from: http://www.theses.fr/2018SACLV034

8. Tang, Ying. Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés.

Degree: Docteur es, Automatique et productique, 2015, Université Grenoble Alpes (ComUE)

 Les dynamiques des systèmes modélisés par des équations aux dérivées partielles (EDPs) en dimension infinie sont largement liées aux réseaux physiques. La synthèse de la… (more)

Subjects/Keywords: Systèmes hyperboliques; Approximation de Tikhonov; Singulièrement perturbé; Lois de conservation; Lois d'équilibre; Fonction de Lyapunov; Hyperbolic systems; Tikhonov approximation; Singular perturbation; Conservation laws; Balance laws; Lyapunov function; 620

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tang, Y. (2015). Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2015GREAT054

Chicago Manual of Style (16th Edition):

Tang, Ying. “Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés.” 2015. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed April 15, 2021. http://www.theses.fr/2015GREAT054.

MLA Handbook (7th Edition):

Tang, Ying. “Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés.” 2015. Web. 15 Apr 2021.

Vancouver:

Tang Y. Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2015. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2015GREAT054.

Council of Science Editors:

Tang Y. Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems : Stabilité et approximation de Tikhonov pour des systèmes hyperboliques linéaires singulièrement perturbés. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2015. Available from: http://www.theses.fr/2015GREAT054


University of Michigan

9. Xin, Zhouping. Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws.

Degree: PhD, Pure Sciences, 1988, University of Michigan

 We study the asymptotic convergence to rarefaction waves of the solution for the initial value problem for some systems of hyperbolic conservation laws with positive… (more)

Subjects/Keywords: Conservation; Hyperbolic; Laws; Nonlinear; Rarefaction; Stability; Systems; Viscous; Waves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xin, Z. (1988). Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/128295

Chicago Manual of Style (16th Edition):

Xin, Zhouping. “Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws.” 1988. Doctoral Dissertation, University of Michigan. Accessed April 15, 2021. http://hdl.handle.net/2027.42/128295.

MLA Handbook (7th Edition):

Xin, Zhouping. “Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws.” 1988. Web. 15 Apr 2021.

Vancouver:

Xin Z. Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws. [Internet] [Doctoral dissertation]. University of Michigan; 1988. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/2027.42/128295.

Council of Science Editors:

Xin Z. Nonlinear stability of rarefaction waves for systems of viscous hyperbolic conservation laws. [Doctoral Dissertation]. University of Michigan; 1988. Available from: http://hdl.handle.net/2027.42/128295


ETH Zürich

10. Lye, Kjetil Olsen. Computation of statistical solutions of hyperbolic systems of conservation laws.

Degree: 2020, ETH Zürich

 Statistical solutions are time-parameterized probability measures on spaces of integrable functions, that have been proposed recently as a framework for global solutions and uncertainty quantification… (more)

Subjects/Keywords: Uncertainty Quantification; Hyperbolic conservation laws; Monte Carlo simulation; high performance computing; info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lye, K. O. (2020). Computation of statistical solutions of hyperbolic systems of conservation laws. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/432014

Chicago Manual of Style (16th Edition):

Lye, Kjetil Olsen. “Computation of statistical solutions of hyperbolic systems of conservation laws.” 2020. Doctoral Dissertation, ETH Zürich. Accessed April 15, 2021. http://hdl.handle.net/20.500.11850/432014.

MLA Handbook (7th Edition):

Lye, Kjetil Olsen. “Computation of statistical solutions of hyperbolic systems of conservation laws.” 2020. Web. 15 Apr 2021.

Vancouver:

Lye KO. Computation of statistical solutions of hyperbolic systems of conservation laws. [Internet] [Doctoral dissertation]. ETH Zürich; 2020. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/20.500.11850/432014.

Council of Science Editors:

Lye KO. Computation of statistical solutions of hyperbolic systems of conservation laws. [Doctoral Dissertation]. ETH Zürich; 2020. Available from: http://hdl.handle.net/20.500.11850/432014


Iowa State University

11. Jiang, Yi. Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws.

Degree: 2018, Iowa State University

 This thesis is aimed at developing high order invariant-region-preserving (IRP) discontinuous Galerkin (DG) schemes solving hyperbolic conservation law systems. In particular, our focus is on… (more)

Subjects/Keywords: compressible Euler equations; discontinuous Galerkin method; gas dynamics; hyperbolic conservation laws; invariant region; p-system; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jiang, Y. (2018). Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/16599

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jiang, Yi. “Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws.” 2018. Thesis, Iowa State University. Accessed April 15, 2021. https://lib.dr.iastate.edu/etd/16599.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jiang, Yi. “Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws.” 2018. Web. 15 Apr 2021.

Vancouver:

Jiang Y. Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws. [Internet] [Thesis]. Iowa State University; 2018. [cited 2021 Apr 15]. Available from: https://lib.dr.iastate.edu/etd/16599.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jiang Y. Invariant-region-preserving discontinuous Galerkin methods for systems of hyperbolic conservation laws. [Thesis]. Iowa State University; 2018. Available from: https://lib.dr.iastate.edu/etd/16599

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

12. Fikl, Alexandru. Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities.

Degree: MS, Aerospace Engineering, 2016, University of Illinois – Urbana-Champaign

 In this thesis, we are interested in optimization in multiphase flows using discrete adjoint-based methods. The main issues we will endeavor to study are the… (more)

Subjects/Keywords: Adjoint; Optimization; Hyperbolic; Conservation laws; Interface; Thinc

…solutions have been thoroughly studied in the case of hyperbolic systems of conservation laws… …analysis of discontinuous solutions to hyperbolic balance laws and applications to interface… …Chapter 3 Adjoint Equations of Hyperbolic Balance Laws In the previous chapter we have seen a… …major types of PDEs, notably hyperbolic equations, [Tröltzsch, 2010; Borzi, 2012]… …In Chapter 3, we will define the adjoint equations for linear and nonlinear hyperbolic… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fikl, A. (2016). Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/95395

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fikl, Alexandru. “Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities.” 2016. Thesis, University of Illinois – Urbana-Champaign. Accessed April 15, 2021. http://hdl.handle.net/2142/95395.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fikl, Alexandru. “Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities.” 2016. Web. 15 Apr 2021.

Vancouver:

Fikl A. Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2016. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/2142/95395.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fikl A. Adjoint-based optimization for hyperbolic balance laws in the presence of discontinuities. [Thesis]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/95395

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Colorado

13. Kalchev, Delyan Zhelev. Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems.

Degree: PhD, Applied Mathematics, 2018, University of Colorado

  Least-squares finite element discretizations of first-order hyperbolic partial differential equations (PDEs) are proposed and studied. Hyperbolic problems are notorious for possessing solutions with jump… (more)

Subjects/Keywords: first-order hyperbolic problems; balance laws; conservation laws; space-time discretization; least-squares methods; finite element methods; Numerical Analysis and Computation; Partial Differential Equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kalchev, D. Z. (2018). Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/appm_gradetds/138

Chicago Manual of Style (16th Edition):

Kalchev, Delyan Zhelev. “Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems.” 2018. Doctoral Dissertation, University of Colorado. Accessed April 15, 2021. https://scholar.colorado.edu/appm_gradetds/138.

MLA Handbook (7th Edition):

Kalchev, Delyan Zhelev. “Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems.” 2018. Web. 15 Apr 2021.

Vancouver:

Kalchev DZ. Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems. [Internet] [Doctoral dissertation]. University of Colorado; 2018. [cited 2021 Apr 15]. Available from: https://scholar.colorado.edu/appm_gradetds/138.

Council of Science Editors:

Kalchev DZ. Dual-Norm Least-Squares Finite Element Methods for Hyperbolic Problems. [Doctoral Dissertation]. University of Colorado; 2018. Available from: https://scholar.colorado.edu/appm_gradetds/138


University of Michigan

14. Khodja, Mohamed. Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws.

Degree: PhD, Pure Sciences, 1989, University of Michigan

 In this thesis, we study the nonlinear stability of oscillatory traveling wave solutions to a class of hyperbolic systems of conservation laws with both dissipation… (more)

Subjects/Keywords: Conservation; Hyperbolic; Laws; Nonlinear; Oscillatory; Some; Stability; Systems; Traveling; Waves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khodja, M. (1989). Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/128369

Chicago Manual of Style (16th Edition):

Khodja, Mohamed. “Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws.” 1989. Doctoral Dissertation, University of Michigan. Accessed April 15, 2021. http://hdl.handle.net/2027.42/128369.

MLA Handbook (7th Edition):

Khodja, Mohamed. “Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws.” 1989. Web. 15 Apr 2021.

Vancouver:

Khodja M. Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws. [Internet] [Doctoral dissertation]. University of Michigan; 1989. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/2027.42/128369.

Council of Science Editors:

Khodja M. Nonlinear stability of oscillatory traveling waves for some systems of hyperbolic conservation laws. [Doctoral Dissertation]. University of Michigan; 1989. Available from: http://hdl.handle.net/2027.42/128369


Indian Institute of Science

15. Kaushik, K N. A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws.

Degree: MSc Engg, Faculty of Engineering, 2012, Indian Institute of Science

Subjects/Keywords: Relaxation Dynamics; Hyperbolic Conservation Laws; Magneto Hydrodynamic Flows; Compressible Flows; Relaxation Systems; Aerodynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kaushik, K. N. (2012). A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/1661

Chicago Manual of Style (16th Edition):

Kaushik, K N. “A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws.” 2012. Masters Thesis, Indian Institute of Science. Accessed April 15, 2021. http://etd.iisc.ac.in/handle/2005/1661.

MLA Handbook (7th Edition):

Kaushik, K N. “A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws.” 2012. Web. 15 Apr 2021.

Vancouver:

Kaushik KN. A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws. [Internet] [Masters thesis]. Indian Institute of Science; 2012. [cited 2021 Apr 15]. Available from: http://etd.iisc.ac.in/handle/2005/1661.

Council of Science Editors:

Kaushik KN. A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws. [Masters Thesis]. Indian Institute of Science; 2012. Available from: http://etd.iisc.ac.in/handle/2005/1661

16. Ali, Qasim. Contribution to the mathematical modeling of immune response : Contribution à la modélisation mathématique de la réponse immunitaire.

Degree: Docteur es, Génie des Procédés, 2013, Saint-Etienne, EMSE

Les premières étapes d’activation des lymphocytes T sont cruciales pour déterminer leur comportement, ainsi que leur prolifération. Ces étapes dépendent fortement des conditions initiales, particulièrement… (more)

Subjects/Keywords: Bilans de population; Activation; Prolifération; Méthode des caractéristiques; T-cell; Activation rate; Reaction rate; Proliferation; Population balance model; Hyperbolic PDEs; Conservation laws; Numerical solutions; 571.964

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ali, Q. (2013). Contribution to the mathematical modeling of immune response : Contribution à la modélisation mathématique de la réponse immunitaire. (Doctoral Dissertation). Saint-Etienne, EMSE. Retrieved from http://www.theses.fr/2013EMSE0709

Chicago Manual of Style (16th Edition):

Ali, Qasim. “Contribution to the mathematical modeling of immune response : Contribution à la modélisation mathématique de la réponse immunitaire.” 2013. Doctoral Dissertation, Saint-Etienne, EMSE. Accessed April 15, 2021. http://www.theses.fr/2013EMSE0709.

MLA Handbook (7th Edition):

Ali, Qasim. “Contribution to the mathematical modeling of immune response : Contribution à la modélisation mathématique de la réponse immunitaire.” 2013. Web. 15 Apr 2021.

Vancouver:

Ali Q. Contribution to the mathematical modeling of immune response : Contribution à la modélisation mathématique de la réponse immunitaire. [Internet] [Doctoral dissertation]. Saint-Etienne, EMSE; 2013. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2013EMSE0709.

Council of Science Editors:

Ali Q. Contribution to the mathematical modeling of immune response : Contribution à la modélisation mathématique de la réponse immunitaire. [Doctoral Dissertation]. Saint-Etienne, EMSE; 2013. Available from: http://www.theses.fr/2013EMSE0709


University of Oxford

17. Stevens, Ben. Short-time structural stability of compressible vortex sheets with surface tension.

Degree: PhD, 2014, University of Oxford

 The main purpose of this work is to prove short-time structural stability of compressible vortex sheets with surface tension. The main result can be summarised… (more)

Subjects/Keywords: 518; Fluid mechanics (mathematics); Partial differential equations; Free Boundary Problems; Compressible Fluid Dynamics; Hyperbolic Conservation Laws; Contact Discontinuities; Euler Equations; Vortex Sheets; Existence and Uniqueness Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stevens, B. (2014). Short-time structural stability of compressible vortex sheets with surface tension. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:378713da-cd05-4b9a-856d-bee2b0fb47ce ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627878

Chicago Manual of Style (16th Edition):

Stevens, Ben. “Short-time structural stability of compressible vortex sheets with surface tension.” 2014. Doctoral Dissertation, University of Oxford. Accessed April 15, 2021. http://ora.ox.ac.uk/objects/uuid:378713da-cd05-4b9a-856d-bee2b0fb47ce ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627878.

MLA Handbook (7th Edition):

Stevens, Ben. “Short-time structural stability of compressible vortex sheets with surface tension.” 2014. Web. 15 Apr 2021.

Vancouver:

Stevens B. Short-time structural stability of compressible vortex sheets with surface tension. [Internet] [Doctoral dissertation]. University of Oxford; 2014. [cited 2021 Apr 15]. Available from: http://ora.ox.ac.uk/objects/uuid:378713da-cd05-4b9a-856d-bee2b0fb47ce ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627878.

Council of Science Editors:

Stevens B. Short-time structural stability of compressible vortex sheets with surface tension. [Doctoral Dissertation]. University of Oxford; 2014. Available from: http://ora.ox.ac.uk/objects/uuid:378713da-cd05-4b9a-856d-bee2b0fb47ce ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627878

18. Wong, Jeffrey Taylor. Modeling and analysis of thin-film incline flow: bidensity suspensions and surface tension effects.

Degree: Mathematics, 2017, UCLA

 For flow of suspensions down an incline, particles are driven by shear-induced migration towards the surface, leading to separation of particle and fluid phases or… (more)

Subjects/Keywords: Mathematics; Fluid dynamics; Hyperbolic conservation laws; Suspensions; Thin films

…the normal direction. This model yields a pair of hyperbolic conservation laws for the film… …a pair of hyperbolic conservation laws with an interesting mathematical structure. The… …the fluid depth but reduces to depth-integrated conservation laws analogous to those in… …in Chapter 2. The conservation laws will be considered in Chapter 5. 7 CHAPTER 2… …difference between the conservation laws between the models, therefore, is that the values of the… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wong, J. T. (2017). Modeling and analysis of thin-film incline flow: bidensity suspensions and surface tension effects. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/7vq201n1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wong, Jeffrey Taylor. “Modeling and analysis of thin-film incline flow: bidensity suspensions and surface tension effects.” 2017. Thesis, UCLA. Accessed April 15, 2021. http://www.escholarship.org/uc/item/7vq201n1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wong, Jeffrey Taylor. “Modeling and analysis of thin-film incline flow: bidensity suspensions and surface tension effects.” 2017. Web. 15 Apr 2021.

Vancouver:

Wong JT. Modeling and analysis of thin-film incline flow: bidensity suspensions and surface tension effects. [Internet] [Thesis]. UCLA; 2017. [cited 2021 Apr 15]. Available from: http://www.escholarship.org/uc/item/7vq201n1.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wong JT. Modeling and analysis of thin-film incline flow: bidensity suspensions and surface tension effects. [Thesis]. UCLA; 2017. Available from: http://www.escholarship.org/uc/item/7vq201n1

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Utah State University

19. Hillyard, Cinnamon. Construction and Analysis of a Family of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms.

Degree: PhD, Mathematics and Statistics, 1999, Utah State University

  Numerical schemes for the partial differential equations used to characterize stiffly forced conservation laws are constructed and analyzed. Partial differential equations of this form… (more)

Subjects/Keywords: construction; analysis; numerical methods; hyperbolic conservation laws; stiff source terms; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hillyard, C. (1999). Construction and Analysis of a Family of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms. (Doctoral Dissertation). Utah State University. Retrieved from https://digitalcommons.usu.edu/etd/7120

Chicago Manual of Style (16th Edition):

Hillyard, Cinnamon. “Construction and Analysis of a Family of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms.” 1999. Doctoral Dissertation, Utah State University. Accessed April 15, 2021. https://digitalcommons.usu.edu/etd/7120.

MLA Handbook (7th Edition):

Hillyard, Cinnamon. “Construction and Analysis of a Family of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms.” 1999. Web. 15 Apr 2021.

Vancouver:

Hillyard C. Construction and Analysis of a Family of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms. [Internet] [Doctoral dissertation]. Utah State University; 1999. [cited 2021 Apr 15]. Available from: https://digitalcommons.usu.edu/etd/7120.

Council of Science Editors:

Hillyard C. Construction and Analysis of a Family of Numerical Methods for Hyperbolic Conservation Laws with Stiff Source Terms. [Doctoral Dissertation]. Utah State University; 1999. Available from: https://digitalcommons.usu.edu/etd/7120

20. Mousikou, Ioanna. Discontinuous Galerkin Method for Hyperbolic Conservation Laws.

Degree: Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, 2016, King Abdullah University of Science and Technology

Hyperbolic conservation laws form a special class of partial differential equations. They describe phenomena that involve conserved quantities and their solutions show discontinuities which reflect… (more)

Subjects/Keywords: Discontinuous Galerkin; Hyperbolic conservation laws; system of elastodynamics

…used to produce approximations of the solutions of hyperbolic conservation laws. The idea of… …Recently, finite element methods found application to hyperbolic conservation laws in the form of… …solid background in the field of numerical analysis for solving hyperbolic conservation laws… …by reviewing the fundamental numerical methods for hyperbolic conservation laws, and be… …chapter, we give a brief introduction to hyperbolic conservation laws, we summarise their… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mousikou, I. (2016). Discontinuous Galerkin Method for Hyperbolic Conservation Laws. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/621929

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mousikou, Ioanna. “Discontinuous Galerkin Method for Hyperbolic Conservation Laws.” 2016. Thesis, King Abdullah University of Science and Technology. Accessed April 15, 2021. http://hdl.handle.net/10754/621929.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mousikou, Ioanna. “Discontinuous Galerkin Method for Hyperbolic Conservation Laws.” 2016. Web. 15 Apr 2021.

Vancouver:

Mousikou I. Discontinuous Galerkin Method for Hyperbolic Conservation Laws. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2016. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/10754/621929.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mousikou I. Discontinuous Galerkin Method for Hyperbolic Conservation Laws. [Thesis]. King Abdullah University of Science and Technology; 2016. Available from: http://hdl.handle.net/10754/621929

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universidade Estadual de Campinas

21. Perez Sepulveda, John Alexander, 1974-. Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas.

Degree: Instituto de Matemática, Estatística e Ciência da Computação; Programa de Pós-Graduação em Matemática Aplicada, 2015, Universidade Estadual de Campinas

Orientador: Eduardo Cardoso de Abreu

Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica

Made available in DSpace on 2018-08-28T00:40:21Z… (more)

Subjects/Keywords: Equações diferenciais hiperbólicas; Leis de conservação (Física); Método dos volumes finitos; Mecânica dos fluidos; Hyperbolic differential equations; Conservation laws (Physics); Finite volume method; Fluid mechanics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perez Sepulveda, John Alexander, 1. (2015). Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas. (Doctoral Dissertation). Universidade Estadual de Campinas. Retrieved from PEREZ SEPULVEDA, John Alexander. Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas. 2015. 1 recurso online ( 184 p.). Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/307019>. Acesso em: 27 ago. 2018. ; http://repositorio.unicamp.br/jspui/handle/REPOSIP/307019

Chicago Manual of Style (16th Edition):

Perez Sepulveda, John Alexander, 1974-. “Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas.” 2015. Doctoral Dissertation, Universidade Estadual de Campinas. Accessed April 15, 2021. PEREZ SEPULVEDA, John Alexander. Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas. 2015. 1 recurso online ( 184 p.). Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/307019>. Acesso em: 27 ago. 2018. ; http://repositorio.unicamp.br/jspui/handle/REPOSIP/307019.

MLA Handbook (7th Edition):

Perez Sepulveda, John Alexander, 1974-. “Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas.” 2015. Web. 15 Apr 2021.

Vancouver:

Perez Sepulveda, John Alexander 1. Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas. [Internet] [Doctoral dissertation]. Universidade Estadual de Campinas; 2015. [cited 2021 Apr 15]. Available from: PEREZ SEPULVEDA, John Alexander. Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas. 2015. 1 recurso online ( 184 p.). Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/307019>. Acesso em: 27 ago. 2018. ; http://repositorio.unicamp.br/jspui/handle/REPOSIP/307019.

Council of Science Editors:

Perez Sepulveda, John Alexander 1. Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas. [Doctoral Dissertation]. Universidade Estadual de Campinas; 2015. Available from: PEREZ SEPULVEDA, John Alexander. Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws = Métodos de aproximação Lagrangeano-Euleriano para leis de balanço e leis de conservação hiperbólicas. 2015. 1 recurso online ( 184 p.). Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/307019>. Acesso em: 27 ago. 2018. ; http://repositorio.unicamp.br/jspui/handle/REPOSIP/307019


Indian Institute of Science

22. Maruthi, N H. Hybird Central Solvers for Hyperbolic Conservation Laws.

Degree: PhD, Faculty of Engineering, 2018, Indian Institute of Science

 The hyperbolic conservation laws model the phenomena of nonlinear waves including discontinuities. The coupled nonlinear equations representing such conservation laws may lead to discontinuous solutions… (more)

Subjects/Keywords: Hyperbolic Conservation Laws; Hyperbolic Partial Differential Equations; Magnetohydrodynamics Equations; Shallow-Water Equations; Euler Equations; Methods of Optimal Viscosity for Enhanced Resolution of Shocks; Numerical Diffusion; Finite Volume Method; Hybrid Central Solver; MOVERS; Aerospace Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maruthi, N. H. (2018). Hybird Central Solvers for Hyperbolic Conservation Laws. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3523

Chicago Manual of Style (16th Edition):

Maruthi, N H. “Hybird Central Solvers for Hyperbolic Conservation Laws.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed April 15, 2021. http://etd.iisc.ac.in/handle/2005/3523.

MLA Handbook (7th Edition):

Maruthi, N H. “Hybird Central Solvers for Hyperbolic Conservation Laws.” 2018. Web. 15 Apr 2021.

Vancouver:

Maruthi NH. Hybird Central Solvers for Hyperbolic Conservation Laws. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2021 Apr 15]. Available from: http://etd.iisc.ac.in/handle/2005/3523.

Council of Science Editors:

Maruthi NH. Hybird Central Solvers for Hyperbolic Conservation Laws. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3523

23. Laurent-Brouty, Nicolas. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.

Degree: Docteur es, Mathématiques, 2019, Université Côte d'Azur (ComUE)

 Cette thèse se consacre à la modélisation mathématique du trafic routier à l'aide des lois de conservation hyperboliques. Nous nous intéressons plus particulièrement à l’application… (more)

Subjects/Keywords: Lois de conservation hyperboliques; Systèmes de conservation hyperboliques avec relaxation; Modèles macroscopiques de trafic routier; Suivi de fronts d'onde; Systèmes de Temple; Couplage EDP-EDO; Contraintes de flux; Trafic routier sur les réseaux; Équations d'Hamilton-Jacobi; Méthodes de point fixe; Hyperbolic conservation laws; Hyperbolic systems of conservation laws with relaxation; Macroscopic traffic flow models; Wave-front tracking; Temple class systems; PDE-ODE coupling; Flux constraints; Traffic flow on networks; Hamilton-Jacobi equations; Fixed-point problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laurent-Brouty, N. (2019). Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. (Doctoral Dissertation). Université Côte d'Azur (ComUE). Retrieved from http://www.theses.fr/2019AZUR4056

Chicago Manual of Style (16th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Doctoral Dissertation, Université Côte d'Azur (ComUE). Accessed April 15, 2021. http://www.theses.fr/2019AZUR4056.

MLA Handbook (7th Edition):

Laurent-Brouty, Nicolas. “Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws.” 2019. Web. 15 Apr 2021.

Vancouver:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Internet] [Doctoral dissertation]. Université Côte d'Azur (ComUE); 2019. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2019AZUR4056.

Council of Science Editors:

Laurent-Brouty N. Modélisation du trafic sur des réseaux routiers urbains à l’aide des lois de conservation hyperboliques : Modeling traffic on urban road networks with hyperbolic conservation laws. [Doctoral Dissertation]. Université Côte d'Azur (ComUE); 2019. Available from: http://www.theses.fr/2019AZUR4056

24. Chaisemartin, Stéphane de. Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation.

Degree: Docteur es, Energétique, 2009, Châtenay-Malabry, Ecole centrale de Paris

Le modèle multi-fluide permet de décrire par une approche Eulérienne les sprays polydispersés et apparaît donc comme une méthode indiquée pour les applications de combustion… (more)

Subjects/Keywords: Écoulements diphasiques; Sprays polydispersés; Méthode multi-fluide; Systèmes de lois de conservation faiblement hyperboliques; Schémas numériques cinétiques; Informatique scientifique; Calcul parallèle; Two-phase flows; Polydisperse sprays; Multi-fluid method; Weakly hyperbolic systems of conservation laws; Kinetic numerical schemes; Scientific computing; Parallel computing

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chaisemartin, S. d. (2009). Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation. (Doctoral Dissertation). Châtenay-Malabry, Ecole centrale de Paris. Retrieved from http://www.theses.fr/2009ECAP0011

Chicago Manual of Style (16th Edition):

Chaisemartin, Stéphane de. “Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation.” 2009. Doctoral Dissertation, Châtenay-Malabry, Ecole centrale de Paris. Accessed April 15, 2021. http://www.theses.fr/2009ECAP0011.

MLA Handbook (7th Edition):

Chaisemartin, Stéphane de. “Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation.” 2009. Web. 15 Apr 2021.

Vancouver:

Chaisemartin Sd. Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation. [Internet] [Doctoral dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2009. [cited 2021 Apr 15]. Available from: http://www.theses.fr/2009ECAP0011.

Council of Science Editors:

Chaisemartin Sd. Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent : Eulerian modeling and evaporating spray turbulent dispersion simulation. [Doctoral Dissertation]. Châtenay-Malabry, Ecole centrale de Paris; 2009. Available from: http://www.theses.fr/2009ECAP0011


Universidade do Estado do Rio de Janeiro

25. Nelson Machado Barbosa. Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo.

Degree: Master, 2010, Universidade do Estado do Rio de Janeiro

O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água no reservatório a fim de manter a pressão necessária para… (more)

Subjects/Keywords: Recuperação secundária do petróleo Modelos matemáticos; Equações diferenciais hiperbólicas Soluções numéricas; Burgers, Equação de; Lei da conservação (Matemática); Equações hiperbólicas não lineares; Problemas de Burgers e Buckley-Leverett; Método composto LWLF-k; Secondary recovery of oil - Mathematical models; Differential equations, Hyperbolic - Numerical solutions; Burgers equation; Conservation laws (Mathematics); Nonlinear hyperbolic equations; Burgers and Buckley-Leverett problems; LWLF-k Composite Scheme; MATEMATICA APLICADA

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barbosa, N. M. (2010). Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo. (Masters Thesis). Universidade do Estado do Rio de Janeiro. Retrieved from http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;

Chicago Manual of Style (16th Edition):

Barbosa, Nelson Machado. “Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo.” 2010. Masters Thesis, Universidade do Estado do Rio de Janeiro. Accessed April 15, 2021. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;.

MLA Handbook (7th Edition):

Barbosa, Nelson Machado. “Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo.” 2010. Web. 15 Apr 2021.

Vancouver:

Barbosa NM. Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo. [Internet] [Masters thesis]. Universidade do Estado do Rio de Janeiro; 2010. [cited 2021 Apr 15]. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;.

Council of Science Editors:

Barbosa NM. Resolução numérica de equações diferenciais parciais hiperbólicas não lineares: um estudo visando a recuperação de petróleo. [Masters Thesis]. Universidade do Estado do Rio de Janeiro; 2010. Available from: http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1290 ;


Tulane University

26. Kurochkin, Dmitry V. Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes.

Degree: PhD, Tulane University

We develop novel numerical methods for optimization problems subject to constraints given by nonlinear hyperbolic systems of conservation and balance laws in one space dimension.… (more)

Subjects/Keywords: PDE-constrained Optimization Problems; Hyperbolic Systems Of Conservation And Balance Laws; Linear Adjoint System; School of Science & Engineering; Mathematics; Ph.D

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kurochkin, D. V. (n.d.). Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes. (Doctoral Dissertation). Tulane University. Retrieved from https://digitallibrary.tulane.edu/islandora/object/tulane:27958

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Chicago Manual of Style (16th Edition):

Kurochkin, Dmitry V. “Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes.” Doctoral Dissertation, Tulane University. Accessed April 15, 2021. https://digitallibrary.tulane.edu/islandora/object/tulane:27958.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

MLA Handbook (7th Edition):

Kurochkin, Dmitry V. “Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes.” Web. 15 Apr 2021.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Kurochkin DV. Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes. [Internet] [Doctoral dissertation]. Tulane University; [cited 2021 Apr 15]. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27958.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Council of Science Editors:

Kurochkin DV. Numerical Method For Constrained Optimization Problems Governed By Nonlinear Hyperbolic Systems Of Pdes. [Doctoral Dissertation]. Tulane University; Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:27958

Note: this citation may be lacking information needed for this citation format:
No year of publication.


University of Michigan

27. Lowrie, Robert Byron. Compact higher-order numerical methods for hyperbolic conservation laws.

Degree: PhD, Pure Sciences, 1996, University of Michigan

 A method is developed for the simulation of nonlinear wave propagation over long times. The approach is based on the space-time Discontinuous Galerkin finite-element method… (more)

Subjects/Keywords: Compact; Computational Fluid Dynamics; Conservation; Discontinuous Galerkin; Higher; Hyperbolic; Laws; Methods; Nonlinear; Nonlinearwave; Numerical; Order; Space Time; Wave Propagation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lowrie, R. B. (1996). Compact higher-order numerical methods for hyperbolic conservation laws. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/129796

Chicago Manual of Style (16th Edition):

Lowrie, Robert Byron. “Compact higher-order numerical methods for hyperbolic conservation laws.” 1996. Doctoral Dissertation, University of Michigan. Accessed April 15, 2021. http://hdl.handle.net/2027.42/129796.

MLA Handbook (7th Edition):

Lowrie, Robert Byron. “Compact higher-order numerical methods for hyperbolic conservation laws.” 1996. Web. 15 Apr 2021.

Vancouver:

Lowrie RB. Compact higher-order numerical methods for hyperbolic conservation laws. [Internet] [Doctoral dissertation]. University of Michigan; 1996. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/2027.42/129796.

Council of Science Editors:

Lowrie RB. Compact higher-order numerical methods for hyperbolic conservation laws. [Doctoral Dissertation]. University of Michigan; 1996. Available from: http://hdl.handle.net/2027.42/129796

28. Fan, Duoming. On the Acoustic Component of Active Flux Schemes for Nonlinear Hyperbolic Conservation Laws.

Degree: PhD, Aerospace Engineering, 2017, University of Michigan

 Current numerical methods used in production-level CFD codes are found to be lacking in many respects; they are only second-order accurate, rely on inherently one-dimensional… (more)

Subjects/Keywords: computational fluid dynamics; Active Flux method; hyperbolic conservation laws; wave propagation; acoustics; Aerospace Engineering; Engineering

…of numerical methods for solving hyperbolic conservation laws use Riemann solvers to… …at solving conservation laws describing acoustic processes. The method is demonstrated for… …be questionable or even unsuitable for solving multidimensional conservation laws. 1.2.1… …conservation laws of the form ∂g ∂h ∂u ∂f + + + =0 ∂t ∂x ∂y ∂z (1.1) where u are the… …matrices of the primitive form of the conservation laws. To solve the same system described by… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fan, D. (2017). On the Acoustic Component of Active Flux Schemes for Nonlinear Hyperbolic Conservation Laws. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/140800

Chicago Manual of Style (16th Edition):

Fan, Duoming. “On the Acoustic Component of Active Flux Schemes for Nonlinear Hyperbolic Conservation Laws.” 2017. Doctoral Dissertation, University of Michigan. Accessed April 15, 2021. http://hdl.handle.net/2027.42/140800.

MLA Handbook (7th Edition):

Fan, Duoming. “On the Acoustic Component of Active Flux Schemes for Nonlinear Hyperbolic Conservation Laws.” 2017. Web. 15 Apr 2021.

Vancouver:

Fan D. On the Acoustic Component of Active Flux Schemes for Nonlinear Hyperbolic Conservation Laws. [Internet] [Doctoral dissertation]. University of Michigan; 2017. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/2027.42/140800.

Council of Science Editors:

Fan D. On the Acoustic Component of Active Flux Schemes for Nonlinear Hyperbolic Conservation Laws. [Doctoral Dissertation]. University of Michigan; 2017. Available from: http://hdl.handle.net/2027.42/140800


Indian Institute of Science

29. Pathak, Harshavardhana Sunil. Adaptive Mesh Redistribution for Hyperbolic Conservation Laws.

Degree: MSc Engg, Faculty of Engineering, 2018, Indian Institute of Science

 An adaptive mesh redistribution method for efficient and accurate simulation of multi dimensional hyperbolic conservation laws is developed. The algorithm consists of two coupled steps;… (more)

Subjects/Keywords: Adaptive Mesh Redistribution; Multigrid Methods; Hyperbolic Conservation Laws; Numerical Grid Generation; Numerical Mesh Generation; Mesh Partial Differential Equation; Adaptive Mesh Redistriution Method; Adaptive Mesh Redistribution Algorithms; Computational Fluid Dynamics; Mesh Redistribution Algorithms; Mesh Adaptation; Inviscid Burger's Equation; Euler's Equations; Fluid Dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pathak, H. S. (2018). Adaptive Mesh Redistribution for Hyperbolic Conservation Laws. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3281

Chicago Manual of Style (16th Edition):

Pathak, Harshavardhana Sunil. “Adaptive Mesh Redistribution for Hyperbolic Conservation Laws.” 2018. Masters Thesis, Indian Institute of Science. Accessed April 15, 2021. http://etd.iisc.ac.in/handle/2005/3281.

MLA Handbook (7th Edition):

Pathak, Harshavardhana Sunil. “Adaptive Mesh Redistribution for Hyperbolic Conservation Laws.” 2018. Web. 15 Apr 2021.

Vancouver:

Pathak HS. Adaptive Mesh Redistribution for Hyperbolic Conservation Laws. [Internet] [Masters thesis]. Indian Institute of Science; 2018. [cited 2021 Apr 15]. Available from: http://etd.iisc.ac.in/handle/2005/3281.

Council of Science Editors:

Pathak HS. Adaptive Mesh Redistribution for Hyperbolic Conservation Laws. [Masters Thesis]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3281

30. Jegdic, Ilija 1983-. Large Time Step and Overlapping Grids for Conservation Laws.

Degree: PhD, Mathematics, 2014, University of Houston

 One focus of this dissertation is to construct a large time step Finite Volume Method for computing numerical solutions to hyperbolic systems of conservation laws.… (more)

Subjects/Keywords: System of HYperbolic PDE's; Conservation Laws; Finite Volume Method; Large Time Step; Overlapping Grids

…dimensional system of hyperbolic conservation laws ut + ∇ · F (u) = 0 in Rd × (0… …1 Introduction 1.1 Motivation Conservation laws are partial differential equations that… …engineering, biological applications, etc. The n-dimensional system of m conservation laws is given… …hyperbolic conversational laws ut + f (u)x = 0, with initial condition u(x, 0)… …shock. Example. The most famous example of a system of conservation laws is the Euler system… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jegdic, I. 1. (2014). Large Time Step and Overlapping Grids for Conservation Laws. (Doctoral Dissertation). University of Houston. Retrieved from http://hdl.handle.net/10657/1403

Chicago Manual of Style (16th Edition):

Jegdic, Ilija 1983-. “Large Time Step and Overlapping Grids for Conservation Laws.” 2014. Doctoral Dissertation, University of Houston. Accessed April 15, 2021. http://hdl.handle.net/10657/1403.

MLA Handbook (7th Edition):

Jegdic, Ilija 1983-. “Large Time Step and Overlapping Grids for Conservation Laws.” 2014. Web. 15 Apr 2021.

Vancouver:

Jegdic I1. Large Time Step and Overlapping Grids for Conservation Laws. [Internet] [Doctoral dissertation]. University of Houston; 2014. [cited 2021 Apr 15]. Available from: http://hdl.handle.net/10657/1403.

Council of Science Editors:

Jegdic I1. Large Time Step and Overlapping Grids for Conservation Laws. [Doctoral Dissertation]. University of Houston; 2014. Available from: http://hdl.handle.net/10657/1403

[1] [2]

.