Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hybridized discontinuous Galerkin). Showing records 1 – 7 of 7 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Texas – Austin

1. -5494-1880. Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics.

Degree: PhD, Aerospace Engineering, 2019, University of Texas – Austin

 The hybridized discontinuous Galerkin methods (HDG) introduced a decade ago is a promising candidate for high-order spatial discretization combined with implicit/implicit-explicit time stepping. Roughly speaking,… (more)

Subjects/Keywords: Hybridized discontinuous Galerkin; Fast solvers; Multigrid; Multilevel; MHD; Domain decomposition

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-5494-1880. (2019). Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5474

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-5494-1880. “Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed March 04, 2021. http://dx.doi.org/10.26153/tsw/5474.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-5494-1880. “Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics.” 2019. Web. 04 Mar 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-5494-1880. Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Mar 04]. Available from: http://dx.doi.org/10.26153/tsw/5474.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-5494-1880. Fast and scalable solvers for high-order hybridized discontinuous Galerkin methods with applications to fluid dynamics and magnetohydrodynamics. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5474

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

2. -6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2018, University of Texas – Austin

Discontinuous Galerkin (DG) methods combine the advantages of classical finite element and finite volume methods. Like finite volume methods, through the use of discontinuous spaces… (more)

Subjects/Keywords: Finite element methods; Discontinuous Galerkin methods; Hybridized discontinuous Galerkin methods; Stokes equations; Oseen equations; Magnetohydrodynamics; Resistive magnetohydrodynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6327-2527. (2018). Hybridized discontinuous Galerkin methods for magnetohydrodynamics. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/2865

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed March 04, 2021. http://dx.doi.org/10.26153/tsw/2865.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6327-2527. “Hybridized discontinuous Galerkin methods for magnetohydrodynamics.” 2018. Web. 04 Mar 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Mar 04]. Available from: http://dx.doi.org/10.26153/tsw/2865.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6327-2527. Hybridized discontinuous Galerkin methods for magnetohydrodynamics. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://dx.doi.org/10.26153/tsw/2865

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

3. Arabshahi, Hamidreza. Space-time hybridized discontinuous Galerkin methods for shallow water equations.

Degree: PhD, Computational Science, Engineering, and Mathematics, 2016, University of Texas – Austin

 The non-linear shallow water equations model the dynamics of a shallow layer of an incompressible fluid; they are obtained by asymptotic analysis and depth-averaging of… (more)

Subjects/Keywords: Shallow water equations; Space-time methods; Hybridized discontinuous Galerkin; Well-balanced formulation; A priori error estimate

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arabshahi, H. (2016). Space-time hybridized discontinuous Galerkin methods for shallow water equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47014

Chicago Manual of Style (16th Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Doctoral Dissertation, University of Texas – Austin. Accessed March 04, 2021. http://hdl.handle.net/2152/47014.

MLA Handbook (7th Edition):

Arabshahi, Hamidreza. “Space-time hybridized discontinuous Galerkin methods for shallow water equations.” 2016. Web. 04 Mar 2021.

Vancouver:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2016. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2152/47014.

Council of Science Editors:

Arabshahi H. Space-time hybridized discontinuous Galerkin methods for shallow water equations. [Doctoral Dissertation]. University of Texas – Austin; 2016. Available from: http://hdl.handle.net/2152/47014

4. -4649-9727. High-order (hybridized) discontinuous Galerkin method for geophysical flows.

Degree: PhD, Engineering Mechanics, 2019, University of Texas – Austin

 As computational research has grown, simulation has become a standard tool in many fields of academic and industrial areas. For example, computational fluid dynamics (CFD)… (more)

Subjects/Keywords: Discontinuous Galerkin; DG; HDG; Hybridized DG; IMEX; Implicit-explicit; Exponential time integrator; ALE; Arbitrary Lagrangian-Eulerian; Sliding mesh; Nonconforming mesh; Degenerate elliptic equation; Mortar; Scalability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-4649-9727. (2019). High-order (hybridized) discontinuous Galerkin method for geophysical flows. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5476

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-4649-9727. “High-order (hybridized) discontinuous Galerkin method for geophysical flows.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed March 04, 2021. http://dx.doi.org/10.26153/tsw/5476.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-4649-9727. “High-order (hybridized) discontinuous Galerkin method for geophysical flows.” 2019. Web. 04 Mar 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-4649-9727. High-order (hybridized) discontinuous Galerkin method for geophysical flows. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2021 Mar 04]. Available from: http://dx.doi.org/10.26153/tsw/5476.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-4649-9727. High-order (hybridized) discontinuous Galerkin method for geophysical flows. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5476

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


University of Texas – Austin

5. -6430-5266. A hybridized discontinuous Galerkin method for nonlinear dispersive water waves.

Degree: PhD, Engineering Mechanics, 2017, University of Texas – Austin

 Simulation of water waves near the coast is an important problem in different branches of engineering and mathematics. For mathematical models to be valid in… (more)

Subjects/Keywords: Discontinuous Galerkin; DG; Hybridized; HDG; Nonlinear shallow water; Green-Naghdi; NSWE; GN; Galerkin method; Water waves; Nonlinear water waves; Dispersive water waves; Water wave simulation; Coastal water waves modeling; Korteweg-de Vries equation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-6430-5266. (2017). A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/47354

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-6430-5266. “A hybridized discontinuous Galerkin method for nonlinear dispersive water waves.” 2017. Doctoral Dissertation, University of Texas – Austin. Accessed March 04, 2021. http://hdl.handle.net/2152/47354.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-6430-5266. “A hybridized discontinuous Galerkin method for nonlinear dispersive water waves.” 2017. Web. 04 Mar 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-6430-5266. A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2017. [cited 2021 Mar 04]. Available from: http://hdl.handle.net/2152/47354.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-6430-5266. A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. [Doctoral Dissertation]. University of Texas – Austin; 2017. Available from: http://hdl.handle.net/2152/47354

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


Delft University of Technology

6. Maljaars, J.M. When Euler meets Lagrange: Particle-Mesh Modeling of Advection Dominated Flows.

Degree: 2019, Delft University of Technology

 This thesis presents a numerical framework for simulating advection-dominated flows which reconciles the advantages of Eulerian mesh-based schemes with those of a Lagrangian particle-based discretization… (more)

Subjects/Keywords: Lagrangian-Eulerian; finite element method; Hybridized discontinuous Galerkin; particle-in-cell; PDE-constrained optimization; conservation; Advection-dominated flows; Advection-diffusion; incompressible Navier-Stokes; Multiphase flows

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maljaars, J. M. (2019). When Euler meets Lagrange: Particle-Mesh Modeling of Advection Dominated Flows. (Doctoral Dissertation). Delft University of Technology. Retrieved from http://resolver.tudelft.nl/uuid:a400512d-966d-402a-a40a-fedf60acf22c ; urn:NBN:nl:ui:24-uuid:a400512d-966d-402a-a40a-fedf60acf22c ; a400512d-966d-402a-a40a-fedf60acf22c ; 10.4233/uuid:a400512d-966d-402a-a40a-fedf60acf22c ; urn:isbn:978-94-6375-581-8 ; urn:NBN:nl:ui:24-uuid:a400512d-966d-402a-a40a-fedf60acf22c ; http://resolver.tudelft.nl/uuid:a400512d-966d-402a-a40a-fedf60acf22c

Chicago Manual of Style (16th Edition):

Maljaars, J M. “When Euler meets Lagrange: Particle-Mesh Modeling of Advection Dominated Flows.” 2019. Doctoral Dissertation, Delft University of Technology. Accessed March 04, 2021. http://resolver.tudelft.nl/uuid:a400512d-966d-402a-a40a-fedf60acf22c ; urn:NBN:nl:ui:24-uuid:a400512d-966d-402a-a40a-fedf60acf22c ; a400512d-966d-402a-a40a-fedf60acf22c ; 10.4233/uuid:a400512d-966d-402a-a40a-fedf60acf22c ; urn:isbn:978-94-6375-581-8 ; urn:NBN:nl:ui:24-uuid:a400512d-966d-402a-a40a-fedf60acf22c ; http://resolver.tudelft.nl/uuid:a400512d-966d-402a-a40a-fedf60acf22c.

MLA Handbook (7th Edition):

Maljaars, J M. “When Euler meets Lagrange: Particle-Mesh Modeling of Advection Dominated Flows.” 2019. Web. 04 Mar 2021.

Vancouver:

Maljaars JM. When Euler meets Lagrange: Particle-Mesh Modeling of Advection Dominated Flows. [Internet] [Doctoral dissertation]. Delft University of Technology; 2019. [cited 2021 Mar 04]. Available from: http://resolver.tudelft.nl/uuid:a400512d-966d-402a-a40a-fedf60acf22c ; urn:NBN:nl:ui:24-uuid:a400512d-966d-402a-a40a-fedf60acf22c ; a400512d-966d-402a-a40a-fedf60acf22c ; 10.4233/uuid:a400512d-966d-402a-a40a-fedf60acf22c ; urn:isbn:978-94-6375-581-8 ; urn:NBN:nl:ui:24-uuid:a400512d-966d-402a-a40a-fedf60acf22c ; http://resolver.tudelft.nl/uuid:a400512d-966d-402a-a40a-fedf60acf22c.

Council of Science Editors:

Maljaars JM. When Euler meets Lagrange: Particle-Mesh Modeling of Advection Dominated Flows. [Doctoral Dissertation]. Delft University of Technology; 2019. Available from: http://resolver.tudelft.nl/uuid:a400512d-966d-402a-a40a-fedf60acf22c ; urn:NBN:nl:ui:24-uuid:a400512d-966d-402a-a40a-fedf60acf22c ; a400512d-966d-402a-a40a-fedf60acf22c ; 10.4233/uuid:a400512d-966d-402a-a40a-fedf60acf22c ; urn:isbn:978-94-6375-581-8 ; urn:NBN:nl:ui:24-uuid:a400512d-966d-402a-a40a-fedf60acf22c ; http://resolver.tudelft.nl/uuid:a400512d-966d-402a-a40a-fedf60acf22c


University of Florida

7. Tan, Shuguang. Iterative Solvers for Hybridized Finite Element Methods.

Degree: PhD, Mathematics, 2009, University of Florida

 We consider the application of a variable V-cycle multigrid algorithm for the hybridized mixed method for second order elliptic boundary value problems. Our algorithm differs… (more)

Subjects/Keywords: Approximation; Boundary value problems; Data smoothing; Error rates; Estimation methods; Finite element method; Galerkin methods; Lagrange multipliers; Mathematics; Multigrid methods; algorithm, condition, differential, discontinuous, discretization, element, equation, finite, galerkin, hybridized, iterative, lagrange, matrix, mesh, method, mixed, multigrid, numerical, partial, triangulation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tan, S. (2009). Iterative Solvers for Hybridized Finite Element Methods. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0024820

Chicago Manual of Style (16th Edition):

Tan, Shuguang. “Iterative Solvers for Hybridized Finite Element Methods.” 2009. Doctoral Dissertation, University of Florida. Accessed March 04, 2021. https://ufdc.ufl.edu/UFE0024820.

MLA Handbook (7th Edition):

Tan, Shuguang. “Iterative Solvers for Hybridized Finite Element Methods.” 2009. Web. 04 Mar 2021.

Vancouver:

Tan S. Iterative Solvers for Hybridized Finite Element Methods. [Internet] [Doctoral dissertation]. University of Florida; 2009. [cited 2021 Mar 04]. Available from: https://ufdc.ufl.edu/UFE0024820.

Council of Science Editors:

Tan S. Iterative Solvers for Hybridized Finite Element Methods. [Doctoral Dissertation]. University of Florida; 2009. Available from: https://ufdc.ufl.edu/UFE0024820

.