Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hybridizable discontinuous Galerkin). Showing records 1 – 10 of 10 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Minnesota

1. Stoter, Klaas. The variational multiscale method for mixed finite element formulations.

Degree: MS, Mathematics, 2018, University of Minnesota

 In this thesis, the variational multiscale method is explored in the context of mixed formulations of partial differential equations. The domain decomposition variational multiscale method… (more)

Subjects/Keywords: Discontinuous Galerkin; Hybridizable discontinuous Galerkin; Mixed finite element formulation; Partial differential equation; Variational multiscale method

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stoter, K. (2018). The variational multiscale method for mixed finite element formulations. (Masters Thesis). University of Minnesota. Retrieved from http://hdl.handle.net/11299/198352

Chicago Manual of Style (16th Edition):

Stoter, Klaas. “The variational multiscale method for mixed finite element formulations.” 2018. Masters Thesis, University of Minnesota. Accessed September 15, 2019. http://hdl.handle.net/11299/198352.

MLA Handbook (7th Edition):

Stoter, Klaas. “The variational multiscale method for mixed finite element formulations.” 2018. Web. 15 Sep 2019.

Vancouver:

Stoter K. The variational multiscale method for mixed finite element formulations. [Internet] [Masters thesis]. University of Minnesota; 2018. [cited 2019 Sep 15]. Available from: http://hdl.handle.net/11299/198352.

Council of Science Editors:

Stoter K. The variational multiscale method for mixed finite element formulations. [Masters Thesis]. University of Minnesota; 2018. Available from: http://hdl.handle.net/11299/198352


University of Kansas

2. Wang, Bin. Balancing domain decomposition by constraints algorithms for incompressible Stokes equations with nonconforming finite element discretizations.

Degree: PhD, Mathematics, 2017, University of Kansas

Hybridizable Discontinuous Galerkin (HDG) is an important family of methods, which combine the advantages of both Discontinuous Galerkin in terms of flexibility and standard finite… (more)

Subjects/Keywords: Mathematics; BDDC; domain decomposition; hybridizable discontinuous Galerkin; saddle point problems; Stokes; weak Galerkin

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, B. (2017). Balancing domain decomposition by constraints algorithms for incompressible Stokes equations with nonconforming finite element discretizations. (Doctoral Dissertation). University of Kansas. Retrieved from http://hdl.handle.net/1808/27005

Chicago Manual of Style (16th Edition):

Wang, Bin. “Balancing domain decomposition by constraints algorithms for incompressible Stokes equations with nonconforming finite element discretizations.” 2017. Doctoral Dissertation, University of Kansas. Accessed September 15, 2019. http://hdl.handle.net/1808/27005.

MLA Handbook (7th Edition):

Wang, Bin. “Balancing domain decomposition by constraints algorithms for incompressible Stokes equations with nonconforming finite element discretizations.” 2017. Web. 15 Sep 2019.

Vancouver:

Wang B. Balancing domain decomposition by constraints algorithms for incompressible Stokes equations with nonconforming finite element discretizations. [Internet] [Doctoral dissertation]. University of Kansas; 2017. [cited 2019 Sep 15]. Available from: http://hdl.handle.net/1808/27005.

Council of Science Editors:

Wang B. Balancing domain decomposition by constraints algorithms for incompressible Stokes equations with nonconforming finite element discretizations. [Doctoral Dissertation]. University of Kansas; 2017. Available from: http://hdl.handle.net/1808/27005


Penn State University

3. Sheldon, Jason Paul. A Hybridizable Discontinuous Galerkin Method For Modeling Fluid–structure Interaction.

Degree: PhD, Engineering Science and Mechanics, 2015, Penn State University

 As computational methods have matured and computing power has increased over the years, simulations have grown in complexity by attempting to accurately model both larger… (more)

Subjects/Keywords: Hybridizable discontinuous Galerkin; Fluid-Structure Interaction; Arbitrary Lagrangian-Eulerian Navier-Stokes; Elastodynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sheldon, J. P. (2015). A Hybridizable Discontinuous Galerkin Method For Modeling Fluid–structure Interaction. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/27574

Chicago Manual of Style (16th Edition):

Sheldon, Jason Paul. “A Hybridizable Discontinuous Galerkin Method For Modeling Fluid–structure Interaction.” 2015. Doctoral Dissertation, Penn State University. Accessed September 15, 2019. https://etda.libraries.psu.edu/catalog/27574.

MLA Handbook (7th Edition):

Sheldon, Jason Paul. “A Hybridizable Discontinuous Galerkin Method For Modeling Fluid–structure Interaction.” 2015. Web. 15 Sep 2019.

Vancouver:

Sheldon JP. A Hybridizable Discontinuous Galerkin Method For Modeling Fluid–structure Interaction. [Internet] [Doctoral dissertation]. Penn State University; 2015. [cited 2019 Sep 15]. Available from: https://etda.libraries.psu.edu/catalog/27574.

Council of Science Editors:

Sheldon JP. A Hybridizable Discontinuous Galerkin Method For Modeling Fluid–structure Interaction. [Doctoral Dissertation]. Penn State University; 2015. Available from: https://etda.libraries.psu.edu/catalog/27574

4. Bonnasse-Gahot, Marie. Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics.

Degree: Docteur es, Mathématiques appliquées, 2015, Nice

Le contexte scientifique de cette thèse est l'imagerie sismique dont le but est de reconstituer la structure du sous-sol de la Terre. Comme le forage… (more)

Subjects/Keywords: Méthodes Galerkine discontinues; Méthode Galerkine discontinue hybride; Ondes élastiques; Domaine fréquentiel; Imagerie sismique; Discontinuous Galerkin methods; Hybridizable discontinuous Galerkin method; Elastic waves; Harmonic domain; Seismic imaging

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bonnasse-Gahot, M. (2015). Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2015NICE4125

Chicago Manual of Style (16th Edition):

Bonnasse-Gahot, Marie. “Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics.” 2015. Doctoral Dissertation, Nice. Accessed September 15, 2019. http://www.theses.fr/2015NICE4125.

MLA Handbook (7th Edition):

Bonnasse-Gahot, Marie. “Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics.” 2015. Web. 15 Sep 2019.

Vancouver:

Bonnasse-Gahot M. Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics. [Internet] [Doctoral dissertation]. Nice; 2015. [cited 2019 Sep 15]. Available from: http://www.theses.fr/2015NICE4125.

Council of Science Editors:

Bonnasse-Gahot M. Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues : High order discontinuous Galerkin methods for time-harmonic elastodynamics. [Doctoral Dissertation]. Nice; 2015. Available from: http://www.theses.fr/2015NICE4125


Universitat Politècnica de Catalunya

5. Gürkan, Ceren. Extended hybridizable discontinuous Galerkin method.

Degree: Departament d'Enginyeria Civil i Ambiental, 2018, Universitat Politècnica de Catalunya

 Esta tesis propone una nueva técnica numérica: eXtended Hybridizable Discontinuous Galerkin (X-HDG), para resolver eficazmente problemas incluyendo fronteras en movimiento e interfaces. Su objetivo es… (more)

Subjects/Keywords: eXtended Finite Element method (X-FEM); Hybridizable Discontinuous Galerkin method (HDG); Àrees temàtiques de la UPC::Matemàtiques i estadística; 004; 51

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gürkan, C. (2018). Extended hybridizable discontinuous Galerkin method. (Thesis). Universitat Politècnica de Catalunya. Retrieved from http://hdl.handle.net/10803/664035

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gürkan, Ceren. “Extended hybridizable discontinuous Galerkin method.” 2018. Thesis, Universitat Politècnica de Catalunya. Accessed September 15, 2019. http://hdl.handle.net/10803/664035.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gürkan, Ceren. “Extended hybridizable discontinuous Galerkin method.” 2018. Web. 15 Sep 2019.

Vancouver:

Gürkan C. Extended hybridizable discontinuous Galerkin method. [Internet] [Thesis]. Universitat Politècnica de Catalunya; 2018. [cited 2019 Sep 15]. Available from: http://hdl.handle.net/10803/664035.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gürkan C. Extended hybridizable discontinuous Galerkin method. [Thesis]. Universitat Politècnica de Catalunya; 2018. Available from: http://hdl.handle.net/10803/664035

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

6. Kauffman, Justin. An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method.

Degree: 2018, Penn State University

 Computational simulations contain discretizations of both a physical domain and a mathematical model. In this dissertation, an overset mesh framework is used to discretize the… (more)

Subjects/Keywords: Overset Mesh Methods; Hybridizable discontinuous Galerkin; HDG; Finite Element Method; Pseudo-compressibility; Arbitrary Lagrangian-Eulerian; Navier-Stokes; Elasticity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kauffman, J. (2018). An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method. (Thesis). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/15005jak5378

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kauffman, Justin. “An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method.” 2018. Thesis, Penn State University. Accessed September 15, 2019. https://etda.libraries.psu.edu/catalog/15005jak5378.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kauffman, Justin. “An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method.” 2018. Web. 15 Sep 2019.

Vancouver:

Kauffman J. An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method. [Internet] [Thesis]. Penn State University; 2018. [cited 2019 Sep 15]. Available from: https://etda.libraries.psu.edu/catalog/15005jak5378.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kauffman J. An Overset Mesh Framework for the Hybridizable Discontinuous Galerkin Finite Element Method. [Thesis]. Penn State University; 2018. Available from: https://etda.libraries.psu.edu/catalog/15005jak5378

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universitat Politècnica de Catalunya

7. Paipuri, Mahendra. Comparison and coupling of continuous and hybridizable discontinuous Galerkin methods : application to multi-physics problems.

Degree: Departament d'Enginyeria Civil i Ambiental, 2018, Universitat Politècnica de Catalunya

 En esta tesis se propone una formulación acoplada del método de los elementos finitos clásico (CG) y el método Hybridizable Discontinuous Galerkin (HDG) para la… (more)

Subjects/Keywords: Hybridizable discontinuous Galerkin; Coupling; Conjugate heat transfer; GFRP; Computational efficiency; Acoplamiento; Trasmisión del calor conjugada; Eficiencia computacional; Àrees temàtiques de la UPC::Matemàtiques i estadística; 004; 512

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Paipuri, M. (2018). Comparison and coupling of continuous and hybridizable discontinuous Galerkin methods : application to multi-physics problems. (Thesis). Universitat Politècnica de Catalunya. Retrieved from http://hdl.handle.net/10803/471530

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Paipuri, Mahendra. “Comparison and coupling of continuous and hybridizable discontinuous Galerkin methods : application to multi-physics problems.” 2018. Thesis, Universitat Politècnica de Catalunya. Accessed September 15, 2019. http://hdl.handle.net/10803/471530.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Paipuri, Mahendra. “Comparison and coupling of continuous and hybridizable discontinuous Galerkin methods : application to multi-physics problems.” 2018. Web. 15 Sep 2019.

Vancouver:

Paipuri M. Comparison and coupling of continuous and hybridizable discontinuous Galerkin methods : application to multi-physics problems. [Internet] [Thesis]. Universitat Politècnica de Catalunya; 2018. [cited 2019 Sep 15]. Available from: http://hdl.handle.net/10803/471530.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Paipuri M. Comparison and coupling of continuous and hybridizable discontinuous Galerkin methods : application to multi-physics problems. [Thesis]. Universitat Politècnica de Catalunya; 2018. Available from: http://hdl.handle.net/10803/471530

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Shi, Ke. Devising superconvergent HDG methods for partial differential equations.

Degree: PhD, Mathematics, 2012, University of Minnesota

 The DG methods are ideally suited for numerically solving hyperbolic problems. However this is not the case for diffusion problems,even though they are ideally suited… (more)

Subjects/Keywords: Discontinuous Galerkin; Finite element; Fluid mechanics; Hybridizable; Numerical Analysis

…describe hybridizable discontinuous Galerkin (HDG) methods, we consider the following… …well as several hybridizable discontinuous Galerkin (HDG) methods. The novelty of… …testing our methods for Timoshenko beams. The first discontinuous Galerkin (DG)… …case of HDG methods whose local solvers are defined by the local discontinuous Galerkin… …classical continuous Galerkin methods on the same mesh, they have many more global degrees of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shi, K. (2012). Devising superconvergent HDG methods for partial differential equations. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/139518

Chicago Manual of Style (16th Edition):

Shi, Ke. “Devising superconvergent HDG methods for partial differential equations.” 2012. Doctoral Dissertation, University of Minnesota. Accessed September 15, 2019. http://purl.umn.edu/139518.

MLA Handbook (7th Edition):

Shi, Ke. “Devising superconvergent HDG methods for partial differential equations.” 2012. Web. 15 Sep 2019.

Vancouver:

Shi K. Devising superconvergent HDG methods for partial differential equations. [Internet] [Doctoral dissertation]. University of Minnesota; 2012. [cited 2019 Sep 15]. Available from: http://purl.umn.edu/139518.

Council of Science Editors:

Shi K. Devising superconvergent HDG methods for partial differential equations. [Doctoral Dissertation]. University of Minnesota; 2012. Available from: http://purl.umn.edu/139518

9. Prada, Daniele. A hybridizable discontinuous Galerkin method for nonlinear porous media viscoelasticity with applications in ophthalmology.

Degree: 2016, IUPUI

Indiana University-Purdue University Indianapolis (IUPUI)

The interplay between biomechanics and blood perfusion in the optic nerve head (ONH) has a critical role in ocular pathologies,… (more)

Subjects/Keywords: hybridizable discontinuous Galerkin methods; optimal convergence; ocular biomechanics and hemodynamics; glaucoma; nonlinear porous media viscoelasticity

…Velocity GMRES Generalized Minimal Residual HDG Hybridizable Discontinuous Galerkin IOP… …University, December 2016. A Hybridizable Discontinuous Galerkin Method for Nonlinear Porous Media… …is solved via a numerical method based on a novel hybridizable discontinuous Galerkin… …and the displacement u by a family of discontinuous Galerkin methods. In this work, we adopt… …discontinuous Galerkin (HDG) methods [19], thus approximating all the variables at… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Prada, D. (2016). A hybridizable discontinuous Galerkin method for nonlinear porous media viscoelasticity with applications in ophthalmology. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/11877

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Prada, Daniele. “A hybridizable discontinuous Galerkin method for nonlinear porous media viscoelasticity with applications in ophthalmology.” 2016. Thesis, IUPUI. Accessed September 15, 2019. http://hdl.handle.net/1805/11877.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Prada, Daniele. “A hybridizable discontinuous Galerkin method for nonlinear porous media viscoelasticity with applications in ophthalmology.” 2016. Web. 15 Sep 2019.

Vancouver:

Prada D. A hybridizable discontinuous Galerkin method for nonlinear porous media viscoelasticity with applications in ophthalmology. [Internet] [Thesis]. IUPUI; 2016. [cited 2019 Sep 15]. Available from: http://hdl.handle.net/1805/11877.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Prada D. A hybridizable discontinuous Galerkin method for nonlinear porous media viscoelasticity with applications in ophthalmology. [Thesis]. IUPUI; 2016. Available from: http://hdl.handle.net/1805/11877

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. HUYNH LE NGOC THANH. Immersed Hybridizable Discontinuous Galerkin Method for Multi-Viscosity Incompressible Navier-Stokes Flows on Irregular Domains.

Degree: 2010, National University of Singapore

Subjects/Keywords: Hybridizable discontinuous Galerkin; immersed interface; Navier-Stokes; curved boundary; fast Fourier transform; arbitrary Lagrangian Eulerian

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

THANH, H. L. N. (2010). Immersed Hybridizable Discontinuous Galerkin Method for Multi-Viscosity Incompressible Navier-Stokes Flows on Irregular Domains. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/23283

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

THANH, HUYNH LE NGOC. “Immersed Hybridizable Discontinuous Galerkin Method for Multi-Viscosity Incompressible Navier-Stokes Flows on Irregular Domains.” 2010. Thesis, National University of Singapore. Accessed September 15, 2019. http://scholarbank.nus.edu.sg/handle/10635/23283.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

THANH, HUYNH LE NGOC. “Immersed Hybridizable Discontinuous Galerkin Method for Multi-Viscosity Incompressible Navier-Stokes Flows on Irregular Domains.” 2010. Web. 15 Sep 2019.

Vancouver:

THANH HLN. Immersed Hybridizable Discontinuous Galerkin Method for Multi-Viscosity Incompressible Navier-Stokes Flows on Irregular Domains. [Internet] [Thesis]. National University of Singapore; 2010. [cited 2019 Sep 15]. Available from: http://scholarbank.nus.edu.sg/handle/10635/23283.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

THANH HLN. Immersed Hybridizable Discontinuous Galerkin Method for Multi-Viscosity Incompressible Navier-Stokes Flows on Irregular Domains. [Thesis]. National University of Singapore; 2010. Available from: http://scholarbank.nus.edu.sg/handle/10635/23283

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.