Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hurwitz numbers). Showing records 1 – 7 of 7 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Alberta

1. Chotai, Anand W. Extension of WKB-Topological Recursion Connection.

Degree: MS, Department of Mathematical and Statistical Sciences, 2016, University of Alberta

 It has been proven in other sources that spectral curves, (Σ,x,y), where Σ is a compact Riemann surface, and meromophic functions x and y satisfy… (more)

Subjects/Keywords: Topological Recursion; WKB; Mirror Symmetry; Hurwitz Numbers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chotai, A. W. (2016). Extension of WKB-Topological Recursion Connection. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/c8623hz062

Chicago Manual of Style (16th Edition):

Chotai, Anand W. “Extension of WKB-Topological Recursion Connection.” 2016. Masters Thesis, University of Alberta. Accessed October 25, 2020. https://era.library.ualberta.ca/files/c8623hz062.

MLA Handbook (7th Edition):

Chotai, Anand W. “Extension of WKB-Topological Recursion Connection.” 2016. Web. 25 Oct 2020.

Vancouver:

Chotai AW. Extension of WKB-Topological Recursion Connection. [Internet] [Masters thesis]. University of Alberta; 2016. [cited 2020 Oct 25]. Available from: https://era.library.ualberta.ca/files/c8623hz062.

Council of Science Editors:

Chotai AW. Extension of WKB-Topological Recursion Connection. [Masters Thesis]. University of Alberta; 2016. Available from: https://era.library.ualberta.ca/files/c8623hz062


University of Melbourne

2. Leigh, Oliver. Enumerative problems in algebraic geometry motivated from physics.

Degree: 2019, University of Melbourne

 This thesis contains two chapters which reflect the two main viewpoints of modern enumerative geometry. In chapter 1 we develop a theory for stable maps… (more)

Subjects/Keywords: moduli spaces; stable maps; twisted curves; spin structures; Hurwitz numbers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leigh, O. (2019). Enumerative problems in algebraic geometry motivated from physics. (Doctoral Dissertation). University of Melbourne. Retrieved from http://hdl.handle.net/11343/225589

Chicago Manual of Style (16th Edition):

Leigh, Oliver. “Enumerative problems in algebraic geometry motivated from physics.” 2019. Doctoral Dissertation, University of Melbourne. Accessed October 25, 2020. http://hdl.handle.net/11343/225589.

MLA Handbook (7th Edition):

Leigh, Oliver. “Enumerative problems in algebraic geometry motivated from physics.” 2019. Web. 25 Oct 2020.

Vancouver:

Leigh O. Enumerative problems in algebraic geometry motivated from physics. [Internet] [Doctoral dissertation]. University of Melbourne; 2019. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/11343/225589.

Council of Science Editors:

Leigh O. Enumerative problems in algebraic geometry motivated from physics. [Doctoral Dissertation]. University of Melbourne; 2019. Available from: http://hdl.handle.net/11343/225589

3. Nguyen, Viet anh. Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials : Contributions aux modèles de tenseurs, nombres de Hurwitz et polynômes de Macdonald-Koornwinder.

Degree: Docteur es, Mathématiques, 2017, Angers

Dans cette thèse, j’étudie trois sujets reliés : les modèles de tenseurs, les nombres de Hurwitz et les polynômes de Macdonald-Koornwinder. Les modèles de tenseurs… (more)

Subjects/Keywords: Modèles de tenseurs et matrices; Nombres de Hurwitz; Polynômes de Macdonald-Koornwinder; Identités de Littlewood; Tensor models; Matrix models; Hurwitz numbers; Symmetric functions; Macdonald-Koornwinder polynomials; Littlewood identities; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nguyen, V. a. (2017). Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials : Contributions aux modèles de tenseurs, nombres de Hurwitz et polynômes de Macdonald-Koornwinder. (Doctoral Dissertation). Angers. Retrieved from http://www.theses.fr/2017ANGE0052

Chicago Manual of Style (16th Edition):

Nguyen, Viet anh. “Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials : Contributions aux modèles de tenseurs, nombres de Hurwitz et polynômes de Macdonald-Koornwinder.” 2017. Doctoral Dissertation, Angers. Accessed October 25, 2020. http://www.theses.fr/2017ANGE0052.

MLA Handbook (7th Edition):

Nguyen, Viet anh. “Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials : Contributions aux modèles de tenseurs, nombres de Hurwitz et polynômes de Macdonald-Koornwinder.” 2017. Web. 25 Oct 2020.

Vancouver:

Nguyen Va. Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials : Contributions aux modèles de tenseurs, nombres de Hurwitz et polynômes de Macdonald-Koornwinder. [Internet] [Doctoral dissertation]. Angers; 2017. [cited 2020 Oct 25]. Available from: http://www.theses.fr/2017ANGE0052.

Council of Science Editors:

Nguyen Va. Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials : Contributions aux modèles de tenseurs, nombres de Hurwitz et polynômes de Macdonald-Koornwinder. [Doctoral Dissertation]. Angers; 2017. Available from: http://www.theses.fr/2017ANGE0052

4. Sage, Marc. Combinatoire algébrique et géométrique des nombres de Hurwitz : Algebraic and geometric combinatorics of Hurwitz numbers.

Degree: Docteur es, Informatique, 2012, Université Paris-Est

Ce mémoire se veut une synthèse, destinée à la communauté combinatoricienne, de quelques outils développés pour aborder le problème d'Hurwitz ainsi qu'une présentation des résultats… (more)

Subjects/Keywords: Nombres d'Hurwitz; Factorisations transitives; Asymptotique; Formule ELSV; Permutations scindées; Multipartitions; Hurwitz numbers; Transitive factorisations; Asymptotics; ELSV formula; Split permutations; Multipartitions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sage, M. (2012). Combinatoire algébrique et géométrique des nombres de Hurwitz : Algebraic and geometric combinatorics of Hurwitz numbers. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2012PEST1102

Chicago Manual of Style (16th Edition):

Sage, Marc. “Combinatoire algébrique et géométrique des nombres de Hurwitz : Algebraic and geometric combinatorics of Hurwitz numbers.” 2012. Doctoral Dissertation, Université Paris-Est. Accessed October 25, 2020. http://www.theses.fr/2012PEST1102.

MLA Handbook (7th Edition):

Sage, Marc. “Combinatoire algébrique et géométrique des nombres de Hurwitz : Algebraic and geometric combinatorics of Hurwitz numbers.” 2012. Web. 25 Oct 2020.

Vancouver:

Sage M. Combinatoire algébrique et géométrique des nombres de Hurwitz : Algebraic and geometric combinatorics of Hurwitz numbers. [Internet] [Doctoral dissertation]. Université Paris-Est; 2012. [cited 2020 Oct 25]. Available from: http://www.theses.fr/2012PEST1102.

Council of Science Editors:

Sage M. Combinatoire algébrique et géométrique des nombres de Hurwitz : Algebraic and geometric combinatorics of Hurwitz numbers. [Doctoral Dissertation]. Université Paris-Est; 2012. Available from: http://www.theses.fr/2012PEST1102

5. Johnson, Paul D. Equivariant Gromov-Witten theory of one dimensional stacks.

Degree: PhD, Mathematics, 2009, University of Michigan

 Gromov-Witten theory constructs moduli spaces of maps from curves to a target space and gives a virtual count of such maps satisfying given conditions by… (more)

Subjects/Keywords: Gromov-Witten Theory; Hurwitz Numbers; Integrable Hierarchies; Mathematics; Science

…Pandharipande had shown that the Toda conjecture implies a certain Toda equation for Hurwitz numbers… …double Hurwitz numbers satisfy the entire 2-Toda hierarchy. Combining the classical expression… …of Hurwitz numbers in terms of the representation theory of the symmetric group with the… …infinite wedge, Okounkov encoded Hurwitz numbers as operator expectations on the infinite wedge… …hierarchies, and so it quickly follows that double Hurwitz numbers satisfy the whole 2-Toda… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Johnson, P. D. (2009). Equivariant Gromov-Witten theory of one dimensional stacks. (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/62321

Chicago Manual of Style (16th Edition):

Johnson, Paul D. “Equivariant Gromov-Witten theory of one dimensional stacks.” 2009. Doctoral Dissertation, University of Michigan. Accessed October 25, 2020. http://hdl.handle.net/2027.42/62321.

MLA Handbook (7th Edition):

Johnson, Paul D. “Equivariant Gromov-Witten theory of one dimensional stacks.” 2009. Web. 25 Oct 2020.

Vancouver:

Johnson PD. Equivariant Gromov-Witten theory of one dimensional stacks. [Internet] [Doctoral dissertation]. University of Michigan; 2009. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/2027.42/62321.

Council of Science Editors:

Johnson PD. Equivariant Gromov-Witten theory of one dimensional stacks. [Doctoral Dissertation]. University of Michigan; 2009. Available from: http://hdl.handle.net/2027.42/62321


Université Paris-Sud – Paris XI

6. Borot, Gaëtan. Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann : Some problems of enumerative geometry, random matrix theory, integrability, studied via complex analysis.

Degree: Docteur es, Physique théorique, 2011, Université Paris-Sud – Paris XI

La géométrie complexe est un outil puissant pour étudier les systèmes intégrables classiques, la physique statistique sur réseau aléatoire, les problèmes de matrices aléatoires, la… (more)

Subjects/Keywords: Matrices aléatoires; Physique statistique sur réseaux aléatoires; Invariants de Gromov-Witten; Théorie topologique des cordes; Géométrie complexe; Systèmes intégrables; Modèle O(n); Nombres de Hurwitz; Asymptotiques; Random matrices; Statistical physics on the random lattice; Gromov-Witten invariants; Topological string theory; Complex geometry; Integrable systems; O(n) model; Hurwitz numbers; Asymptotics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Borot, G. (2011). Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann : Some problems of enumerative geometry, random matrix theory, integrability, studied via complex analysis. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2011PA112092

Chicago Manual of Style (16th Edition):

Borot, Gaëtan. “Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann : Some problems of enumerative geometry, random matrix theory, integrability, studied via complex analysis.” 2011. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed October 25, 2020. http://www.theses.fr/2011PA112092.

MLA Handbook (7th Edition):

Borot, Gaëtan. “Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann : Some problems of enumerative geometry, random matrix theory, integrability, studied via complex analysis.” 2011. Web. 25 Oct 2020.

Vancouver:

Borot G. Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann : Some problems of enumerative geometry, random matrix theory, integrability, studied via complex analysis. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2011. [cited 2020 Oct 25]. Available from: http://www.theses.fr/2011PA112092.

Council of Science Editors:

Borot G. Quelques problèmes de géométrie énumérative, de matrices aléatoires, d'intégrabilité, étudiés via la géométrie des surfaces de Riemann : Some problems of enumerative geometry, random matrix theory, integrability, studied via complex analysis. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2011. Available from: http://www.theses.fr/2011PA112092

7. Baker, Michael. Elliptic Curves over Finite Fields and their l-Torsion Galois Representations.

Degree: 2015, University of Waterloo

 Let q and ℓ be distinct primes. Given an elliptic curve E over \mathbf{F}q, we study the behaviour of the 2-dimensional Galois representation of {Gal}(\mathbf{F̅q}/\mathbf{F}q)… (more)

Subjects/Keywords: elliptic curves; modular forms; Hurwitz class numbers; quadratic forms; modular curves

…involving certain sums of Hurwitz class numbers, as in the paper [2]; the reader is… …2.5 Hurwitz class numbers The Hurwitz class number H(N ) is a modification of… …certain sums of Hurwitz class numbers. A trivial example of this is: Corollary 16. If q is prime… …Hurwitz class numbers as follows: 1 2 H(4q − r2 ) = √ |r|<2 q r≡t mod ∗ Nq (Cq… …relation (5.1) to sums of Hurwitz class numbers immediately establishes the following… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baker, M. (2015). Elliptic Curves over Finite Fields and their l-Torsion Galois Representations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/9649

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Baker, Michael. “Elliptic Curves over Finite Fields and their l-Torsion Galois Representations.” 2015. Thesis, University of Waterloo. Accessed October 25, 2020. http://hdl.handle.net/10012/9649.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Baker, Michael. “Elliptic Curves over Finite Fields and their l-Torsion Galois Representations.” 2015. Web. 25 Oct 2020.

Vancouver:

Baker M. Elliptic Curves over Finite Fields and their l-Torsion Galois Representations. [Internet] [Thesis]. University of Waterloo; 2015. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10012/9649.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Baker M. Elliptic Curves over Finite Fields and their l-Torsion Galois Representations. [Thesis]. University of Waterloo; 2015. Available from: http://hdl.handle.net/10012/9649

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.