Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Homotopy). Showing records 1 – 30 of 313 total matches.

[1] [2] [3] [4] [5] … [11]

Search Limiters

Last 2 Years | English Only

Department

Degrees

Levels

Languages

Country

▼ Search Limiters


Rutgers University

1. Wilson, Glen M., 1988-. Motivic stable stems over finite fields.

Degree: PhD, Mathematics, 2016, Rutgers University

Let l be a prime. For any algebraically closed field F of positive characteristic p different from l, we show that for all natural numbers… (more)

Subjects/Keywords: Homotopy theory; Homotopy groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilson, Glen M., 1. (2016). Motivic stable stems over finite fields. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/50158/

Chicago Manual of Style (16th Edition):

Wilson, Glen M., 1988-. “Motivic stable stems over finite fields.” 2016. Doctoral Dissertation, Rutgers University. Accessed September 22, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/50158/.

MLA Handbook (7th Edition):

Wilson, Glen M., 1988-. “Motivic stable stems over finite fields.” 2016. Web. 22 Sep 2020.

Vancouver:

Wilson, Glen M. 1. Motivic stable stems over finite fields. [Internet] [Doctoral dissertation]. Rutgers University; 2016. [cited 2020 Sep 22]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50158/.

Council of Science Editors:

Wilson, Glen M. 1. Motivic stable stems over finite fields. [Doctoral Dissertation]. Rutgers University; 2016. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50158/


University of Texas – Austin

2. -5183-3211. The moduli space of objects in differential graded categories glued along bimodules and a presentability result in the homotopy theory of commutative differential graded algebras.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

 The moduli space of objects of a dg-category, T, is a derived stack introduced in (31) that paramatrizes "pseudo-perfect T [superscript op] -modules." This construction… (more)

Subjects/Keywords: Homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-5183-3211. (2019). The moduli space of objects in differential graded categories glued along bimodules and a presentability result in the homotopy theory of commutative differential graded algebras. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5773

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-5183-3211. “The moduli space of objects in differential graded categories glued along bimodules and a presentability result in the homotopy theory of commutative differential graded algebras.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed September 22, 2020. http://dx.doi.org/10.26153/tsw/5773.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-5183-3211. “The moduli space of objects in differential graded categories glued along bimodules and a presentability result in the homotopy theory of commutative differential graded algebras.” 2019. Web. 22 Sep 2020.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-5183-3211. The moduli space of objects in differential graded categories glued along bimodules and a presentability result in the homotopy theory of commutative differential graded algebras. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2020 Sep 22]. Available from: http://dx.doi.org/10.26153/tsw/5773.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-5183-3211. The moduli space of objects in differential graded categories glued along bimodules and a presentability result in the homotopy theory of commutative differential graded algebras. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5773

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


Université Catholique de Louvain

3. Atontsa Nguemo, Miradain. Goodwillie calculus in the category of algebras over a chain operad.

Degree: 2020, Université Catholique de Louvain

Goodwillie functor calculus is a method invented by Thomas Goodwillie to analyze functors that arise in Topology. This theory has some compelling similarities with differential… (more)

Subjects/Keywords: Homotopy functors; Homopical algebra; Homotopy theory; Operads

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Atontsa Nguemo, M. (2020). Goodwillie calculus in the category of algebras over a chain operad. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/232079

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Atontsa Nguemo, Miradain. “Goodwillie calculus in the category of algebras over a chain operad.” 2020. Thesis, Université Catholique de Louvain. Accessed September 22, 2020. http://hdl.handle.net/2078.1/232079.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Atontsa Nguemo, Miradain. “Goodwillie calculus in the category of algebras over a chain operad.” 2020. Web. 22 Sep 2020.

Vancouver:

Atontsa Nguemo M. Goodwillie calculus in the category of algebras over a chain operad. [Internet] [Thesis]. Université Catholique de Louvain; 2020. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/2078.1/232079.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Atontsa Nguemo M. Goodwillie calculus in the category of algebras over a chain operad. [Thesis]. Université Catholique de Louvain; 2020. Available from: http://hdl.handle.net/2078.1/232079

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Tulane University

4. Karakoc, Selcuk. On Minimum Homotopy Areas.

Degree: 2017, Tulane University

We study the problem of computing the minimum homotopy area of a planar normal curve. The area of a homotopy is the area swept by… (more)

Subjects/Keywords: Minimum Homotopy; Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karakoc, S. (2017). On Minimum Homotopy Areas. (Thesis). Tulane University. Retrieved from https://digitallibrary.tulane.edu/islandora/object/tulane:76399

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Karakoc, Selcuk. “On Minimum Homotopy Areas.” 2017. Thesis, Tulane University. Accessed September 22, 2020. https://digitallibrary.tulane.edu/islandora/object/tulane:76399.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Karakoc, Selcuk. “On Minimum Homotopy Areas.” 2017. Web. 22 Sep 2020.

Vancouver:

Karakoc S. On Minimum Homotopy Areas. [Internet] [Thesis]. Tulane University; 2017. [cited 2020 Sep 22]. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:76399.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Karakoc S. On Minimum Homotopy Areas. [Thesis]. Tulane University; 2017. Available from: https://digitallibrary.tulane.edu/islandora/object/tulane:76399

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Oregon State University

5. Seaders, Nicole Sheree. Splittings of skeletal homotopy modules.

Degree: PhD, Mathematics, 2011, Oregon State University

 This thesis is devoted to determining structure results on a group relative to a subgroup, using information about the kernel of the boundary map of… (more)

Subjects/Keywords: kernel; Homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Seaders, N. S. (2011). Splittings of skeletal homotopy modules. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/20860

Chicago Manual of Style (16th Edition):

Seaders, Nicole Sheree. “Splittings of skeletal homotopy modules.” 2011. Doctoral Dissertation, Oregon State University. Accessed September 22, 2020. http://hdl.handle.net/1957/20860.

MLA Handbook (7th Edition):

Seaders, Nicole Sheree. “Splittings of skeletal homotopy modules.” 2011. Web. 22 Sep 2020.

Vancouver:

Seaders NS. Splittings of skeletal homotopy modules. [Internet] [Doctoral dissertation]. Oregon State University; 2011. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/1957/20860.

Council of Science Editors:

Seaders NS. Splittings of skeletal homotopy modules. [Doctoral Dissertation]. Oregon State University; 2011. Available from: http://hdl.handle.net/1957/20860


University of Georgia

6. Zawodniak, Matthew David. A moduli space for rational homotopy types with the same homotopy lie algebra.

Degree: 2017, University of Georgia

 One of the major goals of rational homotopy theory is to classify the rational homotopy types of simply connected topological spaces, up to weak equivalence.… (more)

Subjects/Keywords: Homotopy theory; Rational homotopy theory; Moduli space; Deformation theory; Homotopy types

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zawodniak, M. D. (2017). A moduli space for rational homotopy types with the same homotopy lie algebra. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/36571

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zawodniak, Matthew David. “A moduli space for rational homotopy types with the same homotopy lie algebra.” 2017. Thesis, University of Georgia. Accessed September 22, 2020. http://hdl.handle.net/10724/36571.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zawodniak, Matthew David. “A moduli space for rational homotopy types with the same homotopy lie algebra.” 2017. Web. 22 Sep 2020.

Vancouver:

Zawodniak MD. A moduli space for rational homotopy types with the same homotopy lie algebra. [Internet] [Thesis]. University of Georgia; 2017. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/10724/36571.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zawodniak MD. A moduli space for rational homotopy types with the same homotopy lie algebra. [Thesis]. University of Georgia; 2017. Available from: http://hdl.handle.net/10724/36571

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Washington State University

7. [No author]. Minimal Homotopies And Robust Feasibility Using Topological Degree Theory .

Degree: 2019, Washington State University

 Minimal Homotopies This study considers the set of homtopies between homotopic continuous maps from compact submanifolds of Rd into Rd+1 s.t. the closed neighborhood around… (more)

Subjects/Keywords: Mathematics; Degree Theory; Homotopy; Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

author], [. (2019). Minimal Homotopies And Robust Feasibility Using Topological Degree Theory . (Thesis). Washington State University. Retrieved from http://hdl.handle.net/2376/17865

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

author], [No. “Minimal Homotopies And Robust Feasibility Using Topological Degree Theory .” 2019. Thesis, Washington State University. Accessed September 22, 2020. http://hdl.handle.net/2376/17865.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

author], [No. “Minimal Homotopies And Robust Feasibility Using Topological Degree Theory .” 2019. Web. 22 Sep 2020.

Vancouver:

author] [. Minimal Homotopies And Robust Feasibility Using Topological Degree Theory . [Internet] [Thesis]. Washington State University; 2019. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/2376/17865.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

author] [. Minimal Homotopies And Robust Feasibility Using Topological Degree Theory . [Thesis]. Washington State University; 2019. Available from: http://hdl.handle.net/2376/17865

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

8. Chen, Liping. A linear homotopy method for computing generalized tensor eigenpairs.

Degree: 2016, Michigan State University

Thesis Ph. D. Michigan State University. Applied Mathematics 2016

A tensor is a multidimensional array. In general, an mth-order and n-dimensional tensor can be indexed… (more)

Subjects/Keywords: Tensor algebra; Homotopy theory; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, L. (2016). A linear homotopy method for computing generalized tensor eigenpairs. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:3921

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Liping. “A linear homotopy method for computing generalized tensor eigenpairs.” 2016. Thesis, Michigan State University. Accessed September 22, 2020. http://etd.lib.msu.edu/islandora/object/etd:3921.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Liping. “A linear homotopy method for computing generalized tensor eigenpairs.” 2016. Web. 22 Sep 2020.

Vancouver:

Chen L. A linear homotopy method for computing generalized tensor eigenpairs. [Internet] [Thesis]. Michigan State University; 2016. [cited 2020 Sep 22]. Available from: http://etd.lib.msu.edu/islandora/object/etd:3921.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen L. A linear homotopy method for computing generalized tensor eigenpairs. [Thesis]. Michigan State University; 2016. Available from: http://etd.lib.msu.edu/islandora/object/etd:3921

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oregon

9. Merrill, Leanne. Periodic Margolis Self Maps at p=2.

Degree: PhD, Department of Mathematics, 2018, University of Oregon

 The Periodicity theorem of Hopkins and Smith tells us that any finite spectrum supports a vn-map for some n. We are interested in finding finite… (more)

Subjects/Keywords: Algebraic topology; Homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Merrill, L. (2018). Periodic Margolis Self Maps at p=2. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/23144

Chicago Manual of Style (16th Edition):

Merrill, Leanne. “Periodic Margolis Self Maps at p=2.” 2018. Doctoral Dissertation, University of Oregon. Accessed September 22, 2020. http://hdl.handle.net/1794/23144.

MLA Handbook (7th Edition):

Merrill, Leanne. “Periodic Margolis Self Maps at p=2.” 2018. Web. 22 Sep 2020.

Vancouver:

Merrill L. Periodic Margolis Self Maps at p=2. [Internet] [Doctoral dissertation]. University of Oregon; 2018. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/1794/23144.

Council of Science Editors:

Merrill L. Periodic Margolis Self Maps at p=2. [Doctoral Dissertation]. University of Oregon; 2018. Available from: http://hdl.handle.net/1794/23144


University of Hong Kong

10. Lam, Siu-por. On ex-homotopy theory and generalized homotopy products.

Degree: 1978, University of Hong Kong

Subjects/Keywords: Homotopy theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lam, S. (1978). On ex-homotopy theory and generalized homotopy products. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/32376

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lam, Siu-por. “On ex-homotopy theory and generalized homotopy products.” 1978. Thesis, University of Hong Kong. Accessed September 22, 2020. http://hdl.handle.net/10722/32376.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lam, Siu-por. “On ex-homotopy theory and generalized homotopy products.” 1978. Web. 22 Sep 2020.

Vancouver:

Lam S. On ex-homotopy theory and generalized homotopy products. [Internet] [Thesis]. University of Hong Kong; 1978. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/10722/32376.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lam S. On ex-homotopy theory and generalized homotopy products. [Thesis]. University of Hong Kong; 1978. Available from: http://hdl.handle.net/10722/32376

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Hong Kong

11. Wong, Yan-loi. Homotopy theory in a double category with connection.

Degree: 1982, University of Hong Kong

Subjects/Keywords: Homotopy theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wong, Y. (1982). Homotopy theory in a double category with connection. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/32611

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wong, Yan-loi. “Homotopy theory in a double category with connection.” 1982. Thesis, University of Hong Kong. Accessed September 22, 2020. http://hdl.handle.net/10722/32611.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wong, Yan-loi. “Homotopy theory in a double category with connection.” 1982. Web. 22 Sep 2020.

Vancouver:

Wong Y. Homotopy theory in a double category with connection. [Internet] [Thesis]. University of Hong Kong; 1982. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/10722/32611.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wong Y. Homotopy theory in a double category with connection. [Thesis]. University of Hong Kong; 1982. Available from: http://hdl.handle.net/10722/32611

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Hong Kong

12. Yiu, Yu-hung, Paul. A comparative survey of homotopy pullbacks and pushouts.

Degree: 1978, University of Hong Kong

Subjects/Keywords: Homotopy theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yiu, Yu-hung, P. (1978). A comparative survey of homotopy pullbacks and pushouts. (Thesis). University of Hong Kong. Retrieved from http://hdl.handle.net/10722/32853

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yiu, Yu-hung, Paul. “A comparative survey of homotopy pullbacks and pushouts.” 1978. Thesis, University of Hong Kong. Accessed September 22, 2020. http://hdl.handle.net/10722/32853.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yiu, Yu-hung, Paul. “A comparative survey of homotopy pullbacks and pushouts.” 1978. Web. 22 Sep 2020.

Vancouver:

Yiu, Yu-hung P. A comparative survey of homotopy pullbacks and pushouts. [Internet] [Thesis]. University of Hong Kong; 1978. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/10722/32853.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yiu, Yu-hung P. A comparative survey of homotopy pullbacks and pushouts. [Thesis]. University of Hong Kong; 1978. Available from: http://hdl.handle.net/10722/32853

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Berkeley

13. Peterson, Eric Christopher. Cotangent spectra and the determinantal sphere.

Degree: Mathematics, 2015, University of California – Berkeley

 We explore the generalization of cellular decomposition in chromatically localized stable categories suggested by Picard – graded homotopy groups. In particular, for K(d) a Morava K-theory,… (more)

Subjects/Keywords: Mathematics; chromatic homotopy; determinantal sphere; Gross-Hopkins duality; stable homotopy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Peterson, E. C. (2015). Cotangent spectra and the determinantal sphere. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/1rx093jf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Peterson, Eric Christopher. “Cotangent spectra and the determinantal sphere.” 2015. Thesis, University of California – Berkeley. Accessed September 22, 2020. http://www.escholarship.org/uc/item/1rx093jf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Peterson, Eric Christopher. “Cotangent spectra and the determinantal sphere.” 2015. Web. 22 Sep 2020.

Vancouver:

Peterson EC. Cotangent spectra and the determinantal sphere. [Internet] [Thesis]. University of California – Berkeley; 2015. [cited 2020 Sep 22]. Available from: http://www.escholarship.org/uc/item/1rx093jf.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Peterson EC. Cotangent spectra and the determinantal sphere. [Thesis]. University of California – Berkeley; 2015. Available from: http://www.escholarship.org/uc/item/1rx093jf

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Berkeley

14. Cho, Chang-Yeon. Topological types of Algebraic stacks.

Degree: Mathematics, 2016, University of California – Berkeley

 In developing homotopy theory in algebraic geometry, Michael Artin and Barry Mazur studied the \'etale homotopy types of schemes. Later, Eric Friedlander generalized them to… (more)

Subjects/Keywords: Mathematics; algebraic geometry; algebraic stacks; algebraic topology; \'etale homotopy; homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cho, C. (2016). Topological types of Algebraic stacks. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/1pv4m6nr

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cho, Chang-Yeon. “Topological types of Algebraic stacks.” 2016. Thesis, University of California – Berkeley. Accessed September 22, 2020. http://www.escholarship.org/uc/item/1pv4m6nr.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cho, Chang-Yeon. “Topological types of Algebraic stacks.” 2016. Web. 22 Sep 2020.

Vancouver:

Cho C. Topological types of Algebraic stacks. [Internet] [Thesis]. University of California – Berkeley; 2016. [cited 2020 Sep 22]. Available from: http://www.escholarship.org/uc/item/1pv4m6nr.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cho C. Topological types of Algebraic stacks. [Thesis]. University of California – Berkeley; 2016. Available from: http://www.escholarship.org/uc/item/1pv4m6nr

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Rochester

15. Larson, Donald Matthew (1978 - ). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3.

Degree: PhD, 2013, University of Rochester

 In this thesis we obtain a near-complete description of the E2 term of the Adams-Novikov spectral sequence converging to the homotopy groups of a spectrum… (more)

Subjects/Keywords: Algebraic topology; Homotopy theory; Stable homotopy theory; Topological modular forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Larson, D. M. (. -. ). (2013). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/27845

Chicago Manual of Style (16th Edition):

Larson, Donald Matthew (1978 - ). “The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3.” 2013. Doctoral Dissertation, University of Rochester. Accessed September 22, 2020. http://hdl.handle.net/1802/27845.

MLA Handbook (7th Edition):

Larson, Donald Matthew (1978 - ). “The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3.” 2013. Web. 22 Sep 2020.

Vancouver:

Larson DM(-). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3. [Internet] [Doctoral dissertation]. University of Rochester; 2013. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/1802/27845.

Council of Science Editors:

Larson DM(-). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3. [Doctoral Dissertation]. University of Rochester; 2013. Available from: http://hdl.handle.net/1802/27845


University of Rochester

16. Zou, Yan (1987 - ). RO (D₂p)-graded slice spectral sequence of HZ.

Degree: PhD, 2018, University of Rochester

 The slice spectral sequence was used by Hill, Hopkins and Ravenel to solve the Kervaire invariant one problem. The regular slice spectral sequence is a… (more)

Subjects/Keywords: Dihedral group; Equivariant homotopy; Slice spectral sequence; Stable homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zou, Y. (. -. ). (2018). RO (D₂p)-graded slice spectral sequence of HZ. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/34283

Chicago Manual of Style (16th Edition):

Zou, Yan (1987 - ). “RO (D₂p)-graded slice spectral sequence of HZ.” 2018. Doctoral Dissertation, University of Rochester. Accessed September 22, 2020. http://hdl.handle.net/1802/34283.

MLA Handbook (7th Edition):

Zou, Yan (1987 - ). “RO (D₂p)-graded slice spectral sequence of HZ.” 2018. Web. 22 Sep 2020.

Vancouver:

Zou Y(-). RO (D₂p)-graded slice spectral sequence of HZ. [Internet] [Doctoral dissertation]. University of Rochester; 2018. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/1802/34283.

Council of Science Editors:

Zou Y(-). RO (D₂p)-graded slice spectral sequence of HZ. [Doctoral Dissertation]. University of Rochester; 2018. Available from: http://hdl.handle.net/1802/34283


University of British Columbia

17. Jardine, J. F. Algebraic homotopy theory, groups, and K-theory .

Degree: 1981, University of British Columbia

 Let Mk be the category of algebras over a unique factorization domain k, and let ind-Affk denote the category of pro-representable functors from Mk to… (more)

Subjects/Keywords: Homotopy groups; Groups; Homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jardine, J. F. (1981). Algebraic homotopy theory, groups, and K-theory . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/23058

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jardine, J F. “Algebraic homotopy theory, groups, and K-theory .” 1981. Thesis, University of British Columbia. Accessed September 22, 2020. http://hdl.handle.net/2429/23058.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jardine, J F. “Algebraic homotopy theory, groups, and K-theory .” 1981. Web. 22 Sep 2020.

Vancouver:

Jardine JF. Algebraic homotopy theory, groups, and K-theory . [Internet] [Thesis]. University of British Columbia; 1981. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/2429/23058.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jardine JF. Algebraic homotopy theory, groups, and K-theory . [Thesis]. University of British Columbia; 1981. Available from: http://hdl.handle.net/2429/23058

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Harvard University

18. Shi, XiaoLin. Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory.

Degree: PhD, 2019, Harvard University

In this thesis, we show that Lubin – Tate spectra at the prime 2 are Real oriented and Real Landweber exact. The proof is by application… (more)

Subjects/Keywords: Algebraic Topology; Chromatic Homotopy Theory; Equivariant Homotopy Theory; Slice Spectral Sequence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shi, X. (2019). Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555

Chicago Manual of Style (16th Edition):

Shi, XiaoLin. “Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory.” 2019. Doctoral Dissertation, Harvard University. Accessed September 22, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555.

MLA Handbook (7th Edition):

Shi, XiaoLin. “Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory.” 2019. Web. 22 Sep 2020.

Vancouver:

Shi X. Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2020 Sep 22]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555.

Council of Science Editors:

Shi X. Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555


University of Notre Dame

19. Phillip Jedlovec. Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>.

Degree: Mathematics, 2018, University of Notre Dame

  In this dissertation, we give a new proof of the main results of Ando, Hopkins, and Strickland regarding the generalized homology of the even… (more)

Subjects/Keywords: Homotopy Theory; Algebraic Topology; Mathematics; Unstable Homotopy Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jedlovec, P. (2018). Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/hd76rx9419z

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jedlovec, Phillip. “Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>.” 2018. Thesis, University of Notre Dame. Accessed September 22, 2020. https://curate.nd.edu/show/hd76rx9419z.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jedlovec, Phillip. “Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>.” 2018. Web. 22 Sep 2020.

Vancouver:

Jedlovec P. Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>. [Internet] [Thesis]. University of Notre Dame; 2018. [cited 2020 Sep 22]. Available from: https://curate.nd.edu/show/hd76rx9419z.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jedlovec P. Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>. [Thesis]. University of Notre Dame; 2018. Available from: https://curate.nd.edu/show/hd76rx9419z

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Macquarie University

20. Lanari, Edoardo. Homotopy theory of Grothendieck ∞-groupoids and ∞-categories.

Degree: 2019, Macquarie University

Empirical thesis.

Bibliography: pages 120-121.

Chapter 1. Introduction  – Chapter 2. Globular theories and models  – Chapter 3. Basic homotopy theory of ∞-groupoids  – Chapter… (more)

Subjects/Keywords: Homotopy theory; Model categories (Mathematics); homotopy theory; higher category theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lanari, E. (2019). Homotopy theory of Grothendieck ∞-groupoids and ∞-categories. (Doctoral Dissertation). Macquarie University. Retrieved from http://hdl.handle.net/1959.14/1269609

Chicago Manual of Style (16th Edition):

Lanari, Edoardo. “Homotopy theory of Grothendieck ∞-groupoids and ∞-categories.” 2019. Doctoral Dissertation, Macquarie University. Accessed September 22, 2020. http://hdl.handle.net/1959.14/1269609.

MLA Handbook (7th Edition):

Lanari, Edoardo. “Homotopy theory of Grothendieck ∞-groupoids and ∞-categories.” 2019. Web. 22 Sep 2020.

Vancouver:

Lanari E. Homotopy theory of Grothendieck ∞-groupoids and ∞-categories. [Internet] [Doctoral dissertation]. Macquarie University; 2019. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/1959.14/1269609.

Council of Science Editors:

Lanari E. Homotopy theory of Grothendieck ∞-groupoids and ∞-categories. [Doctoral Dissertation]. Macquarie University; 2019. Available from: http://hdl.handle.net/1959.14/1269609


The Ohio State University

21. Oprea, John F. Contributions to rational homotopy theory.

Degree: PhD, Graduate School, 1982, The Ohio State University

Subjects/Keywords: Mathematics; Homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oprea, J. F. (1982). Contributions to rational homotopy theory. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487173452111064

Chicago Manual of Style (16th Edition):

Oprea, John F. “Contributions to rational homotopy theory.” 1982. Doctoral Dissertation, The Ohio State University. Accessed September 22, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487173452111064.

MLA Handbook (7th Edition):

Oprea, John F. “Contributions to rational homotopy theory.” 1982. Web. 22 Sep 2020.

Vancouver:

Oprea JF. Contributions to rational homotopy theory. [Internet] [Doctoral dissertation]. The Ohio State University; 1982. [cited 2020 Sep 22]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487173452111064.

Council of Science Editors:

Oprea JF. Contributions to rational homotopy theory. [Doctoral Dissertation]. The Ohio State University; 1982. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487173452111064


The Ohio State University

22. Molnar, Edward Allen. Relation between wedge cancellation and localization for complexes with two cells.

Degree: PhD, Graduate School, 1972, The Ohio State University

Subjects/Keywords: Mathematics; Homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Molnar, E. A. (1972). Relation between wedge cancellation and localization for complexes with two cells. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486737392747711

Chicago Manual of Style (16th Edition):

Molnar, Edward Allen. “Relation between wedge cancellation and localization for complexes with two cells.” 1972. Doctoral Dissertation, The Ohio State University. Accessed September 22, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486737392747711.

MLA Handbook (7th Edition):

Molnar, Edward Allen. “Relation between wedge cancellation and localization for complexes with two cells.” 1972. Web. 22 Sep 2020.

Vancouver:

Molnar EA. Relation between wedge cancellation and localization for complexes with two cells. [Internet] [Doctoral dissertation]. The Ohio State University; 1972. [cited 2020 Sep 22]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486737392747711.

Council of Science Editors:

Molnar EA. Relation between wedge cancellation and localization for complexes with two cells. [Doctoral Dissertation]. The Ohio State University; 1972. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486737392747711

23. Hou (Favonia), Kuen-Bang. Higher-Dimensional Types in the Mechanization of Homotopy Theory.

Degree: 2017, Carnegie Mellon University

 Mechanized reasoning has proved effective in avoiding serious mistakes in software and hardware, and yet remains unpopular in the practice of mathematics. My thesis is… (more)

Subjects/Keywords: mechanized reasoning; higher-dimensional types; homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hou (Favonia), K. (2017). Higher-Dimensional Types in the Mechanization of Homotopy Theory. (Thesis). Carnegie Mellon University. Retrieved from http://repository.cmu.edu/dissertations/1086

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hou (Favonia), Kuen-Bang. “Higher-Dimensional Types in the Mechanization of Homotopy Theory.” 2017. Thesis, Carnegie Mellon University. Accessed September 22, 2020. http://repository.cmu.edu/dissertations/1086.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hou (Favonia), Kuen-Bang. “Higher-Dimensional Types in the Mechanization of Homotopy Theory.” 2017. Web. 22 Sep 2020.

Vancouver:

Hou (Favonia) K. Higher-Dimensional Types in the Mechanization of Homotopy Theory. [Internet] [Thesis]. Carnegie Mellon University; 2017. [cited 2020 Sep 22]. Available from: http://repository.cmu.edu/dissertations/1086.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hou (Favonia) K. Higher-Dimensional Types in the Mechanization of Homotopy Theory. [Thesis]. Carnegie Mellon University; 2017. Available from: http://repository.cmu.edu/dissertations/1086

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Drexel University

24. Armstrong, Jeffrey. The homotopy theory of modules of curved A[infinity]-algebras.

Degree: 2015, Drexel University

We present a homotopy theory for the category of modules over a curved A∞- algebra over a commutative unital ring. We give a functorial construction… (more)

Subjects/Keywords: Mathematics; Homotopy theory; Universal enveloping algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Armstrong, J. (2015). The homotopy theory of modules of curved A[infinity]-algebras. (Thesis). Drexel University. Retrieved from http://hdl.handle.net/1860/idea:6665

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Armstrong, Jeffrey. “The homotopy theory of modules of curved A[infinity]-algebras.” 2015. Thesis, Drexel University. Accessed September 22, 2020. http://hdl.handle.net/1860/idea:6665.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Armstrong, Jeffrey. “The homotopy theory of modules of curved A[infinity]-algebras.” 2015. Web. 22 Sep 2020.

Vancouver:

Armstrong J. The homotopy theory of modules of curved A[infinity]-algebras. [Internet] [Thesis]. Drexel University; 2015. [cited 2020 Sep 22]. Available from: http://hdl.handle.net/1860/idea:6665.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Armstrong J. The homotopy theory of modules of curved A[infinity]-algebras. [Thesis]. Drexel University; 2015. Available from: http://hdl.handle.net/1860/idea:6665

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Penn State University

25. Wang, Xue. SPARSE RECOVERY OF TIME-VARING STREAMING DATA USING HOMOTOPY METHOD.

Degree: 2015, Penn State University

 Many existing algorithms for regularized least square regression assumes that the true parameters to be stable and not change with time. However, the algorithm and… (more)

Subjects/Keywords: sparse recovery; regularation; online updating; homotopy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, X. (2015). SPARSE RECOVERY OF TIME-VARING STREAMING DATA USING HOMOTOPY METHOD. (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/26506

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Xue. “SPARSE RECOVERY OF TIME-VARING STREAMING DATA USING HOMOTOPY METHOD.” 2015. Thesis, Penn State University. Accessed September 22, 2020. https://submit-etda.libraries.psu.edu/catalog/26506.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Xue. “SPARSE RECOVERY OF TIME-VARING STREAMING DATA USING HOMOTOPY METHOD.” 2015. Web. 22 Sep 2020.

Vancouver:

Wang X. SPARSE RECOVERY OF TIME-VARING STREAMING DATA USING HOMOTOPY METHOD. [Internet] [Thesis]. Penn State University; 2015. [cited 2020 Sep 22]. Available from: https://submit-etda.libraries.psu.edu/catalog/26506.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang X. SPARSE RECOVERY OF TIME-VARING STREAMING DATA USING HOMOTOPY METHOD. [Thesis]. Penn State University; 2015. Available from: https://submit-etda.libraries.psu.edu/catalog/26506

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


North Carolina State University

26. Daily, Marilyn Elizabeth. L(Infinity) Structures on Spaces of Low Dimension.

Degree: PhD, Mathematics, 2004, North Carolina State University

 L(Infinity) structures are natural generalizations of Lie algebras, which need satisfy the standard graded Jacobi identity only up to homotopy. They have also been a… (more)

Subjects/Keywords: homotopy Lie algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Daily, M. E. (2004). L(Infinity) Structures on Spaces of Low Dimension. (Doctoral Dissertation). North Carolina State University. Retrieved from http://www.lib.ncsu.edu/resolver/1840.16/5282

Chicago Manual of Style (16th Edition):

Daily, Marilyn Elizabeth. “L(Infinity) Structures on Spaces of Low Dimension.” 2004. Doctoral Dissertation, North Carolina State University. Accessed September 22, 2020. http://www.lib.ncsu.edu/resolver/1840.16/5282.

MLA Handbook (7th Edition):

Daily, Marilyn Elizabeth. “L(Infinity) Structures on Spaces of Low Dimension.” 2004. Web. 22 Sep 2020.

Vancouver:

Daily ME. L(Infinity) Structures on Spaces of Low Dimension. [Internet] [Doctoral dissertation]. North Carolina State University; 2004. [cited 2020 Sep 22]. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5282.

Council of Science Editors:

Daily ME. L(Infinity) Structures on Spaces of Low Dimension. [Doctoral Dissertation]. North Carolina State University; 2004. Available from: http://www.lib.ncsu.edu/resolver/1840.16/5282


NSYSU

27. Chang, Hen-wen. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.

Degree: Master, Applied Mathematics, 2013, NSYSU

 The homotopy continuation method is considered to solve polynomial systems. If the number of solutions of the starting system is much more than that of… (more)

Subjects/Keywords: end game problem; eigenvalue problems; homotopy continuation

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chang, H. (2013). The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chang, Hen-wen. “The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.” 2013. Thesis, NSYSU. Accessed September 22, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chang, Hen-wen. “The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method.” 2013. Web. 22 Sep 2020.

Vancouver:

Chang H. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. [Internet] [Thesis]. NSYSU; 2013. [cited 2020 Sep 22]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chang H. The End Game Problem in Solving Algebraic Eigenvalue Problems by Homotopy Continuation Method. [Thesis]. NSYSU; 2013. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612113-133039

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Universiteit Utrecht

28. Rijke, E.M. Homotopy type theory.

Degree: 2012, Universiteit Utrecht

 The thesis introduces homotopy type theory, which refers to a new interpretation of Martin-Löf type theory. All the main recent results, such as strong function… (more)

Subjects/Keywords: type theory; homotopy; univalence; higher inductive types

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rijke, E. M. (2012). Homotopy type theory. (Masters Thesis). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/255603

Chicago Manual of Style (16th Edition):

Rijke, E M. “Homotopy type theory.” 2012. Masters Thesis, Universiteit Utrecht. Accessed September 22, 2020. http://dspace.library.uu.nl:8080/handle/1874/255603.

MLA Handbook (7th Edition):

Rijke, E M. “Homotopy type theory.” 2012. Web. 22 Sep 2020.

Vancouver:

Rijke EM. Homotopy type theory. [Internet] [Masters thesis]. Universiteit Utrecht; 2012. [cited 2020 Sep 22]. Available from: http://dspace.library.uu.nl:8080/handle/1874/255603.

Council of Science Editors:

Rijke EM. Homotopy type theory. [Masters Thesis]. Universiteit Utrecht; 2012. Available from: http://dspace.library.uu.nl:8080/handle/1874/255603


Brigham Young University

29. Larsen, Nicholas Guy. A New Family of Topological Invariants.

Degree: MS, 2018, Brigham Young University

 We define an extension of the nth homotopy group which can distinguish a larger class of spaces. (E.g., a converging sequence of disjoint circles and… (more)

Subjects/Keywords: algebraic topology; homotopy; fundamental group; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Larsen, N. G. (2018). A New Family of Topological Invariants. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd

Chicago Manual of Style (16th Edition):

Larsen, Nicholas Guy. “A New Family of Topological Invariants.” 2018. Masters Thesis, Brigham Young University. Accessed September 22, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd.

MLA Handbook (7th Edition):

Larsen, Nicholas Guy. “A New Family of Topological Invariants.” 2018. Web. 22 Sep 2020.

Vancouver:

Larsen NG. A New Family of Topological Invariants. [Internet] [Masters thesis]. Brigham Young University; 2018. [cited 2020 Sep 22]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd.

Council of Science Editors:

Larsen NG. A New Family of Topological Invariants. [Masters Thesis]. Brigham Young University; 2018. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd


University of Colorado

30. Chriestenson, Bryce D. The Real Homotopy Type of Singular Spaces via The Whitney-deRham Complex.

Degree: PhD, Mathematics, 2013, University of Colorado

  This thesis studies certain invariants associated to a stratified space. These invariants are the Whitney-de Rham cohomology, it is the cohomology of a chain… (more)

Subjects/Keywords: real homotopy; Whitney-deRham Complex; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chriestenson, B. D. (2013). The Real Homotopy Type of Singular Spaces via The Whitney-deRham Complex. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/24

Chicago Manual of Style (16th Edition):

Chriestenson, Bryce D. “The Real Homotopy Type of Singular Spaces via The Whitney-deRham Complex.” 2013. Doctoral Dissertation, University of Colorado. Accessed September 22, 2020. https://scholar.colorado.edu/math_gradetds/24.

MLA Handbook (7th Edition):

Chriestenson, Bryce D. “The Real Homotopy Type of Singular Spaces via The Whitney-deRham Complex.” 2013. Web. 22 Sep 2020.

Vancouver:

Chriestenson BD. The Real Homotopy Type of Singular Spaces via The Whitney-deRham Complex. [Internet] [Doctoral dissertation]. University of Colorado; 2013. [cited 2020 Sep 22]. Available from: https://scholar.colorado.edu/math_gradetds/24.

Council of Science Editors:

Chriestenson BD. The Real Homotopy Type of Singular Spaces via The Whitney-deRham Complex. [Doctoral Dissertation]. University of Colorado; 2013. Available from: https://scholar.colorado.edu/math_gradetds/24

[1] [2] [3] [4] [5] … [11]

.