Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Homomorphisms). Showing records 1 – 30 of 74 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

Country

▼ Search Limiters


University of South Carolina

1. Robert Levet, Michael. Graph Homomorphisms and Vector Colorings.

Degree: MS, Mathematics, 2018, University of South Carolina

  A graph vertex coloring is an assignment of labels, which are referred to as colors, such that no two adjacent vertices receive the same… (more)

Subjects/Keywords: Mathematics; Graph; Homomorphisms; Vector; Colorings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Robert Levet, M. (2018). Graph Homomorphisms and Vector Colorings. (Masters Thesis). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/4472

Chicago Manual of Style (16th Edition):

Robert Levet, Michael. “Graph Homomorphisms and Vector Colorings.” 2018. Masters Thesis, University of South Carolina. Accessed July 11, 2020. https://scholarcommons.sc.edu/etd/4472.

MLA Handbook (7th Edition):

Robert Levet, Michael. “Graph Homomorphisms and Vector Colorings.” 2018. Web. 11 Jul 2020.

Vancouver:

Robert Levet M. Graph Homomorphisms and Vector Colorings. [Internet] [Masters thesis]. University of South Carolina; 2018. [cited 2020 Jul 11]. Available from: https://scholarcommons.sc.edu/etd/4472.

Council of Science Editors:

Robert Levet M. Graph Homomorphisms and Vector Colorings. [Masters Thesis]. University of South Carolina; 2018. Available from: https://scholarcommons.sc.edu/etd/4472


University of California – Berkeley

2. Hurtado Salazar, Sebastian. Homomorphisms between groups of diffeomorphisms.

Degree: Mathematics, 2014, University of California – Berkeley

 The main results of this dissertation concern the structure of the group of diffeomorphisms of a smooth manifold. Filipckiewicz's theorem states that two manifolds M… (more)

Subjects/Keywords: Mathematics; abstract homomorphisms; distortion elements; groups of diffeomorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hurtado Salazar, S. (2014). Homomorphisms between groups of diffeomorphisms. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/92g9t919

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hurtado Salazar, Sebastian. “Homomorphisms between groups of diffeomorphisms.” 2014. Thesis, University of California – Berkeley. Accessed July 11, 2020. http://www.escholarship.org/uc/item/92g9t919.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hurtado Salazar, Sebastian. “Homomorphisms between groups of diffeomorphisms.” 2014. Web. 11 Jul 2020.

Vancouver:

Hurtado Salazar S. Homomorphisms between groups of diffeomorphisms. [Internet] [Thesis]. University of California – Berkeley; 2014. [cited 2020 Jul 11]. Available from: http://www.escholarship.org/uc/item/92g9t919.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hurtado Salazar S. Homomorphisms between groups of diffeomorphisms. [Thesis]. University of California – Berkeley; 2014. Available from: http://www.escholarship.org/uc/item/92g9t919

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Khan, Shabbir. A study of categorial structures;.

Degree: Mathematics, 1991, Aligarh Muslim University

Abstract not available newline newline

Bibliography given

Advisors/Committee Members: Zaidi, S M A.

Subjects/Keywords: Categorial; Fundamental; Morphisms; Binormality; Homomorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khan, S. (1991). A study of categorial structures;. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/52264

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Khan, Shabbir. “A study of categorial structures;.” 1991. Thesis, Aligarh Muslim University. Accessed July 11, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/52264.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Khan, Shabbir. “A study of categorial structures;.” 1991. Web. 11 Jul 2020.

Vancouver:

Khan S. A study of categorial structures;. [Internet] [Thesis]. Aligarh Muslim University; 1991. [cited 2020 Jul 11]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52264.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan S. A study of categorial structures;. [Thesis]. Aligarh Muslim University; 1991. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52264

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

4. Khan, Moharram Ali. A study of some polynomial identities which imply commutativity for rings; -.

Degree: Mathematics, 1987, Aligarh Muslim University

Abstract not available newline newline

Bibliography given

Advisors/Committee Members: Quadri, Murtaza A.

Subjects/Keywords: Polynomial; Commutativity; Rings; Demonstrates; Homomorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Khan, M. A. (1987). A study of some polynomial identities which imply commutativity for rings; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/52283

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Khan, Moharram Ali. “A study of some polynomial identities which imply commutativity for rings; -.” 1987. Thesis, Aligarh Muslim University. Accessed July 11, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/52283.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Khan, Moharram Ali. “A study of some polynomial identities which imply commutativity for rings; -.” 1987. Web. 11 Jul 2020.

Vancouver:

Khan MA. A study of some polynomial identities which imply commutativity for rings; -. [Internet] [Thesis]. Aligarh Muslim University; 1987. [cited 2020 Jul 11]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52283.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan MA. A study of some polynomial identities which imply commutativity for rings; -. [Thesis]. Aligarh Muslim University; 1987. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52283

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


NSYSU

5. Luo, Rebecca. Jordan and Lie homomorphism and derivation on prime ring.

Degree: Master, Applied Mathematics, 2002, NSYSU

 We will discuss some properties of Jordan and Lie homomorphisms and derivations on prime rings. We first give some definitions and then we show some… (more)

Subjects/Keywords: homomorphisms; derivations; Jordan and Lie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Luo, R. (2002). Jordan and Lie homomorphism and derivation on prime ring. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821102-111717

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Luo, Rebecca. “Jordan and Lie homomorphism and derivation on prime ring.” 2002. Thesis, NSYSU. Accessed July 11, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821102-111717.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Luo, Rebecca. “Jordan and Lie homomorphism and derivation on prime ring.” 2002. Web. 11 Jul 2020.

Vancouver:

Luo R. Jordan and Lie homomorphism and derivation on prime ring. [Internet] [Thesis]. NSYSU; 2002. [cited 2020 Jul 11]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821102-111717.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Luo R. Jordan and Lie homomorphism and derivation on prime ring. [Thesis]. NSYSU; 2002. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821102-111717

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


McMaster University

6. Bishop, Ernest. Generalized Lipschitz Algebras.

Degree: PhD, 1967, McMaster University

A class of Banach algebras which generalize the idea of the Lipschitz algebra on a metric space is studied. It is shown that homomorphisms(more)

Subjects/Keywords: lipschitz; algebra; metric space; homomorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bishop, E. (1967). Generalized Lipschitz Algebras. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/18897

Chicago Manual of Style (16th Edition):

Bishop, Ernest. “Generalized Lipschitz Algebras.” 1967. Doctoral Dissertation, McMaster University. Accessed July 11, 2020. http://hdl.handle.net/11375/18897.

MLA Handbook (7th Edition):

Bishop, Ernest. “Generalized Lipschitz Algebras.” 1967. Web. 11 Jul 2020.

Vancouver:

Bishop E. Generalized Lipschitz Algebras. [Internet] [Doctoral dissertation]. McMaster University; 1967. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/11375/18897.

Council of Science Editors:

Bishop E. Generalized Lipschitz Algebras. [Doctoral Dissertation]. McMaster University; 1967. Available from: http://hdl.handle.net/11375/18897


University of Adelaide

7. Sawon, Justin. Homomorphisms of semi-holonomic verma modules : an exceptional case.

Degree: 1997, University of Adelaide

 Verma modules play an important part in the theory of invariant operators on homogeneous spaces. If G is a semisimple Lie group and P a… (more)

Subjects/Keywords: homomorphisms; semi-holonomic; Verma; modules

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sawon, J. (1997). Homomorphisms of semi-holonomic verma modules : an exceptional case. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/80342

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sawon, Justin. “Homomorphisms of semi-holonomic verma modules : an exceptional case.” 1997. Thesis, University of Adelaide. Accessed July 11, 2020. http://hdl.handle.net/2440/80342.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sawon, Justin. “Homomorphisms of semi-holonomic verma modules : an exceptional case.” 1997. Web. 11 Jul 2020.

Vancouver:

Sawon J. Homomorphisms of semi-holonomic verma modules : an exceptional case. [Internet] [Thesis]. University of Adelaide; 1997. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2440/80342.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sawon J. Homomorphisms of semi-holonomic verma modules : an exceptional case. [Thesis]. University of Adelaide; 1997. Available from: http://hdl.handle.net/2440/80342

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of South Carolina

8. Schnibben, Thomas. Local Rings and Golod Homomorphisms.

Degree: PhD, Mathematics, 2018, University of South Carolina

  The Poincaré series of a local ring is the generating function of the Betti numbers for the residue field. The question of when this… (more)

Subjects/Keywords: Mathematics; Physical Sciences and Mathematics; Local Rings; Golod; Homomorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schnibben, T. (2018). Local Rings and Golod Homomorphisms. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/4765

Chicago Manual of Style (16th Edition):

Schnibben, Thomas. “Local Rings and Golod Homomorphisms.” 2018. Doctoral Dissertation, University of South Carolina. Accessed July 11, 2020. https://scholarcommons.sc.edu/etd/4765.

MLA Handbook (7th Edition):

Schnibben, Thomas. “Local Rings and Golod Homomorphisms.” 2018. Web. 11 Jul 2020.

Vancouver:

Schnibben T. Local Rings and Golod Homomorphisms. [Internet] [Doctoral dissertation]. University of South Carolina; 2018. [cited 2020 Jul 11]. Available from: https://scholarcommons.sc.edu/etd/4765.

Council of Science Editors:

Schnibben T. Local Rings and Golod Homomorphisms. [Doctoral Dissertation]. University of South Carolina; 2018. Available from: https://scholarcommons.sc.edu/etd/4765


Wesleyan University

9. Vigliotta, Sarah Elizabeth. Fractional Chromatic Numbers of Incidence Graphs.

Degree: Mathematics and Computer Science, 2017, Wesleyan University

  In 1993, Brualdi and Massey defined the incidence graph of G, Inc(G), to be the graph whose vertices are the set of incidences -… (more)

Subjects/Keywords: Incidence Graphs; Fractional Chromatic Number; Perfect Graphs; Graph Homomorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vigliotta, S. E. (2017). Fractional Chromatic Numbers of Incidence Graphs. (Doctoral Dissertation). Wesleyan University. Retrieved from https://wesscholar.wesleyan.edu/etd_diss/73

Chicago Manual of Style (16th Edition):

Vigliotta, Sarah Elizabeth. “Fractional Chromatic Numbers of Incidence Graphs.” 2017. Doctoral Dissertation, Wesleyan University. Accessed July 11, 2020. https://wesscholar.wesleyan.edu/etd_diss/73.

MLA Handbook (7th Edition):

Vigliotta, Sarah Elizabeth. “Fractional Chromatic Numbers of Incidence Graphs.” 2017. Web. 11 Jul 2020.

Vancouver:

Vigliotta SE. Fractional Chromatic Numbers of Incidence Graphs. [Internet] [Doctoral dissertation]. Wesleyan University; 2017. [cited 2020 Jul 11]. Available from: https://wesscholar.wesleyan.edu/etd_diss/73.

Council of Science Editors:

Vigliotta SE. Fractional Chromatic Numbers of Incidence Graphs. [Doctoral Dissertation]. Wesleyan University; 2017. Available from: https://wesscholar.wesleyan.edu/etd_diss/73


University of Waterloo

10. Roberson, David E. Variations on a Theme: Graph Homomorphisms.

Degree: 2013, University of Waterloo

 This thesis investigates three areas of the theory of graph homomorphisms: cores of graphs, the homomorphism order, and quantum homomorphisms. A core of a graph… (more)

Subjects/Keywords: graph theory; graph homomorphisms; quantum information; homomorphism order

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roberson, D. E. (2013). Variations on a Theme: Graph Homomorphisms. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/7814

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Roberson, David E. “Variations on a Theme: Graph Homomorphisms.” 2013. Thesis, University of Waterloo. Accessed July 11, 2020. http://hdl.handle.net/10012/7814.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Roberson, David E. “Variations on a Theme: Graph Homomorphisms.” 2013. Web. 11 Jul 2020.

Vancouver:

Roberson DE. Variations on a Theme: Graph Homomorphisms. [Internet] [Thesis]. University of Waterloo; 2013. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/10012/7814.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roberson DE. Variations on a Theme: Graph Homomorphisms. [Thesis]. University of Waterloo; 2013. Available from: http://hdl.handle.net/10012/7814

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oxford

11. Magkakis, Andreas Gkompel. Counting, modular counting and graph homomorphisms.

Degree: PhD, 2016, University of Oxford

 A homomorphism from a graph G to a graph H is a function from V (G) to V (H) that preserves edges. Many combinatorial structures… (more)

Subjects/Keywords: 511; Computer science; evolutionary dynamics; graph homomorphisms; computational complexity; computational counting

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Magkakis, A. G. (2016). Counting, modular counting and graph homomorphisms. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.729929

Chicago Manual of Style (16th Edition):

Magkakis, Andreas Gkompel. “Counting, modular counting and graph homomorphisms.” 2016. Doctoral Dissertation, University of Oxford. Accessed July 11, 2020. http://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.729929.

MLA Handbook (7th Edition):

Magkakis, Andreas Gkompel. “Counting, modular counting and graph homomorphisms.” 2016. Web. 11 Jul 2020.

Vancouver:

Magkakis AG. Counting, modular counting and graph homomorphisms. [Internet] [Doctoral dissertation]. University of Oxford; 2016. [cited 2020 Jul 11]. Available from: http://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.729929.

Council of Science Editors:

Magkakis AG. Counting, modular counting and graph homomorphisms. [Doctoral Dissertation]. University of Oxford; 2016. Available from: http://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.729929


Hong Kong University of Science and Technology

12. Chan, Cheuk Hang. Homomorphism between quantum groups.

Degree: 1999, Hong Kong University of Science and Technology

 For every simple Lie algebra g and a complex number Q different from -1, Drinfeld and Jimbo introduced a quantum group Uq(g). Uq(g) is a… (more)

Subjects/Keywords: Homomorphisms (Mathematics) ; Quantum groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chan, C. H. (1999). Homomorphism between quantum groups. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-5091 ; https://doi.org/10.14711/thesis-b645957 ; http://repository.ust.hk/ir/bitstream/1783.1-5091/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chan, Cheuk Hang. “Homomorphism between quantum groups.” 1999. Thesis, Hong Kong University of Science and Technology. Accessed July 11, 2020. http://repository.ust.hk/ir/Record/1783.1-5091 ; https://doi.org/10.14711/thesis-b645957 ; http://repository.ust.hk/ir/bitstream/1783.1-5091/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chan, Cheuk Hang. “Homomorphism between quantum groups.” 1999. Web. 11 Jul 2020.

Vancouver:

Chan CH. Homomorphism between quantum groups. [Internet] [Thesis]. Hong Kong University of Science and Technology; 1999. [cited 2020 Jul 11]. Available from: http://repository.ust.hk/ir/Record/1783.1-5091 ; https://doi.org/10.14711/thesis-b645957 ; http://repository.ust.hk/ir/bitstream/1783.1-5091/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chan CH. Homomorphism between quantum groups. [Thesis]. Hong Kong University of Science and Technology; 1999. Available from: http://repository.ust.hk/ir/Record/1783.1-5091 ; https://doi.org/10.14711/thesis-b645957 ; http://repository.ust.hk/ir/bitstream/1783.1-5091/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

13. Justin Mathew Hilyard. Various Results on Enumerations of Graph Homomorphisms</h1>.

Degree: Mathematics, 2014, University of Notre Dame

  Given two graphs G and H, a homomorphism from G to H is a map from the vertices of G to the vertices of… (more)

Subjects/Keywords: combinatorics; independent sets; graph homomorphisms; independence polynomials; graph theory; stirling numbers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hilyard, J. M. (2014). Various Results on Enumerations of Graph Homomorphisms</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/jd472v26441

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hilyard, Justin Mathew. “Various Results on Enumerations of Graph Homomorphisms</h1>.” 2014. Thesis, University of Notre Dame. Accessed July 11, 2020. https://curate.nd.edu/show/jd472v26441.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hilyard, Justin Mathew. “Various Results on Enumerations of Graph Homomorphisms</h1>.” 2014. Web. 11 Jul 2020.

Vancouver:

Hilyard JM. Various Results on Enumerations of Graph Homomorphisms</h1>. [Internet] [Thesis]. University of Notre Dame; 2014. [cited 2020 Jul 11]. Available from: https://curate.nd.edu/show/jd472v26441.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hilyard JM. Various Results on Enumerations of Graph Homomorphisms</h1>. [Thesis]. University of Notre Dame; 2014. Available from: https://curate.nd.edu/show/jd472v26441

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Simon Fraser University

14. Bacik, Roman. Structure of graph homomorphisms.

Degree: 1997, Simon Fraser University

Subjects/Keywords: Graph theory.; Homomorphisms (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bacik, R. (1997). Structure of graph homomorphisms. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/7319

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bacik, Roman. “Structure of graph homomorphisms.” 1997. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/7319.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bacik, Roman. “Structure of graph homomorphisms.” 1997. Web. 11 Jul 2020.

Vancouver:

Bacik R. Structure of graph homomorphisms. [Internet] [Thesis]. Simon Fraser University; 1997. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/7319.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bacik R. Structure of graph homomorphisms. [Thesis]. Simon Fraser University; 1997. Available from: http://summit.sfu.ca/item/7319

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


California State University – San Bernardino

15. Yoo, Jane. Construction of finite homomorphic images.

Degree: MAin Mathematics, Mathematics, 2007, California State University – San Bernardino

The purpose of this thesis is to construct finite groups as homomorphic images of progenitors. Advisors/Committee Members: Hasan, Zahid, Sarli, John, Han, Ilseop.

Subjects/Keywords: Finite groups; Homomorphisms (Mathematics); Isomorphisms (Mathematics); Finite groups; Homomorphisms (Mathematics); Isomorphisms (Mathematics); Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yoo, J. (2007). Construction of finite homomorphic images. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/3196

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yoo, Jane. “Construction of finite homomorphic images.” 2007. Thesis, California State University – San Bernardino. Accessed July 11, 2020. https://scholarworks.lib.csusb.edu/etd-project/3196.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yoo, Jane. “Construction of finite homomorphic images.” 2007. Web. 11 Jul 2020.

Vancouver:

Yoo J. Construction of finite homomorphic images. [Internet] [Thesis]. California State University – San Bernardino; 2007. [cited 2020 Jul 11]. Available from: https://scholarworks.lib.csusb.edu/etd-project/3196.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yoo J. Construction of finite homomorphic images. [Thesis]. California State University – San Bernardino; 2007. Available from: https://scholarworks.lib.csusb.edu/etd-project/3196

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

16. Shah, Aftab Hussain. On epimorphisms, dominions and semigroup identities; -.

Degree: Mathematics, 2009, Aligarh Muslim University

Abstract not available newline newline

Bibliography p. 93-98

Advisors/Committee Members: Khan, Noor Mohammad.

Subjects/Keywords: Epimorphisms; Dominions; Semigroup; Homomorphisms; Algebraic; Terminology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shah, A. H. (2009). On epimorphisms, dominions and semigroup identities; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/55187

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shah, Aftab Hussain. “On epimorphisms, dominions and semigroup identities; -.” 2009. Thesis, Aligarh Muslim University. Accessed July 11, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/55187.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shah, Aftab Hussain. “On epimorphisms, dominions and semigroup identities; -.” 2009. Web. 11 Jul 2020.

Vancouver:

Shah AH. On epimorphisms, dominions and semigroup identities; -. [Internet] [Thesis]. Aligarh Muslim University; 2009. [cited 2020 Jul 11]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/55187.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shah AH. On epimorphisms, dominions and semigroup identities; -. [Thesis]. Aligarh Muslim University; 2009. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/55187

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Montana Tech

17. Parsa, Esmaeil. ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS.

Degree: PhD, 2019, Montana Tech

  We prove that for every digraph C and every choice of positive integers k and ℓ there exists a digraph D with girth at… (more)

Subjects/Keywords: Acyclic chromatic Number; Acyclic coloring; Acyclic homomorphisms; Digraph girth; High girth high chromatic number

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Parsa, E. (2019). ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/11366

Chicago Manual of Style (16th Edition):

Parsa, Esmaeil. “ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS.” 2019. Doctoral Dissertation, Montana Tech. Accessed July 11, 2020. https://scholarworks.umt.edu/etd/11366.

MLA Handbook (7th Edition):

Parsa, Esmaeil. “ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS.” 2019. Web. 11 Jul 2020.

Vancouver:

Parsa E. ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS. [Internet] [Doctoral dissertation]. Montana Tech; 2019. [cited 2020 Jul 11]. Available from: https://scholarworks.umt.edu/etd/11366.

Council of Science Editors:

Parsa E. ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS. [Doctoral Dissertation]. Montana Tech; 2019. Available from: https://scholarworks.umt.edu/etd/11366


Stellenbosch University

18. Van Niekerk, Francois Koch. Concrete foundations of the theory of Noetherian forms.

Degree: PhD, Mathematical Sciences, 2019, Stellenbosch University

ENGLISH ABSTRACT: This thesis concerns certain investigations in abstract algebra that bring together the ideas of the category of algebraic structures and the lattice of… (more)

Subjects/Keywords: Notherian rings; Ordered algebraic structures; Lattice theory; Homomorphisms (Mathematics); Commutators (Operator theory); Abelian groups; UCTD

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Van Niekerk, F. K. (2019). Concrete foundations of the theory of Noetherian forms. (Doctoral Dissertation). Stellenbosch University. Retrieved from http://hdl.handle.net/10019.1/107103

Chicago Manual of Style (16th Edition):

Van Niekerk, Francois Koch. “Concrete foundations of the theory of Noetherian forms.” 2019. Doctoral Dissertation, Stellenbosch University. Accessed July 11, 2020. http://hdl.handle.net/10019.1/107103.

MLA Handbook (7th Edition):

Van Niekerk, Francois Koch. “Concrete foundations of the theory of Noetherian forms.” 2019. Web. 11 Jul 2020.

Vancouver:

Van Niekerk FK. Concrete foundations of the theory of Noetherian forms. [Internet] [Doctoral dissertation]. Stellenbosch University; 2019. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/10019.1/107103.

Council of Science Editors:

Van Niekerk FK. Concrete foundations of the theory of Noetherian forms. [Doctoral Dissertation]. Stellenbosch University; 2019. Available from: http://hdl.handle.net/10019.1/107103


Simon Fraser University

19. Bauslaugh, Bruce Lloyd. Homomorphisms of infinite directed graphs.

Degree: 1994, Simon Fraser University

Subjects/Keywords: Directed graphs.; Homomorphisms (Mathematics); Graph theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bauslaugh, B. L. (1994). Homomorphisms of infinite directed graphs. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/6543

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bauslaugh, Bruce Lloyd. “Homomorphisms of infinite directed graphs.” 1994. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/6543.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bauslaugh, Bruce Lloyd. “Homomorphisms of infinite directed graphs.” 1994. Web. 11 Jul 2020.

Vancouver:

Bauslaugh BL. Homomorphisms of infinite directed graphs. [Internet] [Thesis]. Simon Fraser University; 1994. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/6543.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bauslaugh BL. Homomorphisms of infinite directed graphs. [Thesis]. Simon Fraser University; 1994. Available from: http://summit.sfu.ca/item/6543

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. Vera Arboleda, Anderson Arley. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.

Degree: Docteur es, Mathématiques, 2019, Université de Strasbourg

Soit Σ une surface compacte connexe orientée avec une seule composante du bord. Notons par M le groupe d'homéotopie de Σ. En considérant l'action de… (more)

Subjects/Keywords: Variétés de dimension trois; Cobordismes d’homologie; Groupe d’homéotopie; Homomorphismes de Johnson; Homomorphismes de Johnson-Levine; Homomorphismes de Johnson alternatifs; Invariant LMO; Foncteur LMO; 3-manifolds; Homology cobordisms; Mapping class group; Johnson homomorphisms; Johnson-Levine homomorphisms; Alternative Johnson homomorphisms; LMO invariant; LMO functor; 512.6; 514.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vera Arboleda, A. A. (2019). Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2019STRAD009

Chicago Manual of Style (16th Edition):

Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Doctoral Dissertation, Université de Strasbourg. Accessed July 11, 2020. http://www.theses.fr/2019STRAD009.

MLA Handbook (7th Edition):

Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Web. 11 Jul 2020.

Vancouver:

Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2019. [cited 2020 Jul 11]. Available from: http://www.theses.fr/2019STRAD009.

Council of Science Editors:

Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Doctoral Dissertation]. Université de Strasbourg; 2019. Available from: http://www.theses.fr/2019STRAD009


Brigham Young University

21. Kent, Curtis Andrew. Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua.

Degree: MS, 2008, Brigham Young University

Let X be a planar or one-dimensional Peano continuum. Let E be a Hawaiian Earring with fundamental group H. We show that every homomorphism from H to the fundamental group of X is conjugate to a homomorphism which is induced by a continuous function.

Subjects/Keywords: homomorphisms; Peano continuum; continuous; Hawaiian earring; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kent, C. A. (2008). Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2429&context=etd

Chicago Manual of Style (16th Edition):

Kent, Curtis Andrew. “Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua.” 2008. Masters Thesis, Brigham Young University. Accessed July 11, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2429&context=etd.

MLA Handbook (7th Edition):

Kent, Curtis Andrew. “Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua.” 2008. Web. 11 Jul 2020.

Vancouver:

Kent CA. Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua. [Internet] [Masters thesis]. Brigham Young University; 2008. [cited 2020 Jul 11]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2429&context=etd.

Council of Science Editors:

Kent CA. Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua. [Masters Thesis]. Brigham Young University; 2008. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2429&context=etd


McMaster University

22. Kerr-Lawson , Angus Carmichael. A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc.

Degree: PhD, 1963, McMaster University

For any filter F defined on the unit disc D, F* is the filter generated by ∈-neighbourhoods of the sets of F, using hyperbolic… (more)

Subjects/Keywords: filter; homomorphisms; algebra; bounded; analytic; unit disc; complex

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kerr-Lawson , A. C. (1963). A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/18488

Chicago Manual of Style (16th Edition):

Kerr-Lawson , Angus Carmichael. “A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc.” 1963. Doctoral Dissertation, McMaster University. Accessed July 11, 2020. http://hdl.handle.net/11375/18488.

MLA Handbook (7th Edition):

Kerr-Lawson , Angus Carmichael. “A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc.” 1963. Web. 11 Jul 2020.

Vancouver:

Kerr-Lawson AC. A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc. [Internet] [Doctoral dissertation]. McMaster University; 1963. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/11375/18488.

Council of Science Editors:

Kerr-Lawson AC. A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc. [Doctoral Dissertation]. McMaster University; 1963. Available from: http://hdl.handle.net/11375/18488

23. Sen, Sagnik. A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes.

Degree: Docteur es, Informatique, 2014, Bordeaux

Dans cette thèse, nous considérons des questions relatives aux homomorphismes de quatre types distincts de graphes : les graphes orientés, les graphes orientables, les graphes… (more)

Subjects/Keywords: Graphes orientés; Graphes orientables; Graphes 2-Arête colorés; Graphes signés; Homomorphismes; Oriented graphs; Orientable graphs; Signified graphs; Signed graphs; Homomorphisms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sen, S. (2014). A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2014BORD0010

Chicago Manual of Style (16th Edition):

Sen, Sagnik. “A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes.” 2014. Doctoral Dissertation, Bordeaux. Accessed July 11, 2020. http://www.theses.fr/2014BORD0010.

MLA Handbook (7th Edition):

Sen, Sagnik. “A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes.” 2014. Web. 11 Jul 2020.

Vancouver:

Sen S. A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes. [Internet] [Doctoral dissertation]. Bordeaux; 2014. [cited 2020 Jul 11]. Available from: http://www.theses.fr/2014BORD0010.

Council of Science Editors:

Sen S. A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes. [Doctoral Dissertation]. Bordeaux; 2014. Available from: http://www.theses.fr/2014BORD0010


University of Gothenburg / Göteborgs Universitet

24. Hamlet, Oskar. Tight maps, a classification.

Degree: 2014, University of Gothenburg / Göteborgs Universitet

 This thesis concerns the classification of tight totally geodesic maps between Hermitian symmetric spaces of noncompact type. In Paper I we classify holomorphic tight maps.… (more)

Subjects/Keywords: Tight maps; Tight homomorphisms; Maximal representations; Toledo invariant; Bounded Kähler class; Hermitian symmetric spaces; Bounded cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hamlet, O. (2014). Tight maps, a classification. (Thesis). University of Gothenburg / Göteborgs Universitet. Retrieved from http://hdl.handle.net/2077/35773

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hamlet, Oskar. “Tight maps, a classification.” 2014. Thesis, University of Gothenburg / Göteborgs Universitet. Accessed July 11, 2020. http://hdl.handle.net/2077/35773.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hamlet, Oskar. “Tight maps, a classification.” 2014. Web. 11 Jul 2020.

Vancouver:

Hamlet O. Tight maps, a classification. [Internet] [Thesis]. University of Gothenburg / Göteborgs Universitet; 2014. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2077/35773.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hamlet O. Tight maps, a classification. [Thesis]. University of Gothenburg / Göteborgs Universitet; 2014. Available from: http://hdl.handle.net/2077/35773

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

25. Irmak, Elmas. Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups.

Degree: PhD, Department of Mathematics, 2002, Michigan State University

Subjects/Keywords: Complexes; Curves; Homomorphisms (Mathematics); Class groups (Mathematics); Mappings (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Irmak, E. (2002). Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:31394

Chicago Manual of Style (16th Edition):

Irmak, Elmas. “Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups.” 2002. Doctoral Dissertation, Michigan State University. Accessed July 11, 2020. http://etd.lib.msu.edu/islandora/object/etd:31394.

MLA Handbook (7th Edition):

Irmak, Elmas. “Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups.” 2002. Web. 11 Jul 2020.

Vancouver:

Irmak E. Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups. [Internet] [Doctoral dissertation]. Michigan State University; 2002. [cited 2020 Jul 11]. Available from: http://etd.lib.msu.edu/islandora/object/etd:31394.

Council of Science Editors:

Irmak E. Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups. [Doctoral Dissertation]. Michigan State University; 2002. Available from: http://etd.lib.msu.edu/islandora/object/etd:31394


Simon Fraser University

26. Bauslaugh, Bruce Lloyd. Complexity of infinite H-colouring.

Degree: 1990, Simon Fraser University

Subjects/Keywords: Map-coloring problem.; Homomorphisms (Mathematics); Graph theory.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bauslaugh, B. L. (1990). Complexity of infinite H-colouring. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/4724

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bauslaugh, Bruce Lloyd. “Complexity of infinite H-colouring.” 1990. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/4724.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bauslaugh, Bruce Lloyd. “Complexity of infinite H-colouring.” 1990. Web. 11 Jul 2020.

Vancouver:

Bauslaugh BL. Complexity of infinite H-colouring. [Internet] [Thesis]. Simon Fraser University; 1990. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/4724.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bauslaugh BL. Complexity of infinite H-colouring. [Thesis]. Simon Fraser University; 1990. Available from: http://summit.sfu.ca/item/4724

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Simon Fraser University

27. Zhou, Hui-Shan. Homomorphism properties of graph products.

Degree: 1988, Simon Fraser University

Subjects/Keywords: Paths and cycles (Graph theory); Homomorphisms (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhou, H. (1988). Homomorphism properties of graph products. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/5399

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhou, Hui-Shan. “Homomorphism properties of graph products.” 1988. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/5399.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhou, Hui-Shan. “Homomorphism properties of graph products.” 1988. Web. 11 Jul 2020.

Vancouver:

Zhou H. Homomorphism properties of graph products. [Internet] [Thesis]. Simon Fraser University; 1988. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/5399.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhou H. Homomorphism properties of graph products. [Thesis]. Simon Fraser University; 1988. Available from: http://summit.sfu.ca/item/5399

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Simon Fraser University

28. Vikas, Narayan. Computational complexity of graph compaction.

Degree: 1997, Simon Fraser University

Subjects/Keywords: Graph theory.; Map-coloring problem.; Homomorphisms (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vikas, N. (1997). Computational complexity of graph compaction. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/7342

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vikas, Narayan. “Computational complexity of graph compaction.” 1997. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/7342.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vikas, Narayan. “Computational complexity of graph compaction.” 1997. Web. 11 Jul 2020.

Vancouver:

Vikas N. Computational complexity of graph compaction. [Internet] [Thesis]. Simon Fraser University; 1997. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/7342.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vikas N. Computational complexity of graph compaction. [Thesis]. Simon Fraser University; 1997. Available from: http://summit.sfu.ca/item/7342

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

29. Cros, Lluis Vena. The Removal Property for Linear Configurations in Compact Abelian Groups.

Degree: PhD, 2014, University of Toronto

 The combinatorial removal lemma states that, if a (hyper)graph K has not many copies of the fixed (hyper)graph H , then K can be made… (more)

Subjects/Keywords: compact abelian groups; homomorphisms of finite abelian groups; integer linear systems; regularity lemma; removal lemma; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cros, L. V. (2014). The Removal Property for Linear Configurations in Compact Abelian Groups. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/68308

Chicago Manual of Style (16th Edition):

Cros, Lluis Vena. “The Removal Property for Linear Configurations in Compact Abelian Groups.” 2014. Doctoral Dissertation, University of Toronto. Accessed July 11, 2020. http://hdl.handle.net/1807/68308.

MLA Handbook (7th Edition):

Cros, Lluis Vena. “The Removal Property for Linear Configurations in Compact Abelian Groups.” 2014. Web. 11 Jul 2020.

Vancouver:

Cros LV. The Removal Property for Linear Configurations in Compact Abelian Groups. [Internet] [Doctoral dissertation]. University of Toronto; 2014. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/1807/68308.

Council of Science Editors:

Cros LV. The Removal Property for Linear Configurations in Compact Abelian Groups. [Doctoral Dissertation]. University of Toronto; 2014. Available from: http://hdl.handle.net/1807/68308


University of Florida

30. Brennan, Joseph P. Classification of Certain Families of Finite P-Groups.

Degree: PhD, Mathematics, 2012, University of Florida

 In 1999 Simon Blackburn published a classification of finite groups of prime powered order for which the derived subgroup is of prime order. A n-generalized… (more)

Subjects/Keywords: Abstract algebra; Algebra; Automorphisms; Commutators; Homomorphisms; Integers; Isomorphism; Mathematical theorems; Mathematics; Vector spaces; algebra  – classification  – group  – p-group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brennan, J. P. (2012). Classification of Certain Families of Finite P-Groups. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0043981

Chicago Manual of Style (16th Edition):

Brennan, Joseph P. “Classification of Certain Families of Finite P-Groups.” 2012. Doctoral Dissertation, University of Florida. Accessed July 11, 2020. https://ufdc.ufl.edu/UFE0043981.

MLA Handbook (7th Edition):

Brennan, Joseph P. “Classification of Certain Families of Finite P-Groups.” 2012. Web. 11 Jul 2020.

Vancouver:

Brennan JP. Classification of Certain Families of Finite P-Groups. [Internet] [Doctoral dissertation]. University of Florida; 2012. [cited 2020 Jul 11]. Available from: https://ufdc.ufl.edu/UFE0043981.

Council of Science Editors:

Brennan JP. Classification of Certain Families of Finite P-Groups. [Doctoral Dissertation]. University of Florida; 2012. Available from: https://ufdc.ufl.edu/UFE0043981

[1] [2] [3]

.