Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Homomorphisms)`

.
Showing records 1 – 30 of
74 total matches.

Search Limiters

Dates

- 2016 – 2020 (10)
- 2011 – 2015 (20)

▼ Search Limiters

University of South Carolina

1.
Robert Levet, Michael.
Graph *Homomorphisms* and Vector Colorings.

Degree: MS, Mathematics, 2018, University of South Carolina

URL: https://scholarcommons.sc.edu/etd/4472

► A graph vertex coloring is an assignment of labels, which are referred to as colors, such that no two adjacent vertices receive the same…
(more)

Subjects/Keywords: Mathematics; Graph; Homomorphisms; Vector; Colorings

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Robert Levet, M. (2018). Graph Homomorphisms and Vector Colorings. (Masters Thesis). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/4472

Chicago Manual of Style (16^{th} Edition):

Robert Levet, Michael. “Graph Homomorphisms and Vector Colorings.” 2018. Masters Thesis, University of South Carolina. Accessed July 11, 2020. https://scholarcommons.sc.edu/etd/4472.

MLA Handbook (7^{th} Edition):

Robert Levet, Michael. “Graph Homomorphisms and Vector Colorings.” 2018. Web. 11 Jul 2020.

Vancouver:

Robert Levet M. Graph Homomorphisms and Vector Colorings. [Internet] [Masters thesis]. University of South Carolina; 2018. [cited 2020 Jul 11]. Available from: https://scholarcommons.sc.edu/etd/4472.

Council of Science Editors:

Robert Levet M. Graph Homomorphisms and Vector Colorings. [Masters Thesis]. University of South Carolina; 2018. Available from: https://scholarcommons.sc.edu/etd/4472

University of California – Berkeley

2.
Hurtado Salazar, Sebastian.
* Homomorphisms* between groups of diffeomorphisms.

Degree: Mathematics, 2014, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/92g9t919

► The main results of this dissertation concern the structure of the group of diffeomorphisms of a smooth manifold. Filipckiewicz's theorem states that two manifolds M…
(more)

Subjects/Keywords: Mathematics; abstract homomorphisms; distortion elements; groups of diffeomorphisms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hurtado Salazar, S. (2014). Homomorphisms between groups of diffeomorphisms. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/92g9t919

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hurtado Salazar, Sebastian. “Homomorphisms between groups of diffeomorphisms.” 2014. Thesis, University of California – Berkeley. Accessed July 11, 2020. http://www.escholarship.org/uc/item/92g9t919.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hurtado Salazar, Sebastian. “Homomorphisms between groups of diffeomorphisms.” 2014. Web. 11 Jul 2020.

Vancouver:

Hurtado Salazar S. Homomorphisms between groups of diffeomorphisms. [Internet] [Thesis]. University of California – Berkeley; 2014. [cited 2020 Jul 11]. Available from: http://www.escholarship.org/uc/item/92g9t919.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hurtado Salazar S. Homomorphisms between groups of diffeomorphisms. [Thesis]. University of California – Berkeley; 2014. Available from: http://www.escholarship.org/uc/item/92g9t919

Not specified: Masters Thesis or Doctoral Dissertation

3. Khan, Shabbir. A study of categorial structures;.

Degree: Mathematics, 1991, Aligarh Muslim University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/52264

Subjects/Keywords: Categorial; Fundamental; Morphisms; Binormality; Homomorphisms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khan, S. (1991). A study of categorial structures;. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/52264

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Khan, Shabbir. “A study of categorial structures;.” 1991. Thesis, Aligarh Muslim University. Accessed July 11, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/52264.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Khan, Shabbir. “A study of categorial structures;.” 1991. Web. 11 Jul 2020.

Vancouver:

Khan S. A study of categorial structures;. [Internet] [Thesis]. Aligarh Muslim University; 1991. [cited 2020 Jul 11]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52264.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan S. A study of categorial structures;. [Thesis]. Aligarh Muslim University; 1991. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52264

Not specified: Masters Thesis or Doctoral Dissertation

4. Khan, Moharram Ali. A study of some polynomial identities which imply commutativity for rings; -.

Degree: Mathematics, 1987, Aligarh Muslim University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/52283

Abstract not available newline newline

Bibliography given

Subjects/Keywords: Polynomial; Commutativity; Rings; Demonstrates; Homomorphisms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Khan, M. A. (1987). A study of some polynomial identities which imply commutativity for rings; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/52283

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Khan, Moharram Ali. “A study of some polynomial identities which imply commutativity for rings; -.” 1987. Thesis, Aligarh Muslim University. Accessed July 11, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/52283.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Khan, Moharram Ali. “A study of some polynomial identities which imply commutativity for rings; -.” 1987. Web. 11 Jul 2020.

Vancouver:

Khan MA. A study of some polynomial identities which imply commutativity for rings; -. [Internet] [Thesis]. Aligarh Muslim University; 1987. [cited 2020 Jul 11]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52283.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Khan MA. A study of some polynomial identities which imply commutativity for rings; -. [Thesis]. Aligarh Muslim University; 1987. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/52283

Not specified: Masters Thesis or Doctoral Dissertation

NSYSU

5. Luo, Rebecca. Jordan and Lie homomorphism and derivation on prime ring.

Degree: Master, Applied Mathematics, 2002, NSYSU

URL: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821102-111717

► We will discuss some properties of Jordan and Lie *homomorphisms* and derivations on prime rings. We first give some definitions and then we show some…
(more)

Subjects/Keywords: homomorphisms; derivations; Jordan and Lie

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Luo, R. (2002). Jordan and Lie homomorphism and derivation on prime ring. (Thesis). NSYSU. Retrieved from http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821102-111717

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Luo, Rebecca. “Jordan and Lie homomorphism and derivation on prime ring.” 2002. Thesis, NSYSU. Accessed July 11, 2020. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821102-111717.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Luo, Rebecca. “Jordan and Lie homomorphism and derivation on prime ring.” 2002. Web. 11 Jul 2020.

Vancouver:

Luo R. Jordan and Lie homomorphism and derivation on prime ring. [Internet] [Thesis]. NSYSU; 2002. [cited 2020 Jul 11]. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821102-111717.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Luo R. Jordan and Lie homomorphism and derivation on prime ring. [Thesis]. NSYSU; 2002. Available from: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0821102-111717

Not specified: Masters Thesis or Doctoral Dissertation

McMaster University

6. Bishop, Ernest. Generalized Lipschitz Algebras.

Degree: PhD, 1967, McMaster University

URL: http://hdl.handle.net/11375/18897

►

A class of Banach algebras which generalize the idea of the Lipschitz algebra on a metric space is studied. It is shown that *homomorphisms*…
(more)

Subjects/Keywords: lipschitz; algebra; metric space; homomorphisms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bishop, E. (1967). Generalized Lipschitz Algebras. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/18897

Chicago Manual of Style (16^{th} Edition):

Bishop, Ernest. “Generalized Lipschitz Algebras.” 1967. Doctoral Dissertation, McMaster University. Accessed July 11, 2020. http://hdl.handle.net/11375/18897.

MLA Handbook (7^{th} Edition):

Bishop, Ernest. “Generalized Lipschitz Algebras.” 1967. Web. 11 Jul 2020.

Vancouver:

Bishop E. Generalized Lipschitz Algebras. [Internet] [Doctoral dissertation]. McMaster University; 1967. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/11375/18897.

Council of Science Editors:

Bishop E. Generalized Lipschitz Algebras. [Doctoral Dissertation]. McMaster University; 1967. Available from: http://hdl.handle.net/11375/18897

University of Adelaide

7.
Sawon, Justin.
* Homomorphisms* of semi-holonomic verma modules : an exceptional case.

Degree: 1997, University of Adelaide

URL: http://hdl.handle.net/2440/80342

► Verma modules play an important part in the theory of invariant operators on homogeneous spaces. If G is a semisimple Lie group and P a…
(more)

Subjects/Keywords: homomorphisms; semi-holonomic; Verma; modules

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sawon, J. (1997). Homomorphisms of semi-holonomic verma modules : an exceptional case. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/80342

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sawon, Justin. “Homomorphisms of semi-holonomic verma modules : an exceptional case.” 1997. Thesis, University of Adelaide. Accessed July 11, 2020. http://hdl.handle.net/2440/80342.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sawon, Justin. “Homomorphisms of semi-holonomic verma modules : an exceptional case.” 1997. Web. 11 Jul 2020.

Vancouver:

Sawon J. Homomorphisms of semi-holonomic verma modules : an exceptional case. [Internet] [Thesis]. University of Adelaide; 1997. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2440/80342.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sawon J. Homomorphisms of semi-holonomic verma modules : an exceptional case. [Thesis]. University of Adelaide; 1997. Available from: http://hdl.handle.net/2440/80342

Not specified: Masters Thesis or Doctoral Dissertation

University of South Carolina

8.
Schnibben, Thomas.
Local Rings and Golod * Homomorphisms*.

Degree: PhD, Mathematics, 2018, University of South Carolina

URL: https://scholarcommons.sc.edu/etd/4765

► The Poincaré series of a local ring is the generating function of the Betti numbers for the residue field. The question of when this…
(more)

Subjects/Keywords: Mathematics; Physical Sciences and Mathematics; Local Rings; Golod; Homomorphisms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Schnibben, T. (2018). Local Rings and Golod Homomorphisms. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/4765

Chicago Manual of Style (16^{th} Edition):

Schnibben, Thomas. “Local Rings and Golod Homomorphisms.” 2018. Doctoral Dissertation, University of South Carolina. Accessed July 11, 2020. https://scholarcommons.sc.edu/etd/4765.

MLA Handbook (7^{th} Edition):

Schnibben, Thomas. “Local Rings and Golod Homomorphisms.” 2018. Web. 11 Jul 2020.

Vancouver:

Schnibben T. Local Rings and Golod Homomorphisms. [Internet] [Doctoral dissertation]. University of South Carolina; 2018. [cited 2020 Jul 11]. Available from: https://scholarcommons.sc.edu/etd/4765.

Council of Science Editors:

Schnibben T. Local Rings and Golod Homomorphisms. [Doctoral Dissertation]. University of South Carolina; 2018. Available from: https://scholarcommons.sc.edu/etd/4765

Wesleyan University

9. Vigliotta, Sarah Elizabeth. Fractional Chromatic Numbers of Incidence Graphs.

Degree: Mathematics and Computer Science, 2017, Wesleyan University

URL: https://wesscholar.wesleyan.edu/etd_diss/73

► In 1993, Brualdi and Massey defined the incidence graph of G, Inc(G), to be the graph whose vertices are the set of incidences -…
(more)

Subjects/Keywords: Incidence Graphs; Fractional Chromatic Number; Perfect Graphs; Graph Homomorphisms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vigliotta, S. E. (2017). Fractional Chromatic Numbers of Incidence Graphs. (Doctoral Dissertation). Wesleyan University. Retrieved from https://wesscholar.wesleyan.edu/etd_diss/73

Chicago Manual of Style (16^{th} Edition):

Vigliotta, Sarah Elizabeth. “Fractional Chromatic Numbers of Incidence Graphs.” 2017. Doctoral Dissertation, Wesleyan University. Accessed July 11, 2020. https://wesscholar.wesleyan.edu/etd_diss/73.

MLA Handbook (7^{th} Edition):

Vigliotta, Sarah Elizabeth. “Fractional Chromatic Numbers of Incidence Graphs.” 2017. Web. 11 Jul 2020.

Vancouver:

Vigliotta SE. Fractional Chromatic Numbers of Incidence Graphs. [Internet] [Doctoral dissertation]. Wesleyan University; 2017. [cited 2020 Jul 11]. Available from: https://wesscholar.wesleyan.edu/etd_diss/73.

Council of Science Editors:

Vigliotta SE. Fractional Chromatic Numbers of Incidence Graphs. [Doctoral Dissertation]. Wesleyan University; 2017. Available from: https://wesscholar.wesleyan.edu/etd_diss/73

University of Waterloo

10.
Roberson, David E.
Variations on a Theme: Graph * Homomorphisms*.

Degree: 2013, University of Waterloo

URL: http://hdl.handle.net/10012/7814

► This thesis investigates three areas of the theory of graph *homomorphisms*: cores of graphs, the homomorphism order, and quantum *homomorphisms*. A core of a graph…
(more)

Subjects/Keywords: graph theory; graph homomorphisms; quantum information; homomorphism order

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Roberson, D. E. (2013). Variations on a Theme: Graph Homomorphisms. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/7814

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Roberson, David E. “Variations on a Theme: Graph Homomorphisms.” 2013. Thesis, University of Waterloo. Accessed July 11, 2020. http://hdl.handle.net/10012/7814.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Roberson, David E. “Variations on a Theme: Graph Homomorphisms.” 2013. Web. 11 Jul 2020.

Vancouver:

Roberson DE. Variations on a Theme: Graph Homomorphisms. [Internet] [Thesis]. University of Waterloo; 2013. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/10012/7814.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roberson DE. Variations on a Theme: Graph Homomorphisms. [Thesis]. University of Waterloo; 2013. Available from: http://hdl.handle.net/10012/7814

Not specified: Masters Thesis or Doctoral Dissertation

University of Oxford

11.
Magkakis, Andreas Gkompel.
Counting, modular counting and graph * homomorphisms*.

Degree: PhD, 2016, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.729929

► A homomorphism from a graph G to a graph H is a function from V (G) to V (H) that preserves edges. Many combinatorial structures…
(more)

Subjects/Keywords: 511; Computer science; evolutionary dynamics; graph homomorphisms; computational complexity; computational counting

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Magkakis, A. G. (2016). Counting, modular counting and graph homomorphisms. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.729929

Chicago Manual of Style (16^{th} Edition):

Magkakis, Andreas Gkompel. “Counting, modular counting and graph homomorphisms.” 2016. Doctoral Dissertation, University of Oxford. Accessed July 11, 2020. http://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.729929.

MLA Handbook (7^{th} Edition):

Magkakis, Andreas Gkompel. “Counting, modular counting and graph homomorphisms.” 2016. Web. 11 Jul 2020.

Vancouver:

Magkakis AG. Counting, modular counting and graph homomorphisms. [Internet] [Doctoral dissertation]. University of Oxford; 2016. [cited 2020 Jul 11]. Available from: http://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.729929.

Council of Science Editors:

Magkakis AG. Counting, modular counting and graph homomorphisms. [Doctoral Dissertation]. University of Oxford; 2016. Available from: http://ora.ox.ac.uk/objects/uuid:42be90cd-75b5-43ec-ad2e-5d513420bdc0 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.729929

Hong Kong University of Science and Technology

12. Chan, Cheuk Hang. Homomorphism between quantum groups.

Degree: 1999, Hong Kong University of Science and Technology

URL: http://repository.ust.hk/ir/Record/1783.1-5091 ; https://doi.org/10.14711/thesis-b645957 ; http://repository.ust.hk/ir/bitstream/1783.1-5091/1/th_redirect.html

► For every simple Lie algebra g and a complex number Q different from -1, Drinfeld and Jimbo introduced a quantum group Uq(g). Uq(g) is a…
(more)

Subjects/Keywords: Homomorphisms (Mathematics) ; Quantum groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chan, C. H. (1999). Homomorphism between quantum groups. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-5091 ; https://doi.org/10.14711/thesis-b645957 ; http://repository.ust.hk/ir/bitstream/1783.1-5091/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Chan, Cheuk Hang. “Homomorphism between quantum groups.” 1999. Thesis, Hong Kong University of Science and Technology. Accessed July 11, 2020. http://repository.ust.hk/ir/Record/1783.1-5091 ; https://doi.org/10.14711/thesis-b645957 ; http://repository.ust.hk/ir/bitstream/1783.1-5091/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Chan, Cheuk Hang. “Homomorphism between quantum groups.” 1999. Web. 11 Jul 2020.

Vancouver:

Chan CH. Homomorphism between quantum groups. [Internet] [Thesis]. Hong Kong University of Science and Technology; 1999. [cited 2020 Jul 11]. Available from: http://repository.ust.hk/ir/Record/1783.1-5091 ; https://doi.org/10.14711/thesis-b645957 ; http://repository.ust.hk/ir/bitstream/1783.1-5091/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chan CH. Homomorphism between quantum groups. [Thesis]. Hong Kong University of Science and Technology; 1999. Available from: http://repository.ust.hk/ir/Record/1783.1-5091 ; https://doi.org/10.14711/thesis-b645957 ; http://repository.ust.hk/ir/bitstream/1783.1-5091/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation

University of Notre Dame

13.
Justin Mathew Hilyard.
Various Results on Enumerations of Graph
*Homomorphisms*</h1>.

Degree: Mathematics, 2014, University of Notre Dame

URL: https://curate.nd.edu/show/jd472v26441

► Given two graphs G and H, a homomorphism from G to H is a map from the vertices of G to the vertices of…
(more)

Subjects/Keywords: combinatorics; independent sets; graph homomorphisms; independence polynomials; graph theory; stirling numbers

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hilyard, J. M. (2014). Various Results on Enumerations of Graph Homomorphisms</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/jd472v26441

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hilyard, Justin Mathew. “Various Results on Enumerations of Graph Homomorphisms</h1>.” 2014. Thesis, University of Notre Dame. Accessed July 11, 2020. https://curate.nd.edu/show/jd472v26441.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hilyard, Justin Mathew. “Various Results on Enumerations of Graph Homomorphisms</h1>.” 2014. Web. 11 Jul 2020.

Vancouver:

Hilyard JM. Various Results on Enumerations of Graph Homomorphisms</h1>. [Internet] [Thesis]. University of Notre Dame; 2014. [cited 2020 Jul 11]. Available from: https://curate.nd.edu/show/jd472v26441.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hilyard JM. Various Results on Enumerations of Graph Homomorphisms</h1>. [Thesis]. University of Notre Dame; 2014. Available from: https://curate.nd.edu/show/jd472v26441

Not specified: Masters Thesis or Doctoral Dissertation

Simon Fraser University

14.
Bacik, Roman.
Structure of graph * homomorphisms*.

Degree: 1997, Simon Fraser University

URL: http://summit.sfu.ca/item/7319

Subjects/Keywords: Graph theory.; Homomorphisms (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bacik, R. (1997). Structure of graph homomorphisms. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/7319

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bacik, Roman. “Structure of graph homomorphisms.” 1997. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/7319.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bacik, Roman. “Structure of graph homomorphisms.” 1997. Web. 11 Jul 2020.

Vancouver:

Bacik R. Structure of graph homomorphisms. [Internet] [Thesis]. Simon Fraser University; 1997. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/7319.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bacik R. Structure of graph homomorphisms. [Thesis]. Simon Fraser University; 1997. Available from: http://summit.sfu.ca/item/7319

Not specified: Masters Thesis or Doctoral Dissertation

California State University – San Bernardino

15. Yoo, Jane. Construction of finite homomorphic images.

Degree: MAin Mathematics, Mathematics, 2007, California State University – San Bernardino

URL: https://scholarworks.lib.csusb.edu/etd-project/3196

The purpose of this thesis is to construct finite groups as homomorphic images of progenitors.
*Advisors/Committee Members: Hasan, Zahid, Sarli, John, Han, Ilseop.*

Subjects/Keywords: Finite groups; Homomorphisms (Mathematics); Isomorphisms (Mathematics); Finite groups; Homomorphisms (Mathematics); Isomorphisms (Mathematics); Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yoo, J. (2007). Construction of finite homomorphic images. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd-project/3196

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Yoo, Jane. “Construction of finite homomorphic images.” 2007. Thesis, California State University – San Bernardino. Accessed July 11, 2020. https://scholarworks.lib.csusb.edu/etd-project/3196.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Yoo, Jane. “Construction of finite homomorphic images.” 2007. Web. 11 Jul 2020.

Vancouver:

Yoo J. Construction of finite homomorphic images. [Internet] [Thesis]. California State University – San Bernardino; 2007. [cited 2020 Jul 11]. Available from: https://scholarworks.lib.csusb.edu/etd-project/3196.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yoo J. Construction of finite homomorphic images. [Thesis]. California State University – San Bernardino; 2007. Available from: https://scholarworks.lib.csusb.edu/etd-project/3196

Not specified: Masters Thesis or Doctoral Dissertation

16. Shah, Aftab Hussain. On epimorphisms, dominions and semigroup identities; -.

Degree: Mathematics, 2009, Aligarh Muslim University

URL: http://shodhganga.inflibnet.ac.in/handle/10603/55187

Abstract not available newline newline

Bibliography p. 93-98

Subjects/Keywords: Epimorphisms; Dominions; Semigroup; Homomorphisms; Algebraic; Terminology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shah, A. H. (2009). On epimorphisms, dominions and semigroup identities; -. (Thesis). Aligarh Muslim University. Retrieved from http://shodhganga.inflibnet.ac.in/handle/10603/55187

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Shah, Aftab Hussain. “On epimorphisms, dominions and semigroup identities; -.” 2009. Thesis, Aligarh Muslim University. Accessed July 11, 2020. http://shodhganga.inflibnet.ac.in/handle/10603/55187.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Shah, Aftab Hussain. “On epimorphisms, dominions and semigroup identities; -.” 2009. Web. 11 Jul 2020.

Vancouver:

Shah AH. On epimorphisms, dominions and semigroup identities; -. [Internet] [Thesis]. Aligarh Muslim University; 2009. [cited 2020 Jul 11]. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/55187.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shah AH. On epimorphisms, dominions and semigroup identities; -. [Thesis]. Aligarh Muslim University; 2009. Available from: http://shodhganga.inflibnet.ac.in/handle/10603/55187

Not specified: Masters Thesis or Doctoral Dissertation

Montana Tech

17. Parsa, Esmaeil. ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS.

Degree: PhD, 2019, Montana Tech

URL: https://scholarworks.umt.edu/etd/11366

► We prove that for every digraph C and every choice of positive integers k and ℓ there exists a digraph D with girth at…
(more)

Subjects/Keywords: Acyclic chromatic Number; Acyclic coloring; Acyclic homomorphisms; Digraph girth; High girth high chromatic number

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Parsa, E. (2019). ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS. (Doctoral Dissertation). Montana Tech. Retrieved from https://scholarworks.umt.edu/etd/11366

Chicago Manual of Style (16^{th} Edition):

Parsa, Esmaeil. “ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS.” 2019. Doctoral Dissertation, Montana Tech. Accessed July 11, 2020. https://scholarworks.umt.edu/etd/11366.

MLA Handbook (7^{th} Edition):

Parsa, Esmaeil. “ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS.” 2019. Web. 11 Jul 2020.

Vancouver:

Parsa E. ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS. [Internet] [Doctoral dissertation]. Montana Tech; 2019. [cited 2020 Jul 11]. Available from: https://scholarworks.umt.edu/etd/11366.

Council of Science Editors:

Parsa E. ASPECTS OF UNIQUE D-COLORABILITY FOR DIGRAPHS. [Doctoral Dissertation]. Montana Tech; 2019. Available from: https://scholarworks.umt.edu/etd/11366

Stellenbosch University

18. Van Niekerk, Francois Koch. Concrete foundations of the theory of Noetherian forms.

Degree: PhD, Mathematical Sciences, 2019, Stellenbosch University

URL: http://hdl.handle.net/10019.1/107103

►

ENGLISH ABSTRACT: This thesis concerns certain investigations in abstract algebra that bring together the ideas of the category of algebraic structures and the lattice of… (more)

Subjects/Keywords: Notherian rings; Ordered algebraic structures; Lattice theory; Homomorphisms (Mathematics); Commutators (Operator theory); Abelian groups; UCTD

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Van Niekerk, F. K. (2019). Concrete foundations of the theory of Noetherian forms. (Doctoral Dissertation). Stellenbosch University. Retrieved from http://hdl.handle.net/10019.1/107103

Chicago Manual of Style (16^{th} Edition):

Van Niekerk, Francois Koch. “Concrete foundations of the theory of Noetherian forms.” 2019. Doctoral Dissertation, Stellenbosch University. Accessed July 11, 2020. http://hdl.handle.net/10019.1/107103.

MLA Handbook (7^{th} Edition):

Van Niekerk, Francois Koch. “Concrete foundations of the theory of Noetherian forms.” 2019. Web. 11 Jul 2020.

Vancouver:

Van Niekerk FK. Concrete foundations of the theory of Noetherian forms. [Internet] [Doctoral dissertation]. Stellenbosch University; 2019. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/10019.1/107103.

Council of Science Editors:

Van Niekerk FK. Concrete foundations of the theory of Noetherian forms. [Doctoral Dissertation]. Stellenbosch University; 2019. Available from: http://hdl.handle.net/10019.1/107103

Simon Fraser University

19.
Bauslaugh, Bruce Lloyd.
* Homomorphisms* of infinite directed graphs.

Degree: 1994, Simon Fraser University

URL: http://summit.sfu.ca/item/6543

Subjects/Keywords: Directed graphs.; Homomorphisms (Mathematics); Graph theory.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bauslaugh, B. L. (1994). Homomorphisms of infinite directed graphs. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/6543

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bauslaugh, Bruce Lloyd. “Homomorphisms of infinite directed graphs.” 1994. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/6543.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bauslaugh, Bruce Lloyd. “Homomorphisms of infinite directed graphs.” 1994. Web. 11 Jul 2020.

Vancouver:

Bauslaugh BL. Homomorphisms of infinite directed graphs. [Internet] [Thesis]. Simon Fraser University; 1994. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/6543.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bauslaugh BL. Homomorphisms of infinite directed graphs. [Thesis]. Simon Fraser University; 1994. Available from: http://summit.sfu.ca/item/6543

Not specified: Masters Thesis or Doctoral Dissertation

20.
Vera Arboleda, Anderson Arley.
Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type *homomorphisms* for surfaces and the universal perturbative invariant of 3-manifolds.

Degree: Docteur es, Mathématiques, 2019, Université de Strasbourg

URL: http://www.theses.fr/2019STRAD009

►

Soit Σ une surface compacte connexe orientée avec une seule composante du bord. Notons par M le groupe d'homéotopie de Σ. En considérant l'action de… (more)

Subjects/Keywords: Variétés de dimension trois; Cobordismes d’homologie; Groupe d’homéotopie; Homomorphismes de Johnson; Homomorphismes de Johnson-Levine; Homomorphismes de Johnson alternatifs; Invariant LMO; Foncteur LMO; 3-manifolds; Homology cobordisms; Mapping class group; Johnson homomorphisms; Johnson-Levine homomorphisms; Alternative Johnson homomorphisms; LMO invariant; LMO functor; 512.6; 514.2

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vera Arboleda, A. A. (2019). Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. (Doctoral Dissertation). Université de Strasbourg. Retrieved from http://www.theses.fr/2019STRAD009

Chicago Manual of Style (16^{th} Edition):

Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Doctoral Dissertation, Université de Strasbourg. Accessed July 11, 2020. http://www.theses.fr/2019STRAD009.

MLA Handbook (7^{th} Edition):

Vera Arboleda, Anderson Arley. “Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds.” 2019. Web. 11 Jul 2020.

Vancouver:

Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Internet] [Doctoral dissertation]. Université de Strasbourg; 2019. [cited 2020 Jul 11]. Available from: http://www.theses.fr/2019STRAD009.

Council of Science Editors:

Vera Arboleda AA. Homomorphismes de type Johnson pour les surfaces et invariant perturbatif universel des variétés de dimension trois : Johnson-type homomorphisms for surfaces and the universal perturbative invariant of 3-manifolds. [Doctoral Dissertation]. Université de Strasbourg; 2019. Available from: http://www.theses.fr/2019STRAD009

Brigham Young University

21.
Kent, Curtis Andrew.
* Homomorphisms* into the Fundamental Group of One-Dimensional and Planar Peano Continua.

Degree: MS, 2008, Brigham Young University

URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2429&context=etd

Let X be a planar or one-dimensional Peano continuum. Let E be a Hawaiian Earring with fundamental group H. We show that every homomorphism from H to the fundamental group of X is conjugate to a homomorphism which is induced by a continuous function.

Subjects/Keywords: homomorphisms; Peano continuum; continuous; Hawaiian earring; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kent, C. A. (2008). Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2429&context=etd

Chicago Manual of Style (16^{th} Edition):

Kent, Curtis Andrew. “Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua.” 2008. Masters Thesis, Brigham Young University. Accessed July 11, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2429&context=etd.

MLA Handbook (7^{th} Edition):

Kent, Curtis Andrew. “Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua.” 2008. Web. 11 Jul 2020.

Vancouver:

Kent CA. Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua. [Internet] [Masters thesis]. Brigham Young University; 2008. [cited 2020 Jul 11]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2429&context=etd.

Council of Science Editors:

Kent CA. Homomorphisms into the Fundamental Group of One-Dimensional and Planar Peano Continua. [Masters Thesis]. Brigham Young University; 2008. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2429&context=etd

McMaster University

22.
Kerr-Lawson , Angus Carmichael.
A Filter Description for the *Homomorphisms* of the Algebra of Bounded Analytic Functions on the Unit Disc.

Degree: PhD, 1963, McMaster University

URL: http://hdl.handle.net/11375/18488

►

For any filter F defined on the unit disc D, F* is the filter generated by ∈-neighbourhoods of the sets of F, using hyperbolic… (more)

Subjects/Keywords: filter; homomorphisms; algebra; bounded; analytic; unit disc; complex

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kerr-Lawson , A. C. (1963). A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/18488

Chicago Manual of Style (16^{th} Edition):

Kerr-Lawson , Angus Carmichael. “A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc.” 1963. Doctoral Dissertation, McMaster University. Accessed July 11, 2020. http://hdl.handle.net/11375/18488.

MLA Handbook (7^{th} Edition):

Kerr-Lawson , Angus Carmichael. “A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc.” 1963. Web. 11 Jul 2020.

Vancouver:

Kerr-Lawson AC. A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc. [Internet] [Doctoral dissertation]. McMaster University; 1963. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/11375/18488.

Council of Science Editors:

Kerr-Lawson AC. A Filter Description for the Homomorphisms of the Algebra of Bounded Analytic Functions on the Unit Disc. [Doctoral Dissertation]. McMaster University; 1963. Available from: http://hdl.handle.net/11375/18488

23.
Sen, Sagnik.
A contribution to the theory of graph *homomorphisms* and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes.

Degree: Docteur es, Informatique, 2014, Bordeaux

URL: http://www.theses.fr/2014BORD0010

►

Dans cette thèse, nous considérons des questions relatives aux homomorphismes de quatre types distincts de graphes : les graphes orientés, les graphes orientables, les graphes… (more)

Subjects/Keywords: Graphes orientés; Graphes orientables; Graphes 2-Arête colorés; Graphes signés; Homomorphismes; Oriented graphs; Orientable graphs; Signified graphs; Signed graphs; Homomorphisms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sen, S. (2014). A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes. (Doctoral Dissertation). Bordeaux. Retrieved from http://www.theses.fr/2014BORD0010

Chicago Manual of Style (16^{th} Edition):

Sen, Sagnik. “A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes.” 2014. Doctoral Dissertation, Bordeaux. Accessed July 11, 2020. http://www.theses.fr/2014BORD0010.

MLA Handbook (7^{th} Edition):

Sen, Sagnik. “A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes.” 2014. Web. 11 Jul 2020.

Vancouver:

Sen S. A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes. [Internet] [Doctoral dissertation]. Bordeaux; 2014. [cited 2020 Jul 11]. Available from: http://www.theses.fr/2014BORD0010.

Council of Science Editors:

Sen S. A contribution to the theory of graph homomorphisms and colorings : Une contribution à la théorie d' homomorphisme et de coloration des graphes. [Doctoral Dissertation]. Bordeaux; 2014. Available from: http://www.theses.fr/2014BORD0010

University of Gothenburg / Göteborgs Universitet

24. Hamlet, Oskar. Tight maps, a classification.

Degree: 2014, University of Gothenburg / Göteborgs Universitet

URL: http://hdl.handle.net/2077/35773

► This thesis concerns the classification of tight totally geodesic maps between Hermitian symmetric spaces of noncompact type. In Paper I we classify holomorphic tight maps.…
(more)

Subjects/Keywords: Tight maps; Tight homomorphisms; Maximal representations; Toledo invariant; Bounded Kähler class; Hermitian symmetric spaces; Bounded cohomology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hamlet, O. (2014). Tight maps, a classification. (Thesis). University of Gothenburg / Göteborgs Universitet. Retrieved from http://hdl.handle.net/2077/35773

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Hamlet, Oskar. “Tight maps, a classification.” 2014. Thesis, University of Gothenburg / Göteborgs Universitet. Accessed July 11, 2020. http://hdl.handle.net/2077/35773.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Hamlet, Oskar. “Tight maps, a classification.” 2014. Web. 11 Jul 2020.

Vancouver:

Hamlet O. Tight maps, a classification. [Internet] [Thesis]. University of Gothenburg / Göteborgs Universitet; 2014. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/2077/35773.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hamlet O. Tight maps, a classification. [Thesis]. University of Gothenburg / Göteborgs Universitet; 2014. Available from: http://hdl.handle.net/2077/35773

Not specified: Masters Thesis or Doctoral Dissertation

Michigan State University

25.
Irmak, Elmas.
Superinjective simplicial maps of complexes of curves and injective *homomorphisms* of mapping class groups.

Degree: PhD, Department of Mathematics, 2002, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:31394

Subjects/Keywords: Complexes; Curves; Homomorphisms (Mathematics); Class groups (Mathematics); Mappings (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Irmak, E. (2002). Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:31394

Chicago Manual of Style (16^{th} Edition):

Irmak, Elmas. “Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups.” 2002. Doctoral Dissertation, Michigan State University. Accessed July 11, 2020. http://etd.lib.msu.edu/islandora/object/etd:31394.

MLA Handbook (7^{th} Edition):

Irmak, Elmas. “Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups.” 2002. Web. 11 Jul 2020.

Vancouver:

Irmak E. Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups. [Internet] [Doctoral dissertation]. Michigan State University; 2002. [cited 2020 Jul 11]. Available from: http://etd.lib.msu.edu/islandora/object/etd:31394.

Council of Science Editors:

Irmak E. Superinjective simplicial maps of complexes of curves and injective homomorphisms of mapping class groups. [Doctoral Dissertation]. Michigan State University; 2002. Available from: http://etd.lib.msu.edu/islandora/object/etd:31394

Simon Fraser University

26. Bauslaugh, Bruce Lloyd. Complexity of infinite H-colouring.

Degree: 1990, Simon Fraser University

URL: http://summit.sfu.ca/item/4724

Subjects/Keywords: Map-coloring problem.; Homomorphisms (Mathematics); Graph theory.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bauslaugh, B. L. (1990). Complexity of infinite H-colouring. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/4724

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bauslaugh, Bruce Lloyd. “Complexity of infinite H-colouring.” 1990. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/4724.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bauslaugh, Bruce Lloyd. “Complexity of infinite H-colouring.” 1990. Web. 11 Jul 2020.

Vancouver:

Bauslaugh BL. Complexity of infinite H-colouring. [Internet] [Thesis]. Simon Fraser University; 1990. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/4724.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bauslaugh BL. Complexity of infinite H-colouring. [Thesis]. Simon Fraser University; 1990. Available from: http://summit.sfu.ca/item/4724

Not specified: Masters Thesis or Doctoral Dissertation

Simon Fraser University

27. Zhou, Hui-Shan. Homomorphism properties of graph products.

Degree: 1988, Simon Fraser University

URL: http://summit.sfu.ca/item/5399

Subjects/Keywords: Paths and cycles (Graph theory); Homomorphisms (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhou, H. (1988). Homomorphism properties of graph products. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/5399

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Zhou, Hui-Shan. “Homomorphism properties of graph products.” 1988. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/5399.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Zhou, Hui-Shan. “Homomorphism properties of graph products.” 1988. Web. 11 Jul 2020.

Vancouver:

Zhou H. Homomorphism properties of graph products. [Internet] [Thesis]. Simon Fraser University; 1988. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/5399.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhou H. Homomorphism properties of graph products. [Thesis]. Simon Fraser University; 1988. Available from: http://summit.sfu.ca/item/5399

Not specified: Masters Thesis or Doctoral Dissertation

Simon Fraser University

28. Vikas, Narayan. Computational complexity of graph compaction.

Degree: 1997, Simon Fraser University

URL: http://summit.sfu.ca/item/7342

Subjects/Keywords: Graph theory.; Map-coloring problem.; Homomorphisms (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vikas, N. (1997). Computational complexity of graph compaction. (Thesis). Simon Fraser University. Retrieved from http://summit.sfu.ca/item/7342

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Vikas, Narayan. “Computational complexity of graph compaction.” 1997. Thesis, Simon Fraser University. Accessed July 11, 2020. http://summit.sfu.ca/item/7342.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Vikas, Narayan. “Computational complexity of graph compaction.” 1997. Web. 11 Jul 2020.

Vancouver:

Vikas N. Computational complexity of graph compaction. [Internet] [Thesis]. Simon Fraser University; 1997. [cited 2020 Jul 11]. Available from: http://summit.sfu.ca/item/7342.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vikas N. Computational complexity of graph compaction. [Thesis]. Simon Fraser University; 1997. Available from: http://summit.sfu.ca/item/7342

Not specified: Masters Thesis or Doctoral Dissertation

University of Toronto

29. Cros, Lluis Vena. The Removal Property for Linear Configurations in Compact Abelian Groups.

Degree: PhD, 2014, University of Toronto

URL: http://hdl.handle.net/1807/68308

► The combinatorial removal lemma states that, if a (hyper)graph K has not many copies of the fixed (hyper)graph H , then K can be made…
(more)

Subjects/Keywords: compact abelian groups; homomorphisms of finite abelian groups; integer linear systems; regularity lemma; removal lemma; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cros, L. V. (2014). The Removal Property for Linear Configurations in Compact Abelian Groups. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/68308

Chicago Manual of Style (16^{th} Edition):

Cros, Lluis Vena. “The Removal Property for Linear Configurations in Compact Abelian Groups.” 2014. Doctoral Dissertation, University of Toronto. Accessed July 11, 2020. http://hdl.handle.net/1807/68308.

MLA Handbook (7^{th} Edition):

Cros, Lluis Vena. “The Removal Property for Linear Configurations in Compact Abelian Groups.” 2014. Web. 11 Jul 2020.

Vancouver:

Cros LV. The Removal Property for Linear Configurations in Compact Abelian Groups. [Internet] [Doctoral dissertation]. University of Toronto; 2014. [cited 2020 Jul 11]. Available from: http://hdl.handle.net/1807/68308.

Council of Science Editors:

Cros LV. The Removal Property for Linear Configurations in Compact Abelian Groups. [Doctoral Dissertation]. University of Toronto; 2014. Available from: http://hdl.handle.net/1807/68308

University of Florida

30. Brennan, Joseph P. Classification of Certain Families of Finite P-Groups.

Degree: PhD, Mathematics, 2012, University of Florida

URL: https://ufdc.ufl.edu/UFE0043981

► In 1999 Simon Blackburn published a classification of finite groups of prime powered order for which the derived subgroup is of prime order. A n-generalized…
(more)

Subjects/Keywords: Abstract algebra; Algebra; Automorphisms; Commutators; Homomorphisms; Integers; Isomorphism; Mathematical theorems; Mathematics; Vector spaces; algebra – classification – group – p-group

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brennan, J. P. (2012). Classification of Certain Families of Finite P-Groups. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0043981

Chicago Manual of Style (16^{th} Edition):

Brennan, Joseph P. “Classification of Certain Families of Finite P-Groups.” 2012. Doctoral Dissertation, University of Florida. Accessed July 11, 2020. https://ufdc.ufl.edu/UFE0043981.

MLA Handbook (7^{th} Edition):

Brennan, Joseph P. “Classification of Certain Families of Finite P-Groups.” 2012. Web. 11 Jul 2020.

Vancouver:

Brennan JP. Classification of Certain Families of Finite P-Groups. [Internet] [Doctoral dissertation]. University of Florida; 2012. [cited 2020 Jul 11]. Available from: https://ufdc.ufl.edu/UFE0043981.

Council of Science Editors:

Brennan JP. Classification of Certain Families of Finite P-Groups. [Doctoral Dissertation]. University of Florida; 2012. Available from: https://ufdc.ufl.edu/UFE0043981