Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Holomorphic symplectic). Showing records 1 – 16 of 16 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Penn State University

1. Hong, Wei. Some problems in Poisson geometry.

Degree: PhD, Mathematics, 2013, Penn State University

 Two main topics are discussed in this dissertation. In the first part (see Chapter 3), I compute the Poisson cohomology of Poisson del Pezzo surfaces.… (more)

Subjects/Keywords: (holomorphic) Poisson manifolds; Poisson cohomology; Courant algebroid; hypercomplex structure; holomorphic symplectic structure

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hong, W. (2013). Some problems in Poisson geometry. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/17480

Chicago Manual of Style (16th Edition):

Hong, Wei. “Some problems in Poisson geometry.” 2013. Doctoral Dissertation, Penn State University. Accessed October 17, 2019. https://etda.libraries.psu.edu/catalog/17480.

MLA Handbook (7th Edition):

Hong, Wei. “Some problems in Poisson geometry.” 2013. Web. 17 Oct 2019.

Vancouver:

Hong W. Some problems in Poisson geometry. [Internet] [Doctoral dissertation]. Penn State University; 2013. [cited 2019 Oct 17]. Available from: https://etda.libraries.psu.edu/catalog/17480.

Council of Science Editors:

Hong W. Some problems in Poisson geometry. [Doctoral Dissertation]. Penn State University; 2013. Available from: https://etda.libraries.psu.edu/catalog/17480


University of Cambridge

2. Smith, Jack Edward. Symmetry in monotone Lagrangian Floer theory.

Degree: PhD, 2017, University of Cambridge

 In this thesis we study the self-Floer theory of a monotone Lagrangian submanifold L of a closed symplectic manifold X in the presence of various… (more)

Subjects/Keywords: 514; symplectic topology; Lagrangian submanifold; Floer cohomology; holomorphic disc

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smith, J. E. (2017). Symmetry in monotone Lagrangian Floer theory. (Doctoral Dissertation). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/267745 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533

Chicago Manual of Style (16th Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Doctoral Dissertation, University of Cambridge. Accessed October 17, 2019. https://www.repository.cam.ac.uk/handle/1810/267745 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533.

MLA Handbook (7th Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory.” 2017. Web. 17 Oct 2019.

Vancouver:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Internet] [Doctoral dissertation]. University of Cambridge; 2017. [cited 2019 Oct 17]. Available from: https://www.repository.cam.ac.uk/handle/1810/267745 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533.

Council of Science Editors:

Smith JE. Symmetry in monotone Lagrangian Floer theory. [Doctoral Dissertation]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/267745 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725533

3. Smith, Jack Edward. Symmetry in monotone Lagrangian Floer theory .

Degree: 2017, University of Cambridge

 In this thesis we study the self-Floer theory of a monotone Lagrangian submanifold L of a closed symplectic manifold X in the presence of various… (more)

Subjects/Keywords: symplectic topology; Lagrangian submanifold; Floer cohomology; holomorphic disc

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smith, J. E. (2017). Symmetry in monotone Lagrangian Floer theory . (Thesis). University of Cambridge. Retrieved from https://www.repository.cam.ac.uk/handle/1810/267745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory .” 2017. Thesis, University of Cambridge. Accessed October 17, 2019. https://www.repository.cam.ac.uk/handle/1810/267745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Smith, Jack Edward. “Symmetry in monotone Lagrangian Floer theory .” 2017. Web. 17 Oct 2019.

Vancouver:

Smith JE. Symmetry in monotone Lagrangian Floer theory . [Internet] [Thesis]. University of Cambridge; 2017. [cited 2019 Oct 17]. Available from: https://www.repository.cam.ac.uk/handle/1810/267745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Smith JE. Symmetry in monotone Lagrangian Floer theory . [Thesis]. University of Cambridge; 2017. Available from: https://www.repository.cam.ac.uk/handle/1810/267745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

4. Bergmann, Jens von. Pseudo-holomorphic maps in folded symplectic manifolds.

Degree: PhD, Department of Mathematics, 2005, Michigan State University

Subjects/Keywords: Holomorphic mappings; Symplectic manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bergmann, J. v. (2005). Pseudo-holomorphic maps in folded symplectic manifolds. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:33651

Chicago Manual of Style (16th Edition):

Bergmann, Jens von. “Pseudo-holomorphic maps in folded symplectic manifolds.” 2005. Doctoral Dissertation, Michigan State University. Accessed October 17, 2019. http://etd.lib.msu.edu/islandora/object/etd:33651.

MLA Handbook (7th Edition):

Bergmann, Jens von. “Pseudo-holomorphic maps in folded symplectic manifolds.” 2005. Web. 17 Oct 2019.

Vancouver:

Bergmann Jv. Pseudo-holomorphic maps in folded symplectic manifolds. [Internet] [Doctoral dissertation]. Michigan State University; 2005. [cited 2019 Oct 17]. Available from: http://etd.lib.msu.edu/islandora/object/etd:33651.

Council of Science Editors:

Bergmann Jv. Pseudo-holomorphic maps in folded symplectic manifolds. [Doctoral Dissertation]. Michigan State University; 2005. Available from: http://etd.lib.msu.edu/islandora/object/etd:33651


University of Minnesota

5. Li, Jun. Symplectomorphism Group of Rational 4-Manifolds.

Degree: PhD, Mathematics, 2017, University of Minnesota

 We develop techniques for studying the symplectomorphism group of rational 4-manifolds. We study the space of tamed almost complex structures \mJ\w using a fine decomposition… (more)

Subjects/Keywords: almost complex manifold; ball packing; holomorphic curves; rational 4-manifolds; symplectic geometry; symplectomorphism groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, J. (2017). Symplectomorphism Group of Rational 4-Manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://hdl.handle.net/11299/190537

Chicago Manual of Style (16th Edition):

Li, Jun. “Symplectomorphism Group of Rational 4-Manifolds.” 2017. Doctoral Dissertation, University of Minnesota. Accessed October 17, 2019. http://hdl.handle.net/11299/190537.

MLA Handbook (7th Edition):

Li, Jun. “Symplectomorphism Group of Rational 4-Manifolds.” 2017. Web. 17 Oct 2019.

Vancouver:

Li J. Symplectomorphism Group of Rational 4-Manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2017. [cited 2019 Oct 17]. Available from: http://hdl.handle.net/11299/190537.

Council of Science Editors:

Li J. Symplectomorphism Group of Rational 4-Manifolds. [Doctoral Dissertation]. University of Minnesota; 2017. Available from: http://hdl.handle.net/11299/190537

6. Alboresi, Davide. Poisson Manifolds and Holomorphic Curves.

Degree: 2018, University Utrecht

 In this thesis we study the topology of Poisson manifolds using techniques from symplectic topology, especially holomorphic curves. In particular, we study the topology of… (more)

Subjects/Keywords: Poisson geometry; Symplectic geometry; Holomorphic curves

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alboresi, D. (2018). Poisson Manifolds and Holomorphic Curves. (Doctoral Dissertation). University Utrecht. Retrieved from http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348

Chicago Manual of Style (16th Edition):

Alboresi, Davide. “Poisson Manifolds and Holomorphic Curves.” 2018. Doctoral Dissertation, University Utrecht. Accessed October 17, 2019. http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348.

MLA Handbook (7th Edition):

Alboresi, Davide. “Poisson Manifolds and Holomorphic Curves.” 2018. Web. 17 Oct 2019.

Vancouver:

Alboresi D. Poisson Manifolds and Holomorphic Curves. [Internet] [Doctoral dissertation]. University Utrecht; 2018. [cited 2019 Oct 17]. Available from: http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348.

Council of Science Editors:

Alboresi D. Poisson Manifolds and Holomorphic Curves. [Doctoral Dissertation]. University Utrecht; 2018. Available from: http://dspace.library.uu.nl/handle/1874/372348 ; URN:NBN:NL:UI:10-1874-372348 ; urn:isbn:978-90-393-7050-6 ; URN:NBN:NL:UI:10-1874-372348 ; http://dspace.library.uu.nl/handle/1874/372348

7. Pillet, Basile. Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne : Global and infinitesimal complex geometry of twistor spaces of hyperkähler manifolds.

Degree: Docteur es, Mathématiques et applications, 2017, Rennes 1

L'objet de cette thèse est la construction d'objets géométriques sur une variété C paramétrant des courbes rationnelles dans l'espace des twisteurs d'une variété hyperkählérienne. On… (more)

Subjects/Keywords: Hyperkählerien; Symplectique holomorphe; Twisteurs; Transformée de Penrose; Épaississements; Cohomologie; Riemannien; Hyperkähler; Holomorphic symplectic; Twistor; Penrose transform; Thickening; Cohomology; Riemannian

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pillet, B. (2017). Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne : Global and infinitesimal complex geometry of twistor spaces of hyperkähler manifolds. (Doctoral Dissertation). Rennes 1. Retrieved from http://www.theses.fr/2017REN1S021

Chicago Manual of Style (16th Edition):

Pillet, Basile. “Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne : Global and infinitesimal complex geometry of twistor spaces of hyperkähler manifolds.” 2017. Doctoral Dissertation, Rennes 1. Accessed October 17, 2019. http://www.theses.fr/2017REN1S021.

MLA Handbook (7th Edition):

Pillet, Basile. “Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne : Global and infinitesimal complex geometry of twistor spaces of hyperkähler manifolds.” 2017. Web. 17 Oct 2019.

Vancouver:

Pillet B. Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne : Global and infinitesimal complex geometry of twistor spaces of hyperkähler manifolds. [Internet] [Doctoral dissertation]. Rennes 1; 2017. [cited 2019 Oct 17]. Available from: http://www.theses.fr/2017REN1S021.

Council of Science Editors:

Pillet B. Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne : Global and infinitesimal complex geometry of twistor spaces of hyperkähler manifolds. [Doctoral Dissertation]. Rennes 1; 2017. Available from: http://www.theses.fr/2017REN1S021

8. Wong, Yat Sen. J - holomorphic curves and their applications.

Degree: PhD, 0439, 2014, University of Illinois – Urbana-Champaign

 This thesis covers four results: 1. We prove an analog of Whitney's embedding theorem for J-holomorphic discs. 2. For zj = xj + i*yj in… (more)

Subjects/Keywords: J-holomorphic curve; symplectic embedding; symplectomorphism

…concerning J-holomorphic discs, symplectic manifolds, Fredholm operators, and the Cauchy-Green… …operator. 2.1 J-holomorphic discs and symplectic manifolds Definition 2.1 A smooth map φ : (… …x28;r) and D2 × Dn−2 (r) in Cn equipped with the standard symplectic form on… …be (J, J 0 )-holomorphic if its derivative dφ is complex linear, that is dφ ◦ J… …structure of Cn . A J-holomorphic disc or pseudo-holomorphic disc is a (Jst , J)… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wong, Y. S. (2014). J - holomorphic curves and their applications. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/50692

Chicago Manual of Style (16th Edition):

Wong, Yat Sen. “J - holomorphic curves and their applications.” 2014. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 17, 2019. http://hdl.handle.net/2142/50692.

MLA Handbook (7th Edition):

Wong, Yat Sen. “J - holomorphic curves and their applications.” 2014. Web. 17 Oct 2019.

Vancouver:

Wong YS. J - holomorphic curves and their applications. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2014. [cited 2019 Oct 17]. Available from: http://hdl.handle.net/2142/50692.

Council of Science Editors:

Wong YS. J - holomorphic curves and their applications. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2014. Available from: http://hdl.handle.net/2142/50692


Arizona State University

9. Sanborn, Barbara. Symplectic Topology and Geometric Quantum Mechanics.

Degree: PhD, Mathematics, 2011, Arizona State University

 The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space.… (more)

Subjects/Keywords: Mathematics; Quantum physics; Condensed Matter Physics; adiabatic theorem; geometric quantum mechanics; J-holomorphic curves; mean curvature; symplectic topology; uncertainty principle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sanborn, B. (2011). Symplectic Topology and Geometric Quantum Mechanics. (Doctoral Dissertation). Arizona State University. Retrieved from http://repository.asu.edu/items/9478

Chicago Manual of Style (16th Edition):

Sanborn, Barbara. “Symplectic Topology and Geometric Quantum Mechanics.” 2011. Doctoral Dissertation, Arizona State University. Accessed October 17, 2019. http://repository.asu.edu/items/9478.

MLA Handbook (7th Edition):

Sanborn, Barbara. “Symplectic Topology and Geometric Quantum Mechanics.” 2011. Web. 17 Oct 2019.

Vancouver:

Sanborn B. Symplectic Topology and Geometric Quantum Mechanics. [Internet] [Doctoral dissertation]. Arizona State University; 2011. [cited 2019 Oct 17]. Available from: http://repository.asu.edu/items/9478.

Council of Science Editors:

Sanborn B. Symplectic Topology and Geometric Quantum Mechanics. [Doctoral Dissertation]. Arizona State University; 2011. Available from: http://repository.asu.edu/items/9478

10. A. Cattaneo. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.

Degree: 2018, Università degli Studi di Milano

La tesi si concentra sullo studio degli automorfismi di varietà olomorfe simplettiche irriducibili di tipo K3^[n], ovvero varietà equivalenti per deformazione allo schema di Hilbert… (more)

Subjects/Keywords: complex algebraic geometry; lattice theory; holomorphic symplectic manifold; Hilbert schemes of points on K3 surfaces; automorphisms; Torelli theorem; moduli spaces; Settore MAT/03 - Geometria

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cattaneo, A. (2018). NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. (Thesis). Università degli Studi di Milano. Retrieved from http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Thesis, Università degli Studi di Milano. Accessed October 17, 2019. http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cattaneo, A.. “NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS.” 2018. Web. 17 Oct 2019.

Vancouver:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Internet] [Thesis]. Università degli Studi di Milano; 2018. [cited 2019 Oct 17]. Available from: http://hdl.handle.net/2434/606455.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cattaneo A. NON-SYMPLECTIC AUTOMORPHISMS OF IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS. [Thesis]. Università degli Studi di Milano; 2018. Available from: http://hdl.handle.net/2434/606455

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

11. Chang, Ching-Hao. Isotopy of nodal symplectic spheres in rational manifolds.

Degree: PhD, Mathematics, 2013, University of Minnesota

 In 1985, M. Gromov proved that any symplectic sphere of degree 1 in CP2 is isotopic to an algebraic line. J. Barraud extended Gromov's work… (more)

Subjects/Keywords: Deformation; Isotopy, J-holomorphic cruve; Nodal symplectic sphere; Ratinonal manifold; Symplectic manifold

holomorphic sphere means the domain of the J-holomorphic curve is CP1 . The rational symplectic… …interested in the J-holomorphic maps from a symplectic manifold S to another symplectic manifold M… …Chapter 1 Introduction 1.1 Isotopy of symplectic surfaces The isotopy problem for… …symplectic submanifolds embedded in a compact symplectic 4-manifold (M, ω) is a very… …different categories of symplectic submanifolds in different symplectic manifolds. In 1985, M… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chang, C. (2013). Isotopy of nodal symplectic spheres in rational manifolds. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/161575

Chicago Manual of Style (16th Edition):

Chang, Ching-Hao. “Isotopy of nodal symplectic spheres in rational manifolds.” 2013. Doctoral Dissertation, University of Minnesota. Accessed October 17, 2019. http://purl.umn.edu/161575.

MLA Handbook (7th Edition):

Chang, Ching-Hao. “Isotopy of nodal symplectic spheres in rational manifolds.” 2013. Web. 17 Oct 2019.

Vancouver:

Chang C. Isotopy of nodal symplectic spheres in rational manifolds. [Internet] [Doctoral dissertation]. University of Minnesota; 2013. [cited 2019 Oct 17]. Available from: http://purl.umn.edu/161575.

Council of Science Editors:

Chang C. Isotopy of nodal symplectic spheres in rational manifolds. [Doctoral Dissertation]. University of Minnesota; 2013. Available from: http://purl.umn.edu/161575

12. Cazassus, Guillem. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.

Degree: Docteur es, Mathématiques fondamentales, 2016, Université Toulouse III – Paul Sabatier

L'homologie instanton-symplectique est un invariant associé à une variété de dimension trois close orientée, qui a été dé?ni par Manolescu et Woodward, et qui correspond… (more)

Subjects/Keywords: Topologie de basse dimension; Chirurgie de Dehn; Géométrie symplectique; Homologie de Floer; Courbes pseudo-holomorphes; Théorie de jauge; Espace des modules de connexions; Low-dimensional topology; Dehn surgery; Symplectic geometry; Floer homology; Pseudo-holomorphic curves; Gauge theory; Moduli spaces of connections

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cazassus, G. (2016). Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. (Doctoral Dissertation). Université Toulouse III – Paul Sabatier. Retrieved from http://www.theses.fr/2016TOU30043

Chicago Manual of Style (16th Edition):

Cazassus, Guillem. “Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.” 2016. Doctoral Dissertation, Université Toulouse III – Paul Sabatier. Accessed October 17, 2019. http://www.theses.fr/2016TOU30043.

MLA Handbook (7th Edition):

Cazassus, Guillem. “Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms.” 2016. Web. 17 Oct 2019.

Vancouver:

Cazassus G. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. [Internet] [Doctoral dissertation]. Université Toulouse III – Paul Sabatier; 2016. [cited 2019 Oct 17]. Available from: http://www.theses.fr/2016TOU30043.

Council of Science Editors:

Cazassus G. Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes : Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordisms. [Doctoral Dissertation]. Université Toulouse III – Paul Sabatier; 2016. Available from: http://www.theses.fr/2016TOU30043

13. To, Jin Hyung. Holomorphic chains on the projective line.

Degree: PhD, 0439, 2012, University of Illinois – Urbana-Champaign

Holomorphic chains on a smooth algebraic curve are tuples of vector bundles on the curve together with the homomorphisms between them. A type of a… (more)

Subjects/Keywords: Holomorphic chains; α-stability; Chamber; Geometric Invariant Theory (GIT); Nonreductive GIT; Symplectic quotient; Co-Higgs bundles.

holomorphic chains. The classical GIT and its relation to symplectic quotients is also summarized… …Chapter 2 Preliminaries . . . . 2.1 Quiver bundles . . . . . . . 2.1.1 Holomorphic chains 2.1.2… …1 7 7 7 10 11 13 Chapter 3 Holomorphic chains composed of line bundles… …17 3.1 The parameter region for holomorphic chains of type t = (1, ..., 1 : d0… …dn ) . . . . . . . . . . 17 3.2 The moduli space of α-stable holomorphic chains of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

To, J. H. (2012). Holomorphic chains on the projective line. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/31129

Chicago Manual of Style (16th Edition):

To, Jin Hyung. “Holomorphic chains on the projective line.” 2012. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed October 17, 2019. http://hdl.handle.net/2142/31129.

MLA Handbook (7th Edition):

To, Jin Hyung. “Holomorphic chains on the projective line.” 2012. Web. 17 Oct 2019.

Vancouver:

To JH. Holomorphic chains on the projective line. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2012. [cited 2019 Oct 17]. Available from: http://hdl.handle.net/2142/31129.

Council of Science Editors:

To JH. Holomorphic chains on the projective line. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2012. Available from: http://hdl.handle.net/2142/31129

14. Istrati, Nicolina. Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes.

Degree: Docteur es, Mathématiques, 2018, Sorbonne Paris Cité

Dans cette thèse on s’intéresse à deux types de structures conformes non-dégénérées sur une variété complexe compacte donnée. La première c’est une forme holomorphe symplectique… (more)

Subjects/Keywords: Forme holomorphe symplectique; Variété hyperkählerienne; Métrique localement conformément kählerienne; Métrique de Vaisman; Variété d’Oeljeklaus-Toma; Cohomologie twistée; Holomorphic symplectic form; Hyperkähler manifold; Locally conformally Kähler metric; Vaisman metric; Toric geometry; Oeljeklaus-Toma manifold; Twisted cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Istrati, N. (2018). Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2018USPCC054

Chicago Manual of Style (16th Edition):

Istrati, Nicolina. “Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes.” 2018. Doctoral Dissertation, Sorbonne Paris Cité. Accessed October 17, 2019. http://www.theses.fr/2018USPCC054.

MLA Handbook (7th Edition):

Istrati, Nicolina. “Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes.” 2018. Web. 17 Oct 2019.

Vancouver:

Istrati N. Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2018. [cited 2019 Oct 17]. Available from: http://www.theses.fr/2018USPCC054.

Council of Science Editors:

Istrati N. Conformal structures on compact complex manifolds : Structures conformes sur les variétés complexes compactes. [Doctoral Dissertation]. Sorbonne Paris Cité; 2018. Available from: http://www.theses.fr/2018USPCC054

15. Cattaneo, Alberto. Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes.

Degree: Docteur es, Mathématiques, 2018, Poitiers; Università degli studi (Milan, Italie)

Nous allons étudier les automorphismes des variétés symplectiques holomorphes irréductibles de type K3^[n], c'est-à-dire des variétés équivalentes par déformation au schéma de Hilbert de n… (more)

Subjects/Keywords: Géométrie algébrique complexe; Théorie des réseaux; Variétés symplectiques holomorphes; Schémas de Hilbert de points sur les surfaces K3; Automorphismes; Théorème de Torelli; Espaces de modules.; Complex algebraic geometry; Lattice theory; Holomorphic symplectic manifolds; Hilbert schemes of points on K3 surfaces; Automorphisms; Torelli theorem; Moduli spaces.; 516.35; 514.223; 511.326

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cattaneo, A. (2018). Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes. (Doctoral Dissertation). Poitiers; Università degli studi (Milan, Italie). Retrieved from http://www.theses.fr/2018POIT2322

Chicago Manual of Style (16th Edition):

Cattaneo, Alberto. “Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes.” 2018. Doctoral Dissertation, Poitiers; Università degli studi (Milan, Italie). Accessed October 17, 2019. http://www.theses.fr/2018POIT2322.

MLA Handbook (7th Edition):

Cattaneo, Alberto. “Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes.” 2018. Web. 17 Oct 2019.

Vancouver:

Cattaneo A. Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes. [Internet] [Doctoral dissertation]. Poitiers; Università degli studi (Milan, Italie); 2018. [cited 2019 Oct 17]. Available from: http://www.theses.fr/2018POIT2322.

Council of Science Editors:

Cattaneo A. Non-symplectic automorphisms of irreducible holomorphic symplectic manifolds : Automorphismes non-symplectiques des variétés symplectiques holomorphes. [Doctoral Dissertation]. Poitiers; Università degli studi (Milan, Italie); 2018. Available from: http://www.theses.fr/2018POIT2322

16. Tari, Kévin. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.

Degree: Docteur es, Mathématiques, 2015, Poitiers

Dans ce travail, nous classifions les automorphismes non-symplectiques des variétés équivalentes par déformations à des variétés de Kummer généralisées de dimension 4, ayant une action… (more)

Subjects/Keywords: Géométrie algébrique complexe; Variétés symplectiques holomorphes; Variétés de Kummer généralisées; Schémas de Hilbert de points sur les surfaces K3; Automorphismes; Automorphismes naturels; Théorème de Torelli; Surfaces abéliennes; Théorie des réseaux; Isométries; Complex algebraic geometry; Holomorphic symplectic varieties; Generalized Kummer varieties; Hilbert schemes of points on K3 surfaces; Automorphisms; Natural automorphisms; Torelli thoerem; Abelian surfaces; Lattice theory; Isometries; 516.35

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Tari, K. (2015). Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. (Doctoral Dissertation). Poitiers. Retrieved from http://www.theses.fr/2015POIT2301

Chicago Manual of Style (16th Edition):

Tari, Kévin. “Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.” 2015. Doctoral Dissertation, Poitiers. Accessed October 17, 2019. http://www.theses.fr/2015POIT2301.

MLA Handbook (7th Edition):

Tari, Kévin. “Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties.” 2015. Web. 17 Oct 2019.

Vancouver:

Tari K. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. [Internet] [Doctoral dissertation]. Poitiers; 2015. [cited 2019 Oct 17]. Available from: http://www.theses.fr/2015POIT2301.

Council of Science Editors:

Tari K. Automorphismes des variétés de Kummer généralisées : Automorphisms of generalized Kummer varieties. [Doctoral Dissertation]. Poitiers; 2015. Available from: http://www.theses.fr/2015POIT2301

.