Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hodge operator). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Bonelle, Jérôme. Opérateurs discrets compatibles pour la discrétisation sur maillages polyédriques des équations elliptiques et de Stokes : Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations.

Degree: Docteur es, Mathématiques, 2014, Université Paris-Est

Cette thèse présente une nouvelle classe de schémas de discrétisation spatiale sur maillages polyédriques, nommée Compatible Discrete Operator (CDO) et en étudie l'application aux équations… (more)

Subjects/Keywords: Opérateur Discret Compatible (CDO); Discrétisation compatible; Discrétisation mimétique; Elliptique; Stokes; Opérateur de Hodge discret; Compatible discretization; Mimetic discretization; Elliptic; Stokes; Discrete Hodge operator; Polyhedral mesh

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bonelle, J. (2014). Opérateurs discrets compatibles pour la discrétisation sur maillages polyédriques des équations elliptiques et de Stokes : Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations. (Doctoral Dissertation). Université Paris-Est. Retrieved from http://www.theses.fr/2014PEST1078

Chicago Manual of Style (16th Edition):

Bonelle, Jérôme. “Opérateurs discrets compatibles pour la discrétisation sur maillages polyédriques des équations elliptiques et de Stokes : Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations.” 2014. Doctoral Dissertation, Université Paris-Est. Accessed February 28, 2020. http://www.theses.fr/2014PEST1078.

MLA Handbook (7th Edition):

Bonelle, Jérôme. “Opérateurs discrets compatibles pour la discrétisation sur maillages polyédriques des équations elliptiques et de Stokes : Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations.” 2014. Web. 28 Feb 2020.

Vancouver:

Bonelle J. Opérateurs discrets compatibles pour la discrétisation sur maillages polyédriques des équations elliptiques et de Stokes : Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations. [Internet] [Doctoral dissertation]. Université Paris-Est; 2014. [cited 2020 Feb 28]. Available from: http://www.theses.fr/2014PEST1078.

Council of Science Editors:

Bonelle J. Opérateurs discrets compatibles pour la discrétisation sur maillages polyédriques des équations elliptiques et de Stokes : Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations. [Doctoral Dissertation]. Université Paris-Est; 2014. Available from: http://www.theses.fr/2014PEST1078


Australian National University

2. Bandara, Lashi. Geometry and the Kato square root problem .

Degree: 2013, Australian National University

 The primary focus of this thesis is to consider Kato square root problems for various divergence-form operators on manifolds. This is the study of perturbations… (more)

Subjects/Keywords: Kato square root problem; quadratic estimates; elliptic operator; Lipschitz estimates; essentially self-adjoint; vector bundle; measure metric space; bounded measurable coefficients; Hodge-Dirac operator

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bandara, L. (2013). Geometry and the Kato square root problem . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/10690

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bandara, Lashi. “Geometry and the Kato square root problem .” 2013. Thesis, Australian National University. Accessed February 28, 2020. http://hdl.handle.net/1885/10690.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bandara, Lashi. “Geometry and the Kato square root problem .” 2013. Web. 28 Feb 2020.

Vancouver:

Bandara L. Geometry and the Kato square root problem . [Internet] [Thesis]. Australian National University; 2013. [cited 2020 Feb 28]. Available from: http://hdl.handle.net/1885/10690.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bandara L. Geometry and the Kato square root problem . [Thesis]. Australian National University; 2013. Available from: http://hdl.handle.net/1885/10690

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Pnevmatikos, Nikolaos. Contributions à la théorie des jeux : valeur asymptotique des jeux dépendant de la fréquence et décompositions des jeux finis : Contributions in game theory : asymptotic value in frequency dependant games and decompositions of finite games.

Degree: Docteur es, Mathématiques appliquées, 2016, Paris 1

Les problèmes abordés et les résultats obtenus dans cette thèse se divisent en deux parties. La première concerne l'étude de la valeur asymptotique de jeux… (more)

Subjects/Keywords: Hamilton-Jacobi-Bellman-Isaacs equation; Jeux stochastiques; Jeux dépendant de la fréquence; Jeu à temps-continu; Décomposition de Helmholtz-Hodge; Opérateur gradient; Opérateur curl; Jeux harmoniques; Hamilton-Jacobi-Bellman-Isaacs equation; Stochastic games; Frequency-dependant payoffs; Continuous-time game; Helmholtz-Hodge decomposition; Gradient operator; Curl operator; Harmonic games; 519.3

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pnevmatikos, N. (2016). Contributions à la théorie des jeux : valeur asymptotique des jeux dépendant de la fréquence et décompositions des jeux finis : Contributions in game theory : asymptotic value in frequency dependant games and decompositions of finite games. (Doctoral Dissertation). Paris 1. Retrieved from http://www.theses.fr/2016PA01E026

Chicago Manual of Style (16th Edition):

Pnevmatikos, Nikolaos. “Contributions à la théorie des jeux : valeur asymptotique des jeux dépendant de la fréquence et décompositions des jeux finis : Contributions in game theory : asymptotic value in frequency dependant games and decompositions of finite games.” 2016. Doctoral Dissertation, Paris 1. Accessed February 28, 2020. http://www.theses.fr/2016PA01E026.

MLA Handbook (7th Edition):

Pnevmatikos, Nikolaos. “Contributions à la théorie des jeux : valeur asymptotique des jeux dépendant de la fréquence et décompositions des jeux finis : Contributions in game theory : asymptotic value in frequency dependant games and decompositions of finite games.” 2016. Web. 28 Feb 2020.

Vancouver:

Pnevmatikos N. Contributions à la théorie des jeux : valeur asymptotique des jeux dépendant de la fréquence et décompositions des jeux finis : Contributions in game theory : asymptotic value in frequency dependant games and decompositions of finite games. [Internet] [Doctoral dissertation]. Paris 1; 2016. [cited 2020 Feb 28]. Available from: http://www.theses.fr/2016PA01E026.

Council of Science Editors:

Pnevmatikos N. Contributions à la théorie des jeux : valeur asymptotique des jeux dépendant de la fréquence et décompositions des jeux finis : Contributions in game theory : asymptotic value in frequency dependant games and decompositions of finite games. [Doctoral Dissertation]. Paris 1; 2016. Available from: http://www.theses.fr/2016PA01E026

4. Gier, Megan E. EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT 2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS.

Degree: 2014, University of Kentucky

 In 1976, Uhlenbeck used transversality theory to show that for certain families of elliptic operators, the property of having only simple eigenvalues is generic. As… (more)

Subjects/Keywords: Hodge Laplacian; Beltrami operator; perturbation theory; eigenvalue multiplicities; geometric analysis; Analysis

…differential operator, the Hodge star operator, the codifferential operator, and the Hodge Laplacian… …x28;M ) and ω2 ∈ Λ (M ). The Hodge Star Operator When M is an n-dimensional… …between the two spaces. We call ∗g the Hodge star operator and include the subscript g to… …highlight the operator’s dependence on the metric. Definition 2.3.1. The Hodge star operator ∗g… …element of (M, g). Moreover, the Hodge star operator has the property that ∗g ∗g ω… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gier, M. E. (2014). EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT 2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/14

Chicago Manual of Style (16th Edition):

Gier, Megan E. “EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT 2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS.” 2014. Doctoral Dissertation, University of Kentucky. Accessed February 28, 2020. https://uknowledge.uky.edu/math_etds/14.

MLA Handbook (7th Edition):

Gier, Megan E. “EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT 2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS.” 2014. Web. 28 Feb 2020.

Vancouver:

Gier ME. EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT 2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS. [Internet] [Doctoral dissertation]. University of Kentucky; 2014. [cited 2020 Feb 28]. Available from: https://uknowledge.uky.edu/math_etds/14.

Council of Science Editors:

Gier ME. EIGENVALUE MULTIPLICITES OF THE HODGE LAPLACIAN ON COEXACT 2-FORMS FOR GENERIC METRICS ON 5-MANIFOLDS. [Doctoral Dissertation]. University of Kentucky; 2014. Available from: https://uknowledge.uky.edu/math_etds/14

5. Angoshtari, Arzhang. Geometric discretization schemes and differential complexes for elasticity.

Degree: PhD, Civil and Environmental Engineering, 2013, Georgia Tech

 In this research, we study two different geometric approaches, namely, the discrete exterior calculus and differential complexes, for developing numerical schemes for linear and nonlinear… (more)

Subjects/Keywords: Geometric numerical schemes; Elasticity complex; Nonlinear stress functions; Elasticity; Hodge theory; Differential equations, Partial.; Laplacian operator

…x29; where ∗ ∶ Ωk (M) → Ωn−k (M) is the Hodge star operator. The Hodge… …connections between linear and nonlinear elastostatics and the Hodge Laplacian, which can enable one… …to convert numerical schemes of the Hodge Laplacian to those for linear and possibly… …their derivations. In fact, the above formulation is closely related to the Hodge Laplacian… …discretization of the de Rham complex, they define the problem of the abstract Hodge Laplacian on a… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Angoshtari, A. (2013). Geometric discretization schemes and differential complexes for elasticity. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/49026

Chicago Manual of Style (16th Edition):

Angoshtari, Arzhang. “Geometric discretization schemes and differential complexes for elasticity.” 2013. Doctoral Dissertation, Georgia Tech. Accessed February 28, 2020. http://hdl.handle.net/1853/49026.

MLA Handbook (7th Edition):

Angoshtari, Arzhang. “Geometric discretization schemes and differential complexes for elasticity.” 2013. Web. 28 Feb 2020.

Vancouver:

Angoshtari A. Geometric discretization schemes and differential complexes for elasticity. [Internet] [Doctoral dissertation]. Georgia Tech; 2013. [cited 2020 Feb 28]. Available from: http://hdl.handle.net/1853/49026.

Council of Science Editors:

Angoshtari A. Geometric discretization schemes and differential complexes for elasticity. [Doctoral Dissertation]. Georgia Tech; 2013. Available from: http://hdl.handle.net/1853/49026


The Ohio State University

6. He, Bo. Compatible discretizations for Maxwell equations.

Degree: PhD, Electrical Engineering, 2006, The Ohio State University

  The main focus of this dissertation is the study and development of numerical techniques to solve Maxwell equations on irregular lattices. This is achieved… (more)

Subjects/Keywords: differential forms; chains and cochains; Whitney forms; de Rham diagram; gauging; compatible discretization; Hodge operator; Hodge decomposition; Euler's formula; FDTD; FEM; Galerkin duality; primal and dual; pure Neumann boundary condition; mixed FEM

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

He, B. (2006). Compatible discretizations for Maxwell equations. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1143171299

Chicago Manual of Style (16th Edition):

He, Bo. “Compatible discretizations for Maxwell equations.” 2006. Doctoral Dissertation, The Ohio State University. Accessed February 28, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1143171299.

MLA Handbook (7th Edition):

He, Bo. “Compatible discretizations for Maxwell equations.” 2006. Web. 28 Feb 2020.

Vancouver:

He B. Compatible discretizations for Maxwell equations. [Internet] [Doctoral dissertation]. The Ohio State University; 2006. [cited 2020 Feb 28]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1143171299.

Council of Science Editors:

He B. Compatible discretizations for Maxwell equations. [Doctoral Dissertation]. The Ohio State University; 2006. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1143171299

7. Kang, Jinwoo. Two Views on Gravity: F-Theory and Holography.

Degree: PhD, 2019, Harvard University

 We investigate two different views towards gravitational theories using mathematical frameworks. First, we study gravitational theories with supersymmetries in various dimensions from top-down approach via… (more)

Subjects/Keywords: Elliptic fibrations; resolutions of singularities; flop transitions; Weierstrass model; Tate’s algorithm; six-dimensional supergravity; five-dimensional supergravity; anomaly cancellation; Euler characteristic; F-Theory; M-Theory; gauge theory; singularity; Calabi-Yau; minimal model; Mordell-Weil group; Coulomb chambers; Hodge numbers; Characteristic numbers; holography; entanglement entropy; infinite-dimensional Hilbert space; von Neumann algebra; modular operator; tensor network; quantum error correcting code

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kang, J. (2019). Two Views on Gravity: F-Theory and Holography. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029691

Chicago Manual of Style (16th Edition):

Kang, Jinwoo. “Two Views on Gravity: F-Theory and Holography.” 2019. Doctoral Dissertation, Harvard University. Accessed February 28, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029691.

MLA Handbook (7th Edition):

Kang, Jinwoo. “Two Views on Gravity: F-Theory and Holography.” 2019. Web. 28 Feb 2020.

Vancouver:

Kang J. Two Views on Gravity: F-Theory and Holography. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2020 Feb 28]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029691.

Council of Science Editors:

Kang J. Two Views on Gravity: F-Theory and Holography. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029691


Australian National University

8. Axelsson, Andreas. Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces .

Degree: 2002, Australian National University

 The aim of this thesis is to give a mathematical framework for scattering of electromagnetic waves by rough surfaces. We prove that the Maxwell transmission… (more)

Subjects/Keywords: Dirac operator • Maxwell's equations • transmission problem • Hodge decomposition • Cauchy integral • double layer potential • Lipschitz surface • singular integral • Carleson measure • boundary integral method • oblique boundary value problem • Fredholm theory • exterior algebra • Clifford analysis • Rellich inequality • Banach algebra • projection operator • Toeplitz operator • Calderón projection

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Axelsson, A. (2002). Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces . (Thesis). Australian National University. Retrieved from http://hdl.handle.net/1885/46056

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Axelsson, Andreas. “Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces .” 2002. Thesis, Australian National University. Accessed February 28, 2020. http://hdl.handle.net/1885/46056.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Axelsson, Andreas. “Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces .” 2002. Web. 28 Feb 2020.

Vancouver:

Axelsson A. Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces . [Internet] [Thesis]. Australian National University; 2002. [cited 2020 Feb 28]. Available from: http://hdl.handle.net/1885/46056.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Axelsson A. Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces . [Thesis]. Australian National University; 2002. Available from: http://hdl.handle.net/1885/46056

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.