Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hochschild homology). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters

1. Chouhy, Sergio. Théorie des ambiguïtés pour les résolutions projectives d'algèbres associatives : Theory of ambiguities for projective resolutions of associative algebras.

Degree: Docteur es, Mathématiques et modélisation, 2015, Montpellier; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales (Buenos Aires)

Cette thèse s'intéresse au problème de calculer des résolutions projectives d'algèbres associatives. Notre point de départ est la résolution de Bardzell pour les algèbres monomiales.… (more)

Subjects/Keywords: Algèbre; Hochschild; Homologie; Algebra; Hochschild; Homology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chouhy, S. (2015). Théorie des ambiguïtés pour les résolutions projectives d'algèbres associatives : Theory of ambiguities for projective resolutions of associative algebras. (Doctoral Dissertation). Montpellier; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales (Buenos Aires). Retrieved from http://www.theses.fr/2015MONTS116

Chicago Manual of Style (16th Edition):

Chouhy, Sergio. “Théorie des ambiguïtés pour les résolutions projectives d'algèbres associatives : Theory of ambiguities for projective resolutions of associative algebras.” 2015. Doctoral Dissertation, Montpellier; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales (Buenos Aires). Accessed July 12, 2020. http://www.theses.fr/2015MONTS116.

MLA Handbook (7th Edition):

Chouhy, Sergio. “Théorie des ambiguïtés pour les résolutions projectives d'algèbres associatives : Theory of ambiguities for projective resolutions of associative algebras.” 2015. Web. 12 Jul 2020.

Vancouver:

Chouhy S. Théorie des ambiguïtés pour les résolutions projectives d'algèbres associatives : Theory of ambiguities for projective resolutions of associative algebras. [Internet] [Doctoral dissertation]. Montpellier; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales (Buenos Aires); 2015. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2015MONTS116.

Council of Science Editors:

Chouhy S. Théorie des ambiguïtés pour les résolutions projectives d'algèbres associatives : Theory of ambiguities for projective resolutions of associative algebras. [Doctoral Dissertation]. Montpellier; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales (Buenos Aires); 2015. Available from: http://www.theses.fr/2015MONTS116

2. Bou Daher, Rabih. Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras.

Degree: Docteur es, Mathématiques Fondamentales, 2017, Clermont Auvergne

Dans cette thèse, nous décrivons explicitement la structure multiplicative et la structure d’algèbre de Lie graduée sur la cohomologie de l’algèbre enveloppante d’une algèbre de… (more)

Subjects/Keywords: (Co)homologie de Hochschild; Produit cup; Produit cap; Algèbre de Gerstenhaber; Algèbre enveloppante; Hochschild (co)homology; Cup product; Cap product; Gerstenhaber algebra; Enveloping algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bou Daher, R. (2017). Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras. (Doctoral Dissertation). Clermont Auvergne. Retrieved from http://www.theses.fr/2017CLFAC039

Chicago Manual of Style (16th Edition):

Bou Daher, Rabih. “Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras.” 2017. Doctoral Dissertation, Clermont Auvergne. Accessed July 12, 2020. http://www.theses.fr/2017CLFAC039.

MLA Handbook (7th Edition):

Bou Daher, Rabih. “Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras.” 2017. Web. 12 Jul 2020.

Vancouver:

Bou Daher R. Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras. [Internet] [Doctoral dissertation]. Clermont Auvergne; 2017. [cited 2020 Jul 12]. Available from: http://www.theses.fr/2017CLFAC039.

Council of Science Editors:

Bou Daher R. Crochet de Gerstenhaber pour les algèbres enveloppantes d'algèbres de Lie de dimension finie : Gerstenhaber bracket for the enveloping algebras of finite-dimensional Lie algebras. [Doctoral Dissertation]. Clermont Auvergne; 2017. Available from: http://www.theses.fr/2017CLFAC039


University of Illinois – Chicago

3. Lombardi, Luigi. Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers.

Degree: 2013, University of Illinois – Chicago

 We study derived equivalences of smooth projective irregular varieties. More specifically, as suggested by a conjecture of Popa, we investigate the behavior of cohomological support… (more)

Subjects/Keywords: Derived Categories; Equivalences; Non-vanishing Loci; Irregular Varieties; Picard Variety; Hodge Numbers; Derivative Complex; Hochschild homology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lombardi, L. (2013). Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/10294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lombardi, Luigi. “Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers.” 2013. Thesis, University of Illinois – Chicago. Accessed July 12, 2020. http://hdl.handle.net/10027/10294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lombardi, Luigi. “Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers.” 2013. Web. 12 Jul 2020.

Vancouver:

Lombardi L. Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers. [Internet] [Thesis]. University of Illinois – Chicago; 2013. [cited 2020 Jul 12]. Available from: http://hdl.handle.net/10027/10294.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lombardi L. Derived Equivalences of Irregular Varieties and Constraints on Hodge Numbers. [Thesis]. University of Illinois – Chicago; 2013. Available from: http://hdl.handle.net/10027/10294

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Texas – Austin

4. Sulyma, Yuri John Fraser. Equivariant aspects of topological Hochschild homology.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

 We study two invariants of topological Hochschild homology coming from equivariant homotopy theory: its RO(C [subscript p superscript n])-graded homotopy Mackey functors, and the regular… (more)

Subjects/Keywords: Arithmetic geometry; Homotopy theory; Topological Hochschild homology; Prismatic cohomology; Slice filtration; Equivariant homotopy theory; Number theory; Algebraic topology; Witt vectors

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sulyma, Y. J. F. (2019). Equivariant aspects of topological Hochschild homology. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5788

Chicago Manual of Style (16th Edition):

Sulyma, Yuri John Fraser. “Equivariant aspects of topological Hochschild homology.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed July 12, 2020. http://dx.doi.org/10.26153/tsw/5788.

MLA Handbook (7th Edition):

Sulyma, Yuri John Fraser. “Equivariant aspects of topological Hochschild homology.” 2019. Web. 12 Jul 2020.

Vancouver:

Sulyma YJF. Equivariant aspects of topological Hochschild homology. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2020 Jul 12]. Available from: http://dx.doi.org/10.26153/tsw/5788.

Council of Science Editors:

Sulyma YJF. Equivariant aspects of topological Hochschild homology. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5788


Penn State University

5. Dave, Shantanu. Equivariant Noncommutative Residue and an Equivarirant Weyl's Theorem.

Degree: PhD, Mathematics, 2005, Penn State University

 Let M be a smooth, compact manifold acted upon smoothly by a group Γ. The first objective of this thesis is to study the action… (more)

Subjects/Keywords: noncommutative geometry; Hochschild and cyclic homology; noncommutative residue; Pseudodifferential operators; Algebras of complete symbols; eigenvalue asymtotics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dave, S. (2005). Equivariant Noncommutative Residue and an Equivarirant Weyl's Theorem. (Doctoral Dissertation). Penn State University. Retrieved from https://etda.libraries.psu.edu/catalog/6765

Chicago Manual of Style (16th Edition):

Dave, Shantanu. “Equivariant Noncommutative Residue and an Equivarirant Weyl's Theorem.” 2005. Doctoral Dissertation, Penn State University. Accessed July 12, 2020. https://etda.libraries.psu.edu/catalog/6765.

MLA Handbook (7th Edition):

Dave, Shantanu. “Equivariant Noncommutative Residue and an Equivarirant Weyl's Theorem.” 2005. Web. 12 Jul 2020.

Vancouver:

Dave S. Equivariant Noncommutative Residue and an Equivarirant Weyl's Theorem. [Internet] [Doctoral dissertation]. Penn State University; 2005. [cited 2020 Jul 12]. Available from: https://etda.libraries.psu.edu/catalog/6765.

Council of Science Editors:

Dave S. Equivariant Noncommutative Residue and an Equivarirant Weyl's Theorem. [Doctoral Dissertation]. Penn State University; 2005. Available from: https://etda.libraries.psu.edu/catalog/6765

6. Angelini-Knoll, Gabriel. Periodicity In Iterated Algebraic K-Theory Of Finite Fields.

Degree: PhD, Mathematics, 2017, Wayne State University

  In this dissertation, we study the interactions between periodic phenomena in the homotopy groups of spheres and algebraic K-theory of ring spectra. C. Ausoni… (more)

Subjects/Keywords: Algebraic K-theory; Homotopy theory; topological Hochschild homology; Mathematics; Physical Sciences and Mathematics

…by the simplicial circle [45]. Topological Hochschild homology is a linear… …refinements of topological Hochschild homology using the extra structure that it has. In particular… …iterated algebraic K-theory of finite fields, topological Hochschild homology, and then compute… …enough of the homotopy fixed points of topological Hochschild homology to detect periodic… …sequence in higher order topological Hochschild homology associated to filtered commutative ring… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Angelini-Knoll, G. (2017). Periodicity In Iterated Algebraic K-Theory Of Finite Fields. (Doctoral Dissertation). Wayne State University. Retrieved from https://digitalcommons.wayne.edu/oa_dissertations/1778

Chicago Manual of Style (16th Edition):

Angelini-Knoll, Gabriel. “Periodicity In Iterated Algebraic K-Theory Of Finite Fields.” 2017. Doctoral Dissertation, Wayne State University. Accessed July 12, 2020. https://digitalcommons.wayne.edu/oa_dissertations/1778.

MLA Handbook (7th Edition):

Angelini-Knoll, Gabriel. “Periodicity In Iterated Algebraic K-Theory Of Finite Fields.” 2017. Web. 12 Jul 2020.

Vancouver:

Angelini-Knoll G. Periodicity In Iterated Algebraic K-Theory Of Finite Fields. [Internet] [Doctoral dissertation]. Wayne State University; 2017. [cited 2020 Jul 12]. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1778.

Council of Science Editors:

Angelini-Knoll G. Periodicity In Iterated Algebraic K-Theory Of Finite Fields. [Doctoral Dissertation]. Wayne State University; 2017. Available from: https://digitalcommons.wayne.edu/oa_dissertations/1778

.