Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hochschild cohomology). Showing records 1 – 17 of 17 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Texas A&M University

1. Grimley, Lauren Elizabeth. Brackets on Hochschild cohomology of Noncommutative Algebras.

Degree: PhD, Mathematics, 2016, Texas A&M University

 The Hochschild cohomology of an associative algebra is a Gerstenhaber algebra, having a graded ring structure given by the cup product and a compatible graded… (more)

Subjects/Keywords: Hochschild cohomology; Lie bracket

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grimley, L. E. (2016). Brackets on Hochschild cohomology of Noncommutative Algebras. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/156975

Chicago Manual of Style (16th Edition):

Grimley, Lauren Elizabeth. “Brackets on Hochschild cohomology of Noncommutative Algebras.” 2016. Doctoral Dissertation, Texas A&M University. Accessed September 28, 2020. http://hdl.handle.net/1969.1/156975.

MLA Handbook (7th Edition):

Grimley, Lauren Elizabeth. “Brackets on Hochschild cohomology of Noncommutative Algebras.” 2016. Web. 28 Sep 2020.

Vancouver:

Grimley LE. Brackets on Hochschild cohomology of Noncommutative Algebras. [Internet] [Doctoral dissertation]. Texas A&M University; 2016. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1969.1/156975.

Council of Science Editors:

Grimley LE. Brackets on Hochschild cohomology of Noncommutative Algebras. [Doctoral Dissertation]. Texas A&M University; 2016. Available from: http://hdl.handle.net/1969.1/156975


University of North Texas

2. Foster-Greenwood, Briana A. Hochschild Cohomology and Complex Reflection Groups.

Degree: 2012, University of North Texas

 A concrete description of Hochschild cohomology is the first step toward exploring associative deformations of algebras. In this dissertation, deformation theory, geometry, combinatorics, invariant theory,… (more)

Subjects/Keywords: Reflection groups; Hochschild cohomology; skew group algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Foster-Greenwood, B. A. (2012). Hochschild Cohomology and Complex Reflection Groups. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc149591/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Foster-Greenwood, Briana A. “Hochschild Cohomology and Complex Reflection Groups.” 2012. Thesis, University of North Texas. Accessed September 28, 2020. https://digital.library.unt.edu/ark:/67531/metadc149591/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Foster-Greenwood, Briana A. “Hochschild Cohomology and Complex Reflection Groups.” 2012. Web. 28 Sep 2020.

Vancouver:

Foster-Greenwood BA. Hochschild Cohomology and Complex Reflection Groups. [Internet] [Thesis]. University of North Texas; 2012. [cited 2020 Sep 28]. Available from: https://digital.library.unt.edu/ark:/67531/metadc149591/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Foster-Greenwood BA. Hochschild Cohomology and Complex Reflection Groups. [Thesis]. University of North Texas; 2012. Available from: https://digital.library.unt.edu/ark:/67531/metadc149591/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

3. Armenta Armenta, Marco. Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra : Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre associative.

Degree: Docteur es, Mathématiques et modélisation, 2019, Montpellier; Centro de Investigación en Matemáticas, A.C.

Dans cette thèse nous démontrons que le calcul de Tamarkin-Tsygan d’une algèbre `associative de dimension finie sur un corps est un invariant dérivé. En d’autres… (more)

Subjects/Keywords: Cohomologie; Algèbre; Hochschild; Tamarkin-Tsygan; Invariant dérivée; Cohomology; Algebra; Hochschild; Tamarkin-Tsygan; Derived invariant

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Armenta Armenta, M. (2019). Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra : Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre associative. (Doctoral Dissertation). Montpellier; Centro de Investigación en Matemáticas, A.C. Retrieved from http://www.theses.fr/2019MONTS037

Chicago Manual of Style (16th Edition):

Armenta Armenta, Marco. “Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra : Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre associative.” 2019. Doctoral Dissertation, Montpellier; Centro de Investigación en Matemáticas, A.C. Accessed September 28, 2020. http://www.theses.fr/2019MONTS037.

MLA Handbook (7th Edition):

Armenta Armenta, Marco. “Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra : Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre associative.” 2019. Web. 28 Sep 2020.

Vancouver:

Armenta Armenta M. Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra : Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre associative. [Internet] [Doctoral dissertation]. Montpellier; Centro de Investigación en Matemáticas, A.C.; 2019. [cited 2020 Sep 28]. Available from: http://www.theses.fr/2019MONTS037.

Council of Science Editors:

Armenta Armenta M. Derived Invariance of the Tamarkin-Tsygan Calculus of an Associative Algebra : Invariance dérivée du calcul de Tamarkin-Tsygan d'une algèbre associative. [Doctoral Dissertation]. Montpellier; Centro de Investigación en Matemáticas, A.C.; 2019. Available from: http://www.theses.fr/2019MONTS037


University of Colorado

4. Belcher, Jonathan Adam. Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies.

Degree: PhD, 2019, University of Colorado

 The connection between Hochschild and cyclic cohomologies with generalized De Rham homology and index theories for arbitrary algebras has long been established by the work… (more)

Subjects/Keywords: cyclic cohomology; global analysis; hochschild cohomology; manifolds with boundary; Geometry and Topology; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Belcher, J. A. (2019). Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/69

Chicago Manual of Style (16th Edition):

Belcher, Jonathan Adam. “Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies.” 2019. Doctoral Dissertation, University of Colorado. Accessed September 28, 2020. https://scholar.colorado.edu/math_gradetds/69.

MLA Handbook (7th Edition):

Belcher, Jonathan Adam. “Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies.” 2019. Web. 28 Sep 2020.

Vancouver:

Belcher JA. Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies. [Internet] [Doctoral dissertation]. University of Colorado; 2019. [cited 2020 Sep 28]. Available from: https://scholar.colorado.edu/math_gradetds/69.

Council of Science Editors:

Belcher JA. Bridge Cohomology: a Generalization of Hochschild and Cyclic Cohomologies. [Doctoral Dissertation]. University of Colorado; 2019. Available from: https://scholar.colorado.edu/math_gradetds/69


Freie Universität Berlin

5. Filip, Matej. Nichtkommutative Deformationen torischer Varietäten.

Degree: 2018, Freie Universität Berlin

 In dieser Arbeit untersuchen wir die Hochschild Kohomologiegruppen affiner torischer Varietäten und ihre Anwendung in der Deformationsquantisierung und kommutativen Deformationstheorie. Unter bestimmten Annahmen berechnen wir… (more)

Subjects/Keywords: Deformation quantization; Hochschild cohomology; toric singularities; 500 Naturwissenschaften und Mathematik::510 Mathematik::516 Geometrie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Filip, M. (2018). Nichtkommutative Deformationen torischer Varietäten. (Thesis). Freie Universität Berlin. Retrieved from http://dx.doi.org/10.17169/refubium-995

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Filip, Matej. “Nichtkommutative Deformationen torischer Varietäten.” 2018. Thesis, Freie Universität Berlin. Accessed September 28, 2020. http://dx.doi.org/10.17169/refubium-995.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Filip, Matej. “Nichtkommutative Deformationen torischer Varietäten.” 2018. Web. 28 Sep 2020.

Vancouver:

Filip M. Nichtkommutative Deformationen torischer Varietäten. [Internet] [Thesis]. Freie Universität Berlin; 2018. [cited 2020 Sep 28]. Available from: http://dx.doi.org/10.17169/refubium-995.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Filip M. Nichtkommutative Deformationen torischer Varietäten. [Thesis]. Freie Universität Berlin; 2018. Available from: http://dx.doi.org/10.17169/refubium-995

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Nghia, Tran Thi Hieu. Hochschild (co)homology of two families of complete intersections.

Degree: 2020, NUI Galway

 The thesis presents the original results on a description of the ring structure in terms of generators and relations of the Hochschild cohomology of the… (more)

Subjects/Keywords: Hochschild cohomology; Yoneda product; Hilbert series; Mathematics, Statistics and Applied Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nghia, T. T. H. (2020). Hochschild (co)homology of two families of complete intersections. (Thesis). NUI Galway. Retrieved from http://hdl.handle.net/10379/15681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Nghia, Tran Thi Hieu. “Hochschild (co)homology of two families of complete intersections.” 2020. Thesis, NUI Galway. Accessed September 28, 2020. http://hdl.handle.net/10379/15681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Nghia, Tran Thi Hieu. “Hochschild (co)homology of two families of complete intersections.” 2020. Web. 28 Sep 2020.

Vancouver:

Nghia TTH. Hochschild (co)homology of two families of complete intersections. [Internet] [Thesis]. NUI Galway; 2020. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/10379/15681.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nghia TTH. Hochschild (co)homology of two families of complete intersections. [Thesis]. NUI Galway; 2020. Available from: http://hdl.handle.net/10379/15681

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

7. Briggs, Benjamin Peter. Local Commutative Algebra and Hochschild Cohomology Through the Lens of Koszul Duality.

Degree: PhD, 2018, University of Toronto

 This thesis splits into two halves, the connecting theme being Koszul duality. The first part concerns local commutative algebra. Koszul duality here manifests in the… (more)

Subjects/Keywords: Hochschild cohomology; Homotopy Lie Algebra; Koszul Duality; LS category; Mapping Theorem; Minimal models; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Briggs, B. P. (2018). Local Commutative Algebra and Hochschild Cohomology Through the Lens of Koszul Duality. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/91805

Chicago Manual of Style (16th Edition):

Briggs, Benjamin Peter. “Local Commutative Algebra and Hochschild Cohomology Through the Lens of Koszul Duality.” 2018. Doctoral Dissertation, University of Toronto. Accessed September 28, 2020. http://hdl.handle.net/1807/91805.

MLA Handbook (7th Edition):

Briggs, Benjamin Peter. “Local Commutative Algebra and Hochschild Cohomology Through the Lens of Koszul Duality.” 2018. Web. 28 Sep 2020.

Vancouver:

Briggs BP. Local Commutative Algebra and Hochschild Cohomology Through the Lens of Koszul Duality. [Internet] [Doctoral dissertation]. University of Toronto; 2018. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1807/91805.

Council of Science Editors:

Briggs BP. Local Commutative Algebra and Hochschild Cohomology Through the Lens of Koszul Duality. [Doctoral Dissertation]. University of Toronto; 2018. Available from: http://hdl.handle.net/1807/91805


Texas A&M University

8. Shakalli Tang, Jeanette. Deformations of Quantum Symmetric Algebras Extended by Groups.

Degree: PhD, Mathematics, 2012, Texas A&M University

 The study of deformations of an algebra has been a topic of interest for quite some time, since it allows us to not only produce… (more)

Subjects/Keywords: algebraic deformation theory; Hopf algebras; Hopf module algebras; quantum symmetric algebras; smash product algebras; Hochschild cohomology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shakalli Tang, J. (2012). Deformations of Quantum Symmetric Algebras Extended by Groups. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10855

Chicago Manual of Style (16th Edition):

Shakalli Tang, Jeanette. “Deformations of Quantum Symmetric Algebras Extended by Groups.” 2012. Doctoral Dissertation, Texas A&M University. Accessed September 28, 2020. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10855.

MLA Handbook (7th Edition):

Shakalli Tang, Jeanette. “Deformations of Quantum Symmetric Algebras Extended by Groups.” 2012. Web. 28 Sep 2020.

Vancouver:

Shakalli Tang J. Deformations of Quantum Symmetric Algebras Extended by Groups. [Internet] [Doctoral dissertation]. Texas A&M University; 2012. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10855.

Council of Science Editors:

Shakalli Tang J. Deformations of Quantum Symmetric Algebras Extended by Groups. [Doctoral Dissertation]. Texas A&M University; 2012. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-10855


University of Texas – Austin

9. Sulyma, Yuri John Fraser. Equivariant aspects of topological Hochschild homology.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

 We study two invariants of topological Hochschild homology coming from equivariant homotopy theory: its RO(C [subscript p superscript n])-graded homotopy Mackey functors, and the regular… (more)

Subjects/Keywords: Arithmetic geometry; Homotopy theory; Topological Hochschild homology; Prismatic cohomology; Slice filtration; Equivariant homotopy theory; Number theory; Algebraic topology; Witt vectors

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sulyma, Y. J. F. (2019). Equivariant aspects of topological Hochschild homology. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/5788

Chicago Manual of Style (16th Edition):

Sulyma, Yuri John Fraser. “Equivariant aspects of topological Hochschild homology.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed September 28, 2020. http://dx.doi.org/10.26153/tsw/5788.

MLA Handbook (7th Edition):

Sulyma, Yuri John Fraser. “Equivariant aspects of topological Hochschild homology.” 2019. Web. 28 Sep 2020.

Vancouver:

Sulyma YJF. Equivariant aspects of topological Hochschild homology. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2020 Sep 28]. Available from: http://dx.doi.org/10.26153/tsw/5788.

Council of Science Editors:

Sulyma YJF. Equivariant aspects of topological Hochschild homology. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/5788


Texas A&M University

10. Husain, Ali-Amir. On the cohomology of joins of operator algebras.

Degree: PhD, Mathematics, 2004, Texas A&M University

 The algebra of matrices M with entries in an abelian von Neumann algebra is a C*-module. C*-modules were originally defined and studied by Kaplansky and… (more)

Subjects/Keywords: operator algebras; Hochschild cohomology; type I finite von Neumann algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Husain, A. (2004). On the cohomology of joins of operator algebras. (Doctoral Dissertation). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/377

Chicago Manual of Style (16th Edition):

Husain, Ali-Amir. “On the cohomology of joins of operator algebras.” 2004. Doctoral Dissertation, Texas A&M University. Accessed September 28, 2020. http://hdl.handle.net/1969.1/377.

MLA Handbook (7th Edition):

Husain, Ali-Amir. “On the cohomology of joins of operator algebras.” 2004. Web. 28 Sep 2020.

Vancouver:

Husain A. On the cohomology of joins of operator algebras. [Internet] [Doctoral dissertation]. Texas A&M University; 2004. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1969.1/377.

Council of Science Editors:

Husain A. On the cohomology of joins of operator algebras. [Doctoral Dissertation]. Texas A&M University; 2004. Available from: http://hdl.handle.net/1969.1/377


Indian Institute of Science

11. Kabiraj, Arpan. Goldman Bracket : Center, Geometric Intersection Number & Length Equivalent Curves.

Degree: PhD, Faculty of Science, 2017, Indian Institute of Science

 Goldman [Gol86] introduced a Lie algebra structure on the free vector space generated by the free homotopy classes of oriented closed curves in any orientable… (more)

Subjects/Keywords: Lie Algebra Structure; Vector Spaces; Curves on Oriented Spaces; Length Equivalent Curves; Goldman Lie Algebra; Goldman Bracket; Hochschild Cohomology; Hyperbolic Geometry; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kabiraj, A. (2017). Goldman Bracket : Center, Geometric Intersection Number & Length Equivalent Curves. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2838

Chicago Manual of Style (16th Edition):

Kabiraj, Arpan. “Goldman Bracket : Center, Geometric Intersection Number & Length Equivalent Curves.” 2017. Doctoral Dissertation, Indian Institute of Science. Accessed September 28, 2020. http://etd.iisc.ac.in/handle/2005/2838.

MLA Handbook (7th Edition):

Kabiraj, Arpan. “Goldman Bracket : Center, Geometric Intersection Number & Length Equivalent Curves.” 2017. Web. 28 Sep 2020.

Vancouver:

Kabiraj A. Goldman Bracket : Center, Geometric Intersection Number & Length Equivalent Curves. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2017. [cited 2020 Sep 28]. Available from: http://etd.iisc.ac.in/handle/2005/2838.

Council of Science Editors:

Kabiraj A. Goldman Bracket : Center, Geometric Intersection Number & Length Equivalent Curves. [Doctoral Dissertation]. Indian Institute of Science; 2017. Available from: http://etd.iisc.ac.in/handle/2005/2838

12. Fisette, Robert. The A-infinity Algebra of a Curve and the J-invariant.

Degree: 2012, University of Oregon

 We choose a generator G of the derived category of coherent sheaves on a smooth curve X of genus g which corresponds to a choice… (more)

Subjects/Keywords: A-infinity; Curve; Elliptic curve; Hochschild cohomology; j-invariant

…certain components of the Hochschild cohomology of B. The specifics of this relationship are… …x29; (B) be the Hochschild cohomology of B in dimension n for maps of homon… …Hochschild cohomology for the associative algebra n B g . The result in Theorem V.4.10 shows that… …suitable reference could not be found. II.1. Reduced Hochschild cohomology Let K be a field, B… …complex is the Hochschild cohomology of B with coefficients in M , denoted HH • (B, M )… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fisette, R. (2012). The A-infinity Algebra of a Curve and the J-invariant. (Thesis). University of Oregon. Retrieved from http://hdl.handle.net/1794/12368

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Fisette, Robert. “The A-infinity Algebra of a Curve and the J-invariant.” 2012. Thesis, University of Oregon. Accessed September 28, 2020. http://hdl.handle.net/1794/12368.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Fisette, Robert. “The A-infinity Algebra of a Curve and the J-invariant.” 2012. Web. 28 Sep 2020.

Vancouver:

Fisette R. The A-infinity Algebra of a Curve and the J-invariant. [Internet] [Thesis]. University of Oregon; 2012. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1794/12368.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Fisette R. The A-infinity Algebra of a Curve and the J-invariant. [Thesis]. University of Oregon; 2012. Available from: http://hdl.handle.net/1794/12368

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Wang, Zhengfang. Equivalence singulière à la Morita et la cohomologie de Hochschild singulière : Singular equivalence of Morita type and singular Hochschild cohomology.

Degree: Docteur es, Mathématiques. Groupes, représentations et géométrie, 2016, Sorbonne Paris Cité

L’objet de cette thèse est l’étude des catégories singulières des k-algèbres associatives surun anneau commutatif k. On développe la théorie de Morita pour les catégories… (more)

Subjects/Keywords: Algèbre associative; Catégorie singulière; Cohomologie de Hochschild singulière; Algèbre de Gerstenhaber; Équivalence singulière à la Morita; Conjecture de Deligne; Associative algebra; Singular category; Singular Hochschild cohomology; Gerstenhaber algebra; Singular equivalence of Morita; Deligne Conjecture

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Z. (2016). Equivalence singulière à la Morita et la cohomologie de Hochschild singulière : Singular equivalence of Morita type and singular Hochschild cohomology. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2016USPCC203

Chicago Manual of Style (16th Edition):

Wang, Zhengfang. “Equivalence singulière à la Morita et la cohomologie de Hochschild singulière : Singular equivalence of Morita type and singular Hochschild cohomology.” 2016. Doctoral Dissertation, Sorbonne Paris Cité. Accessed September 28, 2020. http://www.theses.fr/2016USPCC203.

MLA Handbook (7th Edition):

Wang, Zhengfang. “Equivalence singulière à la Morita et la cohomologie de Hochschild singulière : Singular equivalence of Morita type and singular Hochschild cohomology.” 2016. Web. 28 Sep 2020.

Vancouver:

Wang Z. Equivalence singulière à la Morita et la cohomologie de Hochschild singulière : Singular equivalence of Morita type and singular Hochschild cohomology. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2016. [cited 2020 Sep 28]. Available from: http://www.theses.fr/2016USPCC203.

Council of Science Editors:

Wang Z. Equivalence singulière à la Morita et la cohomologie de Hochschild singulière : Singular equivalence of Morita type and singular Hochschild cohomology. [Doctoral Dissertation]. Sorbonne Paris Cité; 2016. Available from: http://www.theses.fr/2016USPCC203

14. Laubacher, Jacob C. Secondary Hochschild and Cyclic (Co)homologies.

Degree: PhD, Mathematics, 2017, Bowling Green State University

Hochschild cohomology was originally introduced in 1945. Much more recently in 2013 a generalization of this theory, the secondary Hochschild cohomology, was brought to light.… (more)

Subjects/Keywords: Mathematics; homological algebra; deformation theory; associative rings and algebras; Hochschild cohomology; cyclic cohomology

…secondary Hochschild cohomology of the triple (A, B, ε) with coefficients in M in [… …x28;(A, B, ε); M ) and is called the secondary Hochschild cohomology of the… …triple (A, B, ε) with coefficients in M . The secondary Hochschild cohomology is used… …higher order Hochschild cohomology, cup and bracket products (establishing a Gerstenhaber… …Hochschild cohomology. 3 Here is a short summary of the results in this dissertation. Chapter 2… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Laubacher, J. C. (2017). Secondary Hochschild and Cyclic (Co)homologies. (Doctoral Dissertation). Bowling Green State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758

Chicago Manual of Style (16th Edition):

Laubacher, Jacob C. “Secondary Hochschild and Cyclic (Co)homologies.” 2017. Doctoral Dissertation, Bowling Green State University. Accessed September 28, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758.

MLA Handbook (7th Edition):

Laubacher, Jacob C. “Secondary Hochschild and Cyclic (Co)homologies.” 2017. Web. 28 Sep 2020.

Vancouver:

Laubacher JC. Secondary Hochschild and Cyclic (Co)homologies. [Internet] [Doctoral dissertation]. Bowling Green State University; 2017. [cited 2020 Sep 28]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758.

Council of Science Editors:

Laubacher JC. Secondary Hochschild and Cyclic (Co)homologies. [Doctoral Dissertation]. Bowling Green State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1489422065908758


Université du Luxembourg

15. Gohr, Aron Samuel. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.

Degree: 2009, Université du Luxembourg

 The main topic under study in the present work is the deformation theory of color algebras. Color algebras are generalized analogues of associative superalgebras, where… (more)

Subjects/Keywords: Color-commutative algebra; Deformation theory; Hochschild cohomology; Harrison cohomology; Noncommutative deformations; Physical, chemical, mathematical & earth Sciences :: Mathematics [G03]; Physique, chimie, mathématiques & sciences de la terre :: Mathématiques [G03]

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gohr, A. S. (2009). On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. (Doctoral Dissertation). Université du Luxembourg. Retrieved from http://orbilu.uni.lu/handle/10993/15594

Chicago Manual of Style (16th Edition):

Gohr, Aron Samuel. “On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.” 2009. Doctoral Dissertation, Université du Luxembourg. Accessed September 28, 2020. http://orbilu.uni.lu/handle/10993/15594.

MLA Handbook (7th Edition):

Gohr, Aron Samuel. “On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness.” 2009. Web. 28 Sep 2020.

Vancouver:

Gohr AS. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. [Internet] [Doctoral dissertation]. Université du Luxembourg; 2009. [cited 2020 Sep 28]. Available from: http://orbilu.uni.lu/handle/10993/15594.

Council of Science Editors:

Gohr AS. On noncommutative deformations, cohomology of color-commutative algebras and formal smoothness. [Doctoral Dissertation]. Université du Luxembourg; 2009. Available from: http://orbilu.uni.lu/handle/10993/15594

16. Butin, Frédéric. Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations : Poisson Structures on Polynomial Algebras, Cohomology and Deformations.

Degree: Docteur es, Mathématiques, 2009, Université Claude Bernard – Lyon I

La quantification par déformation et la correspondance de McKay forment les grands thèmes de l'étude qui porte sur des variétés algébriques singulières, des quotients d'algèbres… (more)

Subjects/Keywords: Cohomologie de poisson; Cohomologie de Hochschild; Quantification par déformation; Correspondance de McKay; Variétés algébriques singulières; Théorie des Représentations; Théorie des invariants; Calcul formel; Poisson Cohomology; Hochschild Cohomology; Deformation Quantization; McKay Correspondence; Singular Algebraic Varieties; Representation Theory; Invariant Theory; Formal Calculation; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Butin, F. (2009). Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations : Poisson Structures on Polynomial Algebras, Cohomology and Deformations. (Doctoral Dissertation). Université Claude Bernard – Lyon I. Retrieved from http://www.theses.fr/2009LYO10192

Chicago Manual of Style (16th Edition):

Butin, Frédéric. “Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations : Poisson Structures on Polynomial Algebras, Cohomology and Deformations.” 2009. Doctoral Dissertation, Université Claude Bernard – Lyon I. Accessed September 28, 2020. http://www.theses.fr/2009LYO10192.

MLA Handbook (7th Edition):

Butin, Frédéric. “Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations : Poisson Structures on Polynomial Algebras, Cohomology and Deformations.” 2009. Web. 28 Sep 2020.

Vancouver:

Butin F. Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations : Poisson Structures on Polynomial Algebras, Cohomology and Deformations. [Internet] [Doctoral dissertation]. Université Claude Bernard – Lyon I; 2009. [cited 2020 Sep 28]. Available from: http://www.theses.fr/2009LYO10192.

Council of Science Editors:

Butin F. Structures de Poisson sur les Algèbres de Polynômes, Cohomologie et Déformations : Poisson Structures on Polynomial Algebras, Cohomology and Deformations. [Doctoral Dissertation]. Université Claude Bernard – Lyon I; 2009. Available from: http://www.theses.fr/2009LYO10192


Université de Montréal

17. Kratsios, Anastasis. Bounding The Hochschild Cohomological Dimension.

Degree: 2015, Université de Montréal

Subjects/Keywords: Relative Homological Algebra; Dimension Theory; Noncommutative Geometry; Hochschild Cohomology; Noncommutative Algebra; Algebraic Geometry; Homological Algebra; Algèbre homologique; Géométrie Algébrique; Noncommutative Differential Forms; Mathematics / Mathématiques (UMI : 0405)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kratsios, A. (2015). Bounding The Hochschild Cohomological Dimension. (Thesis). Université de Montréal. Retrieved from http://hdl.handle.net/1866/12814

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kratsios, Anastasis. “Bounding The Hochschild Cohomological Dimension.” 2015. Thesis, Université de Montréal. Accessed September 28, 2020. http://hdl.handle.net/1866/12814.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kratsios, Anastasis. “Bounding The Hochschild Cohomological Dimension.” 2015. Web. 28 Sep 2020.

Vancouver:

Kratsios A. Bounding The Hochschild Cohomological Dimension. [Internet] [Thesis]. Université de Montréal; 2015. [cited 2020 Sep 28]. Available from: http://hdl.handle.net/1866/12814.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kratsios A. Bounding The Hochschild Cohomological Dimension. [Thesis]. Université de Montréal; 2015. Available from: http://hdl.handle.net/1866/12814

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.