Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hilbert Polynomials). Showing records 1 – 17 of 17 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


IUPUI

1. Barhoumi, Ahmad. Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces.

Degree: 2020, IUPUI

Indiana University-Purdue University Indianapolis (IUPUI)

We consider orthogonal polynomials Pn satisfying orthogonality relations where the measure of orthogonality is, in general, a complex-valued Borel measure… (more)

Subjects/Keywords: Orthogonal Polynomials; Padé Approximants; Riemann–Hilbert Problem

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barhoumi, A. (2020). Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/23029

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Barhoumi, Ahmad. “Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces.” 2020. Thesis, IUPUI. Accessed October 24, 2020. http://hdl.handle.net/1805/23029.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Barhoumi, Ahmad. “Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces.” 2020. Web. 24 Oct 2020.

Vancouver:

Barhoumi A. Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces. [Internet] [Thesis]. IUPUI; 2020. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1805/23029.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Barhoumi A. Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces. [Thesis]. IUPUI; 2020. Available from: http://hdl.handle.net/1805/23029

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Kentucky

2. Moore, Dennis. HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS.

Degree: 2012, University of Kentucky

 Strongly stable ideals are important in algebraic geometry, commutative algebra, and combinatorics. Prompted, for example, by combinatorial approaches for studying Hilbert schemes and the existence… (more)

Subjects/Keywords: Strongly Stable Ideals; Hilbert Functions; Hilbert Polynomials; Betti Numbers; Lexsegment Ideals; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Moore, D. (2012). HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/2

Chicago Manual of Style (16th Edition):

Moore, Dennis. “HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS.” 2012. Doctoral Dissertation, University of Kentucky. Accessed October 24, 2020. https://uknowledge.uky.edu/math_etds/2.

MLA Handbook (7th Edition):

Moore, Dennis. “HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS.” 2012. Web. 24 Oct 2020.

Vancouver:

Moore D. HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS. [Internet] [Doctoral dissertation]. University of Kentucky; 2012. [cited 2020 Oct 24]. Available from: https://uknowledge.uky.edu/math_etds/2.

Council of Science Editors:

Moore D. HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS. [Doctoral Dissertation]. University of Kentucky; 2012. Available from: https://uknowledge.uky.edu/math_etds/2


IUPUI

3. Liechty, Karl Edmund. Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice.

Degree: 2011, IUPUI

Indiana University-Purdue University Indianapolis (IUPUI)

In this dissertation the partition function, Zn, for the six-vertex model with domain wall boundary conditions is solved in the… (more)

Subjects/Keywords: Statistical Mechanics, Random Matrices, Orthogonal Polynomials, Asymptotics, Riemann-Hilbert Problems; Statistical mechanics; Random matrices; Orthogonal polynomials; Riemann-Hilbert problems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liechty, K. E. (2011). Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/2482

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Liechty, Karl Edmund. “Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice.” 2011. Thesis, IUPUI. Accessed October 24, 2020. http://hdl.handle.net/1805/2482.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Liechty, Karl Edmund. “Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice.” 2011. Web. 24 Oct 2020.

Vancouver:

Liechty KE. Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice. [Internet] [Thesis]. IUPUI; 2011. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1805/2482.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Liechty KE. Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice. [Thesis]. IUPUI; 2011. Available from: http://hdl.handle.net/1805/2482

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of South Florida

4. Yang, Meng. Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane.

Degree: 2018, University of South Florida

 In chapter 1, we present some background knowledge about random matrices, Coulomb gas, orthogonal polynomials, asymptotics of planar orthogonal polynomials and the Riemann-Hilbert problem. In… (more)

Subjects/Keywords: Discontinuity; Multiple orthogonal polynomials; Orthogonal polynomials; Random Matrices; Riemann-Hilbert problem; Skeleton; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, M. (2018). Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane. (Thesis). University of South Florida. Retrieved from https://scholarcommons.usf.edu/etd/7386

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Yang, Meng. “Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane.” 2018. Thesis, University of South Florida. Accessed October 24, 2020. https://scholarcommons.usf.edu/etd/7386.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Yang, Meng. “Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane.” 2018. Web. 24 Oct 2020.

Vancouver:

Yang M. Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane. [Internet] [Thesis]. University of South Florida; 2018. [cited 2020 Oct 24]. Available from: https://scholarcommons.usf.edu/etd/7386.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yang M. Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane. [Thesis]. University of South Florida; 2018. Available from: https://scholarcommons.usf.edu/etd/7386

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université Catholique de Louvain

5. Charlier, Christophe. Toeplitz and Hankel determinants in random matrix theory.

Degree: 2016, Université Catholique de Louvain

Toeplitz and Hankel determinants arise in many different areas of mathematics, such as statistical mechanics and random matrix theory. In Chapter 1, we review some… (more)

Subjects/Keywords: Toeplitz determinants; Hankel determinants; Riemann-Hilbert problems; Orthogonal polynomials; Random matrix theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Charlier, C. (2016). Toeplitz and Hankel determinants in random matrix theory. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/176453

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Charlier, Christophe. “Toeplitz and Hankel determinants in random matrix theory.” 2016. Thesis, Université Catholique de Louvain. Accessed October 24, 2020. http://hdl.handle.net/2078.1/176453.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Charlier, Christophe. “Toeplitz and Hankel determinants in random matrix theory.” 2016. Web. 24 Oct 2020.

Vancouver:

Charlier C. Toeplitz and Hankel determinants in random matrix theory. [Internet] [Thesis]. Université Catholique de Louvain; 2016. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/2078.1/176453.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Charlier C. Toeplitz and Hankel determinants in random matrix theory. [Thesis]. Université Catholique de Louvain; 2016. Available from: http://hdl.handle.net/2078.1/176453

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Lal, Ram. Interpolation and Approximation.

Degree: 1977, North Texas State University

 In this paper, there are three chapters. The first chapter discusses interpolation. Here a theorem about the uniqueness of the solution to the general interpolation… (more)

Subjects/Keywords: interpolation; Interpolation.; Approximation theory.; Hilbert space.; approximations; orthogonal polynomials; Hilbert spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lal, R. (1977). Interpolation and Approximation. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc504571/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lal, Ram. “Interpolation and Approximation.” 1977. Thesis, North Texas State University. Accessed October 24, 2020. https://digital.library.unt.edu/ark:/67531/metadc504571/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lal, Ram. “Interpolation and Approximation.” 1977. Web. 24 Oct 2020.

Vancouver:

Lal R. Interpolation and Approximation. [Internet] [Thesis]. North Texas State University; 1977. [cited 2020 Oct 24]. Available from: https://digital.library.unt.edu/ark:/67531/metadc504571/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lal R. Interpolation and Approximation. [Thesis]. North Texas State University; 1977. Available from: https://digital.library.unt.edu/ark:/67531/metadc504571/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Luis Alberto Alba Sarria. Reduções em Família e Multiplicidades Mistas.

Degree: 2009, Universidade Federal da Paraíba

Let (R,m) be a Noetherian local ring. Mixed multiplicities of finitely many m-primary ideals were first defined by J. Risler and B. Teissier in [Teissier]… (more)

Subjects/Keywords: polinômios de Hilbert; elementos superficiais; MATEMATICA; Joint reduction; multiplicity; Hilberts polynomials; superficial elements; multiplicidade; redução em família

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sarria, L. A. A. (2009). Reduções em Família e Multiplicidades Mistas. (Thesis). Universidade Federal da Paraíba. Retrieved from http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=1994

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sarria, Luis Alberto Alba. “Reduções em Família e Multiplicidades Mistas.” 2009. Thesis, Universidade Federal da Paraíba. Accessed October 24, 2020. http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=1994.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sarria, Luis Alberto Alba. “Reduções em Família e Multiplicidades Mistas.” 2009. Web. 24 Oct 2020.

Vancouver:

Sarria LAA. Reduções em Família e Multiplicidades Mistas. [Internet] [Thesis]. Universidade Federal da Paraíba; 2009. [cited 2020 Oct 24]. Available from: http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=1994.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sarria LAA. Reduções em Família e Multiplicidades Mistas. [Thesis]. Universidade Federal da Paraíba; 2009. Available from: http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=1994

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

8. Sen, Aritra. Module Grobner Bases Over Fields With Valuation.

Degree: MSc Engg, Faculty of Engineering, 2017, Indian Institute of Science

 Tropical geometry is an area of mathematics that interfaces algebraic geometry and combinatorics. The main object of study in tropical geometry is the tropical variety,… (more)

Subjects/Keywords: Grobner Basis; Tropical Algebraic Geometry; Grobner Basis Theory; Hilbert Polynomials; Syzygies; Free Resolutions; Computational Geometry; Grobner Basis Computation; Algebraic Geometry; Tropical Geometry; Grobner Bases; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sen, A. (2017). Module Grobner Bases Over Fields With Valuation. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2644

Chicago Manual of Style (16th Edition):

Sen, Aritra. “Module Grobner Bases Over Fields With Valuation.” 2017. Masters Thesis, Indian Institute of Science. Accessed October 24, 2020. http://etd.iisc.ac.in/handle/2005/2644.

MLA Handbook (7th Edition):

Sen, Aritra. “Module Grobner Bases Over Fields With Valuation.” 2017. Web. 24 Oct 2020.

Vancouver:

Sen A. Module Grobner Bases Over Fields With Valuation. [Internet] [Masters thesis]. Indian Institute of Science; 2017. [cited 2020 Oct 24]. Available from: http://etd.iisc.ac.in/handle/2005/2644.

Council of Science Editors:

Sen A. Module Grobner Bases Over Fields With Valuation. [Masters Thesis]. Indian Institute of Science; 2017. Available from: http://etd.iisc.ac.in/handle/2005/2644


Pontifical Catholic University of Rio de Janeiro

9. PERCY ALEXANDER CACERES TINTAYA. [en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY.

Degree: 2016, Pontifical Catholic University of Rio de Janeiro

[pt] Estudamos as noções básicas da Teoria das Matrizes Aleatórias e em particular discutimos o Emsemble Unitário Gaussiano. A continuação descrevemos o gaz de Dyson… (more)

Subjects/Keywords: [pt] POLINOMIOS ORTOGONAIS; [en] ORTHOGONAL POLYNOMIALS; [pt] TEORIA DAS MATRIZES ALEATORIAS; [pt] EMSEMBLE UNITARIO GAUSSIANO; [pt] GAS DE DYSON; [pt] PROBLEMAS DE RIEMANN-HILBERT; [pt] METODO DE MAXIMA GRADIENTE

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

TINTAYA, P. A. C. (2016). [en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY. (Thesis). Pontifical Catholic University of Rio de Janeiro. Retrieved from http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26432

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

TINTAYA, PERCY ALEXANDER CACERES. “[en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY.” 2016. Thesis, Pontifical Catholic University of Rio de Janeiro. Accessed October 24, 2020. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26432.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

TINTAYA, PERCY ALEXANDER CACERES. “[en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY.” 2016. Web. 24 Oct 2020.

Vancouver:

TINTAYA PAC. [en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY. [Internet] [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2016. [cited 2020 Oct 24]. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26432.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

TINTAYA PAC. [en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY. [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2016. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26432

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


IUPUI

10. Gharakhloo, Roozbeh. Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach.

Degree: 2019, IUPUI

Indiana University-Purdue University Indianapolis (IUPUI)

In this work we use and develop Riemann-Hilbert techniques to study the asymptotic behavior of structured determinants. In chapter one… (more)

Subjects/Keywords: Hankel determinants; Toeplitz determinants; Toeplitz+Hankel determinants; Bordered-Toeplitz determinants; Ising model; Emptiness formation probability; Integrable integral operators; Heisenberg spin chain; Riemann-Hilbert problems; Orthogonal polynomials

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gharakhloo, R. (2019). Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/19918

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gharakhloo, Roozbeh. “Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach.” 2019. Thesis, IUPUI. Accessed October 24, 2020. http://hdl.handle.net/1805/19918.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gharakhloo, Roozbeh. “Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach.” 2019. Web. 24 Oct 2020.

Vancouver:

Gharakhloo R. Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach. [Internet] [Thesis]. IUPUI; 2019. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1805/19918.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gharakhloo R. Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach. [Thesis]. IUPUI; 2019. Available from: http://hdl.handle.net/1805/19918

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Florida

11. Russo, Benjamin Peter. Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications.

Degree: PhD, Mathematics, 2016, University of Florida

 An operator T is called a 3-isometry if there exists a B1(T^*,T) and B2(T^*,T) such that QT(n)=T*nTn=1+nB1(T^*,T)+n2 B2(T^*,T) for all natural numbers n. A related… (more)

Subjects/Keywords: Algebra; Commuting; Eigenvalues; Hilbert spaces; Linear transformations; Mathematical theorems; Mathematics; Matrices; Pencils; Polynomials; 3-isometry  – 3-symmetric  – dilation  – disconjugacy  – extension  – lifting  – multi-variable  – operators  – tuple

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Russo, B. P. (2016). Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0049894

Chicago Manual of Style (16th Edition):

Russo, Benjamin Peter. “Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications.” 2016. Doctoral Dissertation, University of Florida. Accessed October 24, 2020. https://ufdc.ufl.edu/UFE0049894.

MLA Handbook (7th Edition):

Russo, Benjamin Peter. “Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications.” 2016. Web. 24 Oct 2020.

Vancouver:

Russo BP. Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications. [Internet] [Doctoral dissertation]. University of Florida; 2016. [cited 2020 Oct 24]. Available from: https://ufdc.ufl.edu/UFE0049894.

Council of Science Editors:

Russo BP. Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications. [Doctoral Dissertation]. University of Florida; 2016. Available from: https://ufdc.ufl.edu/UFE0049894


University of Florida

12. Rosenfeld, Joel A. Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's.

Degree: PhD, Mathematics, 2013, University of Florida

 While bounded multiplication has been extensively researched, unbounded multiplication has received little attention until more recently.  We develop a framework for densely defined multiplication over… (more)

Subjects/Keywords: Adjoints; Algebra; Analytic functions; Analytics; Boundary conditions; Hilbert spaces; Kernel functions; Mathematics; Polynomials; Sobolev spaces; analysis  – fock  – hardy  – multipliers  – operator  – sobolev  – toeplitz  – unbounded

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosenfeld, J. A. (2013). Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0045339

Chicago Manual of Style (16th Edition):

Rosenfeld, Joel A. “Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's.” 2013. Doctoral Dissertation, University of Florida. Accessed October 24, 2020. https://ufdc.ufl.edu/UFE0045339.

MLA Handbook (7th Edition):

Rosenfeld, Joel A. “Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's.” 2013. Web. 24 Oct 2020.

Vancouver:

Rosenfeld JA. Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's. [Internet] [Doctoral dissertation]. University of Florida; 2013. [cited 2020 Oct 24]. Available from: https://ufdc.ufl.edu/UFE0045339.

Council of Science Editors:

Rosenfeld JA. Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's. [Doctoral Dissertation]. University of Florida; 2013. Available from: https://ufdc.ufl.edu/UFE0045339


Brno University of Technology

13. Mihálik, Ondrej. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.

Degree: 2019, Brno University of Technology

 The work is concerned with an application of the Hermite functions in signal approximation. The purpose of the work is to show their properties in… (more)

Subjects/Keywords: Hilbertov priestor; Fourierova transformácia; Gaborova transformácia; Hermiteove polynómy; ortogonalita; optimálne parametre; časová mierka; časový posun; kvadratická chyba; spektrum; Hilbert space; Fourier transform; Gabor transform; Hermite polynomials; orthogonality; optimal parameters; time scale; time shift; squared error; spectrum

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mihálik, O. (2019). Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/67390

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mihálik, Ondrej. “Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.” 2019. Thesis, Brno University of Technology. Accessed October 24, 2020. http://hdl.handle.net/11012/67390.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mihálik, Ondrej. “Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.” 2019. Web. 24 Oct 2020.

Vancouver:

Mihálik O. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/11012/67390.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mihálik O. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/67390

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

14. Francis, Maria. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.

Degree: PhD, Faculty of Engineering, 2018, Indian Institute of Science

 One of the fundamental problems in commutative algebra and algebraic geometry is to understand the nature of the solution space of a system of multivariate… (more)

Subjects/Keywords: Grobuer Basis Algorithms; Polynomial Ideal Theory; Buchberger's Algorithm; Affine K-algebra; Polynomial Rings; Grobuer Basis; Grobuer Bases; Macaulay-Buchberger Basis Theorem; Noetherian Rings; Lattice Based Cryptography; Ideal Lattices; Hilbert Polynomials; Computer Science

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Francis, M. (2018). Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3543

Chicago Manual of Style (16th Edition):

Francis, Maria. “Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed October 24, 2020. http://etd.iisc.ac.in/handle/2005/3543.

MLA Handbook (7th Edition):

Francis, Maria. “Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.” 2018. Web. 24 Oct 2020.

Vancouver:

Francis M. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Oct 24]. Available from: http://etd.iisc.ac.in/handle/2005/3543.

Council of Science Editors:

Francis M. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3543


University of Florida

15. Bartolomeo, Jerry, 1960-. Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls.

Degree: 1988, University of Florida

Subjects/Keywords: Boundary conditions; Euler Bernoulli beam theory; Hilbert spaces; Mathematical theorems; Mathematics; Semigroups; Topological theorems; Topology; Vector fields; Wave equations; Bernoulli polynomials; Boundary layer control; Differential equations, Partial; Hilbert space

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bartolomeo, Jerry, 1. (1988). Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls. (Thesis). University of Florida. Retrieved from https://ufdc.ufl.edu/AA00003782

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bartolomeo, Jerry, 1960-. “Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls.” 1988. Thesis, University of Florida. Accessed October 24, 2020. https://ufdc.ufl.edu/AA00003782.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bartolomeo, Jerry, 1960-. “Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls.” 1988. Web. 24 Oct 2020.

Vancouver:

Bartolomeo, Jerry 1. Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls. [Internet] [Thesis]. University of Florida; 1988. [cited 2020 Oct 24]. Available from: https://ufdc.ufl.edu/AA00003782.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bartolomeo, Jerry 1. Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls. [Thesis]. University of Florida; 1988. Available from: https://ufdc.ufl.edu/AA00003782

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Leiden University

16. Martindale, C.R. Isogeny graphs, modular polynomials, and applications.

Degree: 2018, Leiden University

 This thesis has three main parts. The first part gives an algorithm to compute Hilbert modular polynomials for ordinary abelian varieties with maximal real multiplication.… (more)

Subjects/Keywords: Isogeny graph; Hilbert modular polynomials; Point counting; Genus 2 curves; Real multiplication; Canonical lifts; Ordinarya abelian variety; Cyclic isogeny; Isogeny graph; Hilbert modular polynomials; Point counting; Genus 2 curves; Real multiplication; Canonical lifts; Ordinarya abelian variety; Cyclic isogeny

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martindale, C. R. (2018). Isogeny graphs, modular polynomials, and applications. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/62814

Chicago Manual of Style (16th Edition):

Martindale, C R. “Isogeny graphs, modular polynomials, and applications.” 2018. Doctoral Dissertation, Leiden University. Accessed October 24, 2020. http://hdl.handle.net/1887/62814.

MLA Handbook (7th Edition):

Martindale, C R. “Isogeny graphs, modular polynomials, and applications.” 2018. Web. 24 Oct 2020.

Vancouver:

Martindale CR. Isogeny graphs, modular polynomials, and applications. [Internet] [Doctoral dissertation]. Leiden University; 2018. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1887/62814.

Council of Science Editors:

Martindale CR. Isogeny graphs, modular polynomials, and applications. [Doctoral Dissertation]. Leiden University; 2018. Available from: http://hdl.handle.net/1887/62814

17. Wang, Roy Chih Chung. Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions .

Degree: 2017, University of Ottawa

 The representer theorem from the reproducing kernel Hilbert space theory is the origin of many kernel-based machine learning and signal modelling techniques that are popular… (more)

Subjects/Keywords: reproducing kernel Hilbert space; Riemannian manifolds; identifiability; quotient manifolds; symmetric tensors; quasi-Hankel matrices; homogeneous polynomials; regularization

…x28;p, q)-tensors over the vector space V . Symmetric Tensors and Polynomials All… …polynomials and monomial spaces denoted here are constructed by monomials that have non-negative… …The space of D-variate, Lth-degree polynomials. HD, L The space of D-variate, Lth-degree… …homogeneous polynomials. xviii Notations S(D, L) The space of D-dimensional, Lth-order… …solution of a reproducing kernel Hilbert space (RKHS) regularization problem. This… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, R. C. C. (2017). Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/36975

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Roy Chih Chung. “Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions .” 2017. Thesis, University of Ottawa. Accessed October 24, 2020. http://hdl.handle.net/10393/36975.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Roy Chih Chung. “Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions .” 2017. Web. 24 Oct 2020.

Vancouver:

Wang RCC. Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions . [Internet] [Thesis]. University of Ottawa; 2017. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/10393/36975.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang RCC. Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions . [Thesis]. University of Ottawa; 2017. Available from: http://hdl.handle.net/10393/36975

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.