Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Hilbert Polynomials)`

.
Showing records 1 – 17 of
17 total matches.

▼ Search Limiters

IUPUI

1.
Barhoumi, Ahmad.
Orthogonal *Polynomials* on S-Curves Associated with Genus One Surfaces.

Degree: 2020, IUPUI

URL: http://hdl.handle.net/1805/23029

►

Indiana University-Purdue University Indianapolis (IUPUI)

We consider orthogonal *polynomials* P_{n} satisfying orthogonality relations where the measure of orthogonality is, in general, a complex-valued Borel measure…
(more)

Subjects/Keywords: Orthogonal Polynomials; Padé Approximants; Riemann–Hilbert Problem

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Barhoumi, A. (2020). Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/23029

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Barhoumi, Ahmad. “Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces.” 2020. Thesis, IUPUI. Accessed October 24, 2020. http://hdl.handle.net/1805/23029.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Barhoumi, Ahmad. “Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces.” 2020. Web. 24 Oct 2020.

Vancouver:

Barhoumi A. Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces. [Internet] [Thesis]. IUPUI; 2020. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1805/23029.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Barhoumi A. Orthogonal Polynomials on S-Curves Associated with Genus One Surfaces. [Thesis]. IUPUI; 2020. Available from: http://hdl.handle.net/1805/23029

Not specified: Masters Thesis or Doctoral Dissertation

University of Kentucky

2.
Moore, Dennis.
*HILBERT**POLYNOMIALS* AND STRONGLY STABLE IDEALS.

Degree: 2012, University of Kentucky

URL: https://uknowledge.uky.edu/math_etds/2

► Strongly stable ideals are important in algebraic geometry, commutative algebra, and combinatorics. Prompted, for example, by combinatorial approaches for studying *Hilbert* schemes and the existence…
(more)

Subjects/Keywords: Strongly Stable Ideals; Hilbert Functions; Hilbert Polynomials; Betti Numbers; Lexsegment Ideals; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Moore, D. (2012). HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS. (Doctoral Dissertation). University of Kentucky. Retrieved from https://uknowledge.uky.edu/math_etds/2

Chicago Manual of Style (16^{th} Edition):

Moore, Dennis. “HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS.” 2012. Doctoral Dissertation, University of Kentucky. Accessed October 24, 2020. https://uknowledge.uky.edu/math_etds/2.

MLA Handbook (7^{th} Edition):

Moore, Dennis. “HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS.” 2012. Web. 24 Oct 2020.

Vancouver:

Moore D. HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS. [Internet] [Doctoral dissertation]. University of Kentucky; 2012. [cited 2020 Oct 24]. Available from: https://uknowledge.uky.edu/math_etds/2.

Council of Science Editors:

Moore D. HILBERT POLYNOMIALS AND STRONGLY STABLE IDEALS. [Doctoral Dissertation]. University of Kentucky; 2012. Available from: https://uknowledge.uky.edu/math_etds/2

IUPUI

3.
Liechty, Karl Edmund.
Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal *Polynomials* on an Infinite Lattice.

Degree: 2011, IUPUI

URL: http://hdl.handle.net/1805/2482

►

Indiana University-Purdue University Indianapolis (IUPUI)

In this dissertation the partition function, Z_{n}, for the six-vertex model with domain wall boundary conditions is solved in the…
(more)

Subjects/Keywords: Statistical Mechanics, Random Matrices, Orthogonal Polynomials, Asymptotics, Riemann-Hilbert Problems; Statistical mechanics; Random matrices; Orthogonal polynomials; Riemann-Hilbert problems

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Liechty, K. E. (2011). Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/2482

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Liechty, Karl Edmund. “Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice.” 2011. Thesis, IUPUI. Accessed October 24, 2020. http://hdl.handle.net/1805/2482.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Liechty, Karl Edmund. “Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice.” 2011. Web. 24 Oct 2020.

Vancouver:

Liechty KE. Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice. [Internet] [Thesis]. IUPUI; 2011. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1805/2482.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Liechty KE. Exact Solutions to the Six-Vertex Model with Domain Wall Boundary Conditions and Uniform Asymptotics of Discrete Orthogonal Polynomials on an Infinite Lattice. [Thesis]. IUPUI; 2011. Available from: http://hdl.handle.net/1805/2482

Not specified: Masters Thesis or Doctoral Dissertation

University of South Florida

4.
Yang, Meng.
Orthogonal *Polynomials* With Respect to the Measure Supported Over the Whole Complex Plane.

Degree: 2018, University of South Florida

URL: https://scholarcommons.usf.edu/etd/7386

► In chapter 1, we present some background knowledge about random matrices, Coulomb gas, orthogonal *polynomials*, asymptotics of planar orthogonal *polynomials* and the Riemann-*Hilbert* problem. In…
(more)

Subjects/Keywords: Discontinuity; Multiple orthogonal polynomials; Orthogonal polynomials; Random Matrices; Riemann-Hilbert problem; Skeleton; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Yang, M. (2018). Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane. (Thesis). University of South Florida. Retrieved from https://scholarcommons.usf.edu/etd/7386

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Yang, Meng. “Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane.” 2018. Thesis, University of South Florida. Accessed October 24, 2020. https://scholarcommons.usf.edu/etd/7386.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Yang, Meng. “Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane.” 2018. Web. 24 Oct 2020.

Vancouver:

Yang M. Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane. [Internet] [Thesis]. University of South Florida; 2018. [cited 2020 Oct 24]. Available from: https://scholarcommons.usf.edu/etd/7386.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Yang M. Orthogonal Polynomials With Respect to the Measure Supported Over the Whole Complex Plane. [Thesis]. University of South Florida; 2018. Available from: https://scholarcommons.usf.edu/etd/7386

Not specified: Masters Thesis or Doctoral Dissertation

Université Catholique de Louvain

5. Charlier, Christophe. Toeplitz and Hankel determinants in random matrix theory.

Degree: 2016, Université Catholique de Louvain

URL: http://hdl.handle.net/2078.1/176453

►

Toeplitz and Hankel determinants arise in many different areas of mathematics, such as statistical mechanics and random matrix theory. In Chapter 1, we review some… (more)

Subjects/Keywords: Toeplitz determinants; Hankel determinants; Riemann-Hilbert problems; Orthogonal polynomials; Random matrix theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Charlier, C. (2016). Toeplitz and Hankel determinants in random matrix theory. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/176453

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Charlier, Christophe. “Toeplitz and Hankel determinants in random matrix theory.” 2016. Thesis, Université Catholique de Louvain. Accessed October 24, 2020. http://hdl.handle.net/2078.1/176453.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Charlier, Christophe. “Toeplitz and Hankel determinants in random matrix theory.” 2016. Web. 24 Oct 2020.

Vancouver:

Charlier C. Toeplitz and Hankel determinants in random matrix theory. [Internet] [Thesis]. Université Catholique de Louvain; 2016. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/2078.1/176453.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Charlier C. Toeplitz and Hankel determinants in random matrix theory. [Thesis]. Université Catholique de Louvain; 2016. Available from: http://hdl.handle.net/2078.1/176453

Not specified: Masters Thesis or Doctoral Dissertation

6. Lal, Ram. Interpolation and Approximation.

Degree: 1977, North Texas State University

URL: https://digital.library.unt.edu/ark:/67531/metadc504571/

► In this paper, there are three chapters. The first chapter discusses interpolation. Here a theorem about the uniqueness of the solution to the general interpolation…
(more)

Subjects/Keywords: interpolation; Interpolation.; Approximation theory.; Hilbert space.; approximations; orthogonal polynomials; Hilbert spaces

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lal, R. (1977). Interpolation and Approximation. (Thesis). North Texas State University. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc504571/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lal, Ram. “Interpolation and Approximation.” 1977. Thesis, North Texas State University. Accessed October 24, 2020. https://digital.library.unt.edu/ark:/67531/metadc504571/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lal, Ram. “Interpolation and Approximation.” 1977. Web. 24 Oct 2020.

Vancouver:

Lal R. Interpolation and Approximation. [Internet] [Thesis]. North Texas State University; 1977. [cited 2020 Oct 24]. Available from: https://digital.library.unt.edu/ark:/67531/metadc504571/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lal R. Interpolation and Approximation. [Thesis]. North Texas State University; 1977. Available from: https://digital.library.unt.edu/ark:/67531/metadc504571/

Not specified: Masters Thesis or Doctoral Dissertation

7. Luis Alberto Alba Sarria. Reduções em Família e Multiplicidades Mistas.

Degree: 2009, Universidade Federal da Paraíba

URL: http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=1994

►

Let (R,m) be a Noetherian local ring. Mixed multiplicities of finitely many m-primary ideals were first defined by J. Risler and B. Teissier in [Teissier]… (more)

Subjects/Keywords: polinômios de Hilbert; elementos superficiais; MATEMATICA; Joint reduction; multiplicity; Hilberts polynomials; superficial elements; multiplicidade; redução em família

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sarria, L. A. A. (2009). Reduções em Família e Multiplicidades Mistas. (Thesis). Universidade Federal da Paraíba. Retrieved from http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=1994

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Sarria, Luis Alberto Alba. “Reduções em Família e Multiplicidades Mistas.” 2009. Thesis, Universidade Federal da Paraíba. Accessed October 24, 2020. http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=1994.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Sarria, Luis Alberto Alba. “Reduções em Família e Multiplicidades Mistas.” 2009. Web. 24 Oct 2020.

Vancouver:

Sarria LAA. Reduções em Família e Multiplicidades Mistas. [Internet] [Thesis]. Universidade Federal da Paraíba; 2009. [cited 2020 Oct 24]. Available from: http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=1994.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sarria LAA. Reduções em Família e Multiplicidades Mistas. [Thesis]. Universidade Federal da Paraíba; 2009. Available from: http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=1994

Not specified: Masters Thesis or Doctoral Dissertation

Indian Institute of Science

8. Sen, Aritra. Module Grobner Bases Over Fields With Valuation.

Degree: MSc Engg, Faculty of Engineering, 2017, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/2644

► Tropical geometry is an area of mathematics that interfaces algebraic geometry and combinatorics. The main object of study in tropical geometry is the tropical variety,…
(more)

Subjects/Keywords: Grobner Basis; Tropical Algebraic Geometry; Grobner Basis Theory; Hilbert Polynomials; Syzygies; Free Resolutions; Computational Geometry; Grobner Basis Computation; Algebraic Geometry; Tropical Geometry; Grobner Bases; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Sen, A. (2017). Module Grobner Bases Over Fields With Valuation. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/2644

Chicago Manual of Style (16^{th} Edition):

Sen, Aritra. “Module Grobner Bases Over Fields With Valuation.” 2017. Masters Thesis, Indian Institute of Science. Accessed October 24, 2020. http://etd.iisc.ac.in/handle/2005/2644.

MLA Handbook (7^{th} Edition):

Sen, Aritra. “Module Grobner Bases Over Fields With Valuation.” 2017. Web. 24 Oct 2020.

Vancouver:

Sen A. Module Grobner Bases Over Fields With Valuation. [Internet] [Masters thesis]. Indian Institute of Science; 2017. [cited 2020 Oct 24]. Available from: http://etd.iisc.ac.in/handle/2005/2644.

Council of Science Editors:

Sen A. Module Grobner Bases Over Fields With Valuation. [Masters Thesis]. Indian Institute of Science; 2017. Available from: http://etd.iisc.ac.in/handle/2005/2644

Pontifical Catholic University of Rio de Janeiro

9.
PERCY ALEXANDER CACERES TINTAYA.
[en] RIEMANN *HILBERT* PROBLEMS IN RANDOM MATRIX
THEORY.

Degree: 2016, Pontifical Catholic University of Rio de Janeiro

URL: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26432

►

[pt] Estudamos as noções básicas da Teoria das Matrizes Aleatórias e em particular discutimos o Emsemble Unitário Gaussiano. A continuação descrevemos o gaz de Dyson… (more)

Subjects/Keywords: [pt] POLINOMIOS ORTOGONAIS; [en] ORTHOGONAL POLYNOMIALS; [pt] TEORIA DAS MATRIZES ALEATORIAS; [pt] EMSEMBLE UNITARIO GAUSSIANO; [pt] GAS DE DYSON; [pt] PROBLEMAS DE RIEMANN-HILBERT; [pt] METODO DE MAXIMA GRADIENTE

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

TINTAYA, P. A. C. (2016). [en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY. (Thesis). Pontifical Catholic University of Rio de Janeiro. Retrieved from http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26432

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

TINTAYA, PERCY ALEXANDER CACERES. “[en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY.” 2016. Thesis, Pontifical Catholic University of Rio de Janeiro. Accessed October 24, 2020. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26432.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

TINTAYA, PERCY ALEXANDER CACERES. “[en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY.” 2016. Web. 24 Oct 2020.

Vancouver:

TINTAYA PAC. [en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY. [Internet] [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2016. [cited 2020 Oct 24]. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26432.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

TINTAYA PAC. [en] RIEMANN HILBERT PROBLEMS IN RANDOM MATRIX THEORY. [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2016. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26432

Not specified: Masters Thesis or Doctoral Dissertation

IUPUI

10.
Gharakhloo, Roozbeh.
Asymptotic Analysis of Structured Determinants via the Riemann-*Hilbert* Approach.

Degree: 2019, IUPUI

URL: http://hdl.handle.net/1805/19918

►

Indiana University-Purdue University Indianapolis (IUPUI)

In this work we use and develop Riemann-*Hilbert* techniques to study the asymptotic behavior of structured determinants. In chapter one…
(more)

Subjects/Keywords: Hankel determinants; Toeplitz determinants; Toeplitz+Hankel determinants; Bordered-Toeplitz determinants; Ising model; Emptiness formation probability; Integrable integral operators; Heisenberg spin chain; Riemann-Hilbert problems; Orthogonal polynomials

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gharakhloo, R. (2019). Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach. (Thesis). IUPUI. Retrieved from http://hdl.handle.net/1805/19918

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Gharakhloo, Roozbeh. “Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach.” 2019. Thesis, IUPUI. Accessed October 24, 2020. http://hdl.handle.net/1805/19918.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Gharakhloo, Roozbeh. “Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach.” 2019. Web. 24 Oct 2020.

Vancouver:

Gharakhloo R. Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach. [Internet] [Thesis]. IUPUI; 2019. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1805/19918.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gharakhloo R. Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach. [Thesis]. IUPUI; 2019. Available from: http://hdl.handle.net/1805/19918

Not specified: Masters Thesis or Doctoral Dissertation

University of Florida

11. Russo, Benjamin Peter. Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications.

Degree: PhD, Mathematics, 2016, University of Florida

URL: https://ufdc.ufl.edu/UFE0049894

► An operator T is called a 3-isometry if there exists a B_{1}(T^*,T) and B_{2}(T^*,T) such that Q_{T}(n)=T^{*n}T^{n}=1+nB_{1}(T^*,T)+n^{2} B_{2}(T^*,T) for all natural numbers n. A related…
(more)

Subjects/Keywords: Algebra; Commuting; Eigenvalues; Hilbert spaces; Linear transformations; Mathematical theorems; Mathematics; Matrices; Pencils; Polynomials; 3-isometry – 3-symmetric – dilation – disconjugacy – extension – lifting – multi-variable – operators – tuple

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Russo, B. P. (2016). Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0049894

Chicago Manual of Style (16^{th} Edition):

Russo, Benjamin Peter. “Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications.” 2016. Doctoral Dissertation, University of Florida. Accessed October 24, 2020. https://ufdc.ufl.edu/UFE0049894.

MLA Handbook (7^{th} Edition):

Russo, Benjamin Peter. “Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications.” 2016. Web. 24 Oct 2020.

Vancouver:

Russo BP. Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications. [Internet] [Doctoral dissertation]. University of Florida; 2016. [cited 2020 Oct 24]. Available from: https://ufdc.ufl.edu/UFE0049894.

Council of Science Editors:

Russo BP. Lifting Theorems for Tuples of 3-Isometric and 3-Symmetric Operators with Applications. [Doctoral Dissertation]. University of Florida; 2016. Available from: https://ufdc.ufl.edu/UFE0049894

University of Florida

12. Rosenfeld, Joel A. Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's.

Degree: PhD, Mathematics, 2013, University of Florida

URL: https://ufdc.ufl.edu/UFE0045339

► While bounded multiplication has been extensively researched, unbounded multiplication has received little attention until more recently. We develop a framework for densely defined multiplication over…
(more)

Subjects/Keywords: Adjoints; Algebra; Analytic functions; Analytics; Boundary conditions; Hilbert spaces; Kernel functions; Mathematics; Polynomials; Sobolev spaces; analysis – fock – hardy – multipliers – operator – sobolev – toeplitz – unbounded

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Rosenfeld, J. A. (2013). Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's. (Doctoral Dissertation). University of Florida. Retrieved from https://ufdc.ufl.edu/UFE0045339

Chicago Manual of Style (16^{th} Edition):

Rosenfeld, Joel A. “Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's.” 2013. Doctoral Dissertation, University of Florida. Accessed October 24, 2020. https://ufdc.ufl.edu/UFE0045339.

MLA Handbook (7^{th} Edition):

Rosenfeld, Joel A. “Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's.” 2013. Web. 24 Oct 2020.

Vancouver:

Rosenfeld JA. Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's. [Internet] [Doctoral dissertation]. University of Florida; 2013. [cited 2020 Oct 24]. Available from: https://ufdc.ufl.edu/UFE0045339.

Council of Science Editors:

Rosenfeld JA. Classes of Densely Defined Multiplication and Toeplitz Operators with Applications to Extensions of RKHS's. [Doctoral Dissertation]. University of Florida; 2013. Available from: https://ufdc.ufl.edu/UFE0045339

Brno University of Technology

13. Mihálik, Ondrej. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.

Degree: 2019, Brno University of Technology

URL: http://hdl.handle.net/11012/67390

► The work is concerned with an application of the Hermite functions in signal approximation. The purpose of the work is to show their properties in…
(more)

Subjects/Keywords: Hilbertov priestor; Fourierova transformácia; Gaborova transformácia; Hermiteove polynómy; ortogonalita; optimálne parametre; časová mierka; časový posun; kvadratická chyba; spektrum; Hilbert space; Fourier transform; Gabor transform; Hermite polynomials; orthogonality; optimal parameters; time scale; time shift; squared error; spectrum

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mihálik, O. (2019). Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/67390

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mihálik, Ondrej. “Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.” 2019. Thesis, Brno University of Technology. Accessed October 24, 2020. http://hdl.handle.net/11012/67390.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mihálik, Ondrej. “Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis.” 2019. Web. 24 Oct 2020.

Vancouver:

Mihálik O. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/11012/67390.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mihálik O. Hermiteova ortogonální báze a její využití pro získání spektra signálů: Application of the Hermite basis for spectral analysis. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/67390

Not specified: Masters Thesis or Doctoral Dissertation

Indian Institute of Science

14. Francis, Maria. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.

Degree: PhD, Faculty of Engineering, 2018, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/3543

► One of the fundamental problems in commutative algebra and algebraic geometry is to understand the nature of the solution space of a system of multivariate…
(more)

Subjects/Keywords: Grobuer Basis Algorithms; Polynomial Ideal Theory; Buchberger's Algorithm; Affine K-algebra; Polynomial Rings; Grobuer Basis; Grobuer Bases; Macaulay-Buchberger Basis Theorem; Noetherian Rings; Lattice Based Cryptography; Ideal Lattices; Hilbert Polynomials; Computer Science

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Francis, M. (2018). Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3543

Chicago Manual of Style (16^{th} Edition):

Francis, Maria. “Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed October 24, 2020. http://etd.iisc.ac.in/handle/2005/3543.

MLA Handbook (7^{th} Edition):

Francis, Maria. “Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings.” 2018. Web. 24 Oct 2020.

Vancouver:

Francis M. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Oct 24]. Available from: http://etd.iisc.ac.in/handle/2005/3543.

Council of Science Editors:

Francis M. Grobuer Basis Algorithms for Polynomial Ideal Theory over Noetherian Commutative Rings. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3543

University of Florida

15. Bartolomeo, Jerry, 1960-. Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls.

Degree: 1988, University of Florida

URL: https://ufdc.ufl.edu/AA00003782

Subjects/Keywords: Boundary conditions; Euler Bernoulli beam theory; Hilbert spaces; Mathematical theorems; Mathematics; Semigroups; Topological theorems; Topology; Vector fields; Wave equations; Bernoulli polynomials; Boundary layer control; Differential equations, Partial; Hilbert space

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Bartolomeo, Jerry, 1. (1988). Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls. (Thesis). University of Florida. Retrieved from https://ufdc.ufl.edu/AA00003782

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Bartolomeo, Jerry, 1960-. “Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls.” 1988. Thesis, University of Florida. Accessed October 24, 2020. https://ufdc.ufl.edu/AA00003782.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Bartolomeo, Jerry, 1960-. “Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls.” 1988. Web. 24 Oct 2020.

Vancouver:

Bartolomeo, Jerry 1. Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls. [Internet] [Thesis]. University of Florida; 1988. [cited 2020 Oct 24]. Available from: https://ufdc.ufl.edu/AA00003782.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bartolomeo, Jerry 1. Uniform stabilization of the Euler-Bernoulli equation with active Dirichlet and non-active Neumann boundary feedback controls. [Thesis]. University of Florida; 1988. Available from: https://ufdc.ufl.edu/AA00003782

Not specified: Masters Thesis or Doctoral Dissertation

Leiden University

16.
Martindale, C.R.
Isogeny graphs, modular *polynomials*, and applications.

Degree: 2018, Leiden University

URL: http://hdl.handle.net/1887/62814

► This thesis has three main parts. The first part gives an algorithm to compute *Hilbert* modular *polynomials* for ordinary abelian varieties with maximal real multiplication.…
(more)

Subjects/Keywords: Isogeny graph; Hilbert modular polynomials; Point counting; Genus 2 curves; Real multiplication; Canonical lifts; Ordinarya abelian variety; Cyclic isogeny; Isogeny graph; Hilbert modular polynomials; Point counting; Genus 2 curves; Real multiplication; Canonical lifts; Ordinarya abelian variety; Cyclic isogeny

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Martindale, C. R. (2018). Isogeny graphs, modular polynomials, and applications. (Doctoral Dissertation). Leiden University. Retrieved from http://hdl.handle.net/1887/62814

Chicago Manual of Style (16^{th} Edition):

Martindale, C R. “Isogeny graphs, modular polynomials, and applications.” 2018. Doctoral Dissertation, Leiden University. Accessed October 24, 2020. http://hdl.handle.net/1887/62814.

MLA Handbook (7^{th} Edition):

Martindale, C R. “Isogeny graphs, modular polynomials, and applications.” 2018. Web. 24 Oct 2020.

Vancouver:

Martindale CR. Isogeny graphs, modular polynomials, and applications. [Internet] [Doctoral dissertation]. Leiden University; 2018. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/1887/62814.

Council of Science Editors:

Martindale CR. Isogeny graphs, modular polynomials, and applications. [Doctoral Dissertation]. Leiden University; 2018. Available from: http://hdl.handle.net/1887/62814

17. Wang, Roy Chih Chung. Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions .

Degree: 2017, University of Ottawa

URL: http://hdl.handle.net/10393/36975

► The representer theorem from the reproducing kernel *Hilbert* space theory is the origin of many kernel-based machine learning and signal modelling techniques that are popular…
(more)

Subjects/Keywords: reproducing kernel Hilbert space; Riemannian manifolds; identifiability; quotient manifolds; symmetric tensors; quasi-Hankel matrices; homogeneous polynomials; regularization

…x28;p, q)-tensors over the vector space V .
Symmetric Tensors and *Polynomials*
All… …*polynomials* and monomial spaces denoted here are constructed by monomials that have non-negative… …The space of D-variate, Lth-degree *polynomials*.
HD, L
The space of D-variate, Lth-degree… …homogeneous *polynomials*.
xviii
Notations
S(D, L)
The space of D-dimensional, Lth-order… …solution of a reproducing kernel *Hilbert* space (RKHS) regularization problem. This…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, R. C. C. (2017). Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/36975

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wang, Roy Chih Chung. “Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions .” 2017. Thesis, University of Ottawa. Accessed October 24, 2020. http://hdl.handle.net/10393/36975.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wang, Roy Chih Chung. “Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions .” 2017. Web. 24 Oct 2020.

Vancouver:

Wang RCC. Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions . [Internet] [Thesis]. University of Ottawa; 2017. [cited 2020 Oct 24]. Available from: http://hdl.handle.net/10393/36975.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang RCC. Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions . [Thesis]. University of Ottawa; 2017. Available from: http://hdl.handle.net/10393/36975

Not specified: Masters Thesis or Doctoral Dissertation