Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hermitian form). Showing records 1 – 5 of 5 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Maryland

1. Cui, Ran. The Real-Quaternionic Indicator of Irreducible Self-Conjugate Representations of Real Reductive Algebraic Groups and A Comment on the Local Langlands Correspondence of GL(2, F ).

Degree: Mathematics, 2016, University of Maryland

 The real-quaternionic indicator, also called the δ indicator, indicates if a self-conjugate representation is of real or quaternionic type. It is closely related to the… (more)

Subjects/Keywords: Mathematics; c-Invariant Hermitian Form; Extended Group; Frobenius-Schur Indicator; Langlands Correspondence; Real-Quaternionic Indicator

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cui, R. (2016). The Real-Quaternionic Indicator of Irreducible Self-Conjugate Representations of Real Reductive Algebraic Groups and A Comment on the Local Langlands Correspondence of GL(2, F ). (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/18318

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cui, Ran. “The Real-Quaternionic Indicator of Irreducible Self-Conjugate Representations of Real Reductive Algebraic Groups and A Comment on the Local Langlands Correspondence of GL(2, F ).” 2016. Thesis, University of Maryland. Accessed May 11, 2021. http://hdl.handle.net/1903/18318.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cui, Ran. “The Real-Quaternionic Indicator of Irreducible Self-Conjugate Representations of Real Reductive Algebraic Groups and A Comment on the Local Langlands Correspondence of GL(2, F ).” 2016. Web. 11 May 2021.

Vancouver:

Cui R. The Real-Quaternionic Indicator of Irreducible Self-Conjugate Representations of Real Reductive Algebraic Groups and A Comment on the Local Langlands Correspondence of GL(2, F ). [Internet] [Thesis]. University of Maryland; 2016. [cited 2021 May 11]. Available from: http://hdl.handle.net/1903/18318.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cui R. The Real-Quaternionic Indicator of Irreducible Self-Conjugate Representations of Real Reductive Algebraic Groups and A Comment on the Local Langlands Correspondence of GL(2, F ). [Thesis]. University of Maryland; 2016. Available from: http://hdl.handle.net/1903/18318

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

2. Jürgens, Michael. Nicht-Existenz und Konstruktion extremaler Gitter.

Degree: 2015, Technische Universität Dortmund

 Extremal lattices in the sense of Quebbemann are often interesting candidates for dense or even densest sphere packings like e.g. the Coxeter-Todd lattice in dimension… (more)

Subjects/Keywords: Extremales Gitter; Extremale Modulform; Konfigurationsanzahlen; Hermitesches Gitter; Spurkonstruktion; CM-Körper; Nachbarmethode; Maßformel; Extremal lattice; Extremal modular form; Vector configurations; Hermitian lattice; Transfer construction; CM-field; Neighbour method; Mass formula; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jürgens, M. (2015). Nicht-Existenz und Konstruktion extremaler Gitter. (Doctoral Dissertation). Technische Universität Dortmund. Retrieved from http://dx.doi.org/10.17877/DE290R-7882

Chicago Manual of Style (16th Edition):

Jürgens, Michael. “Nicht-Existenz und Konstruktion extremaler Gitter.” 2015. Doctoral Dissertation, Technische Universität Dortmund. Accessed May 11, 2021. http://dx.doi.org/10.17877/DE290R-7882.

MLA Handbook (7th Edition):

Jürgens, Michael. “Nicht-Existenz und Konstruktion extremaler Gitter.” 2015. Web. 11 May 2021.

Vancouver:

Jürgens M. Nicht-Existenz und Konstruktion extremaler Gitter. [Internet] [Doctoral dissertation]. Technische Universität Dortmund; 2015. [cited 2021 May 11]. Available from: http://dx.doi.org/10.17877/DE290R-7882.

Council of Science Editors:

Jürgens M. Nicht-Existenz und Konstruktion extremaler Gitter. [Doctoral Dissertation]. Technische Universität Dortmund; 2015. Available from: http://dx.doi.org/10.17877/DE290R-7882

3. Burgdorf, Sabine. Trace-positive polynomials, sums of hermitian squares and the tracial moment problem.

Degree: 2015, Univerza v Mariboru

A polynomial ▫f▫ in non-commuting variables is trace-positive if the trace of ▫f(underline{A})▫ is positive for all tuples ▫underline{A}▫ of symmetric matrices of the same… (more)

Subjects/Keywords: matematika; algebra; polinomi s pozitivno sledjo; prosta algebra; nekomutativni polinom; centralna enostavna algebra; reducirana sled; polinomska identiteta; kvadratna forma; prosta pozitivnost; vsota hermitskih kvadratov; problem momentov; mathematics; algebra; free algebra; noncommutative polynomial; central simple algebra; (reduced) trace; polynomial identity; central polynomial; quadratic form; free positivity; sum of hermitian squares; (truncated) moment problem;

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Burgdorf, S. (2015). Trace-positive polynomials, sums of hermitian squares and the tracial moment problem. (Doctoral Dissertation). Univerza v Mariboru. Retrieved from https://dk.um.si/IzpisGradiva.php?id=49393 ; https://dk.um.si/Dokument.php?id=73952&dn= ; https://dk.um.si/Dokument.php?id=122747&dn= ; https://plus.si.cobiss.net/opac7/bib/15993689?lang=sl

Chicago Manual of Style (16th Edition):

Burgdorf, Sabine. “Trace-positive polynomials, sums of hermitian squares and the tracial moment problem.” 2015. Doctoral Dissertation, Univerza v Mariboru. Accessed May 11, 2021. https://dk.um.si/IzpisGradiva.php?id=49393 ; https://dk.um.si/Dokument.php?id=73952&dn= ; https://dk.um.si/Dokument.php?id=122747&dn= ; https://plus.si.cobiss.net/opac7/bib/15993689?lang=sl.

MLA Handbook (7th Edition):

Burgdorf, Sabine. “Trace-positive polynomials, sums of hermitian squares and the tracial moment problem.” 2015. Web. 11 May 2021.

Vancouver:

Burgdorf S. Trace-positive polynomials, sums of hermitian squares and the tracial moment problem. [Internet] [Doctoral dissertation]. Univerza v Mariboru; 2015. [cited 2021 May 11]. Available from: https://dk.um.si/IzpisGradiva.php?id=49393 ; https://dk.um.si/Dokument.php?id=73952&dn= ; https://dk.um.si/Dokument.php?id=122747&dn= ; https://plus.si.cobiss.net/opac7/bib/15993689?lang=sl.

Council of Science Editors:

Burgdorf S. Trace-positive polynomials, sums of hermitian squares and the tracial moment problem. [Doctoral Dissertation]. Univerza v Mariboru; 2015. Available from: https://dk.um.si/IzpisGradiva.php?id=49393 ; https://dk.um.si/Dokument.php?id=73952&dn= ; https://dk.um.si/Dokument.php?id=122747&dn= ; https://plus.si.cobiss.net/opac7/bib/15993689?lang=sl

4. ΧΑΤΖΑΡΑΣ, ΙΩΑΝΝΗΣ. ΕΝΕΛΙΞΕΙΣ ΚΑΙ ΕΡΜΗΤΙΑΝΕΣ ΜΟΡΦΕΣ ΣΕ ΚΛΑΣΣΙΚΑ ΣΤΑΥΡΩΤΑ ΓΙΝΟΜΕΝΑ.

Degree: 1995, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH)

ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ, ΤΗΣ ΕΡΓΑΣΙΑΣ ΑΥΤΗΣ ΔΙΝΟΝΤΑΙ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΙΣ ΑΠΛΕΣ ΚΕΝΤΡΙΚΕΣ ΑΛΓΕΒΡΕΣ, ΤΙΣ ΤΑΞΕΙΣ, ΤΙΣ ΕΝΕΛΙΞΕΙΣ ΚΑΙ ΤΙΣ ΕΡΜΗΤΙΑΝΕΣ ΜΟΡΦΕΣ.… (more)

Subjects/Keywords: CENTRAL SIMPLE ALGEBRA; COMPLETE DISCRETE VALUATION RING; CROSSED - PRODUCT; FORM PARAMETER; HERMITIAN FORM; Involutions; IRREDUCIBLE Λ - LATTICE; REGULAR UNITARY MODULE; ΑΝΑΓΩΓΟ Λ - LATTICE; ΑΠΛΗ ΚΕΝΤΡΙΚΗ ΑΛΓΕΒΡΑ; ΕΝΕΛΙΞΕΙΣ; ΕΡΜΗΤΙΑΝΗ ΜΟΡΦΗ; ΚΑΝΟΝΙΚΟ ΜΟΝΑΔΙΑΙΟ MODULE; ΜΟΡΦΗ ΠΑΡΑΜΕΤΡΟΥ; ΠΛΗΡΗΣ ΔΑΚΤΥΛΙΟΣ; ΣΤΑΥΡΩΤΟ ΓΙΝΟΜΕΝΟ

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

ΧΑΤΖΑΡΑΣ, . (1995). ΕΝΕΛΙΞΕΙΣ ΚΑΙ ΕΡΜΗΤΙΑΝΕΣ ΜΟΡΦΕΣ ΣΕ ΚΛΑΣΣΙΚΑ ΣΤΑΥΡΩΤΑ ΓΙΝΟΜΕΝΑ. (Thesis). Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH). Retrieved from http://hdl.handle.net/10442/hedi/9074

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

ΧΑΤΖΑΡΑΣ, ΙΩΑΝΝΗΣ. “ΕΝΕΛΙΞΕΙΣ ΚΑΙ ΕΡΜΗΤΙΑΝΕΣ ΜΟΡΦΕΣ ΣΕ ΚΛΑΣΣΙΚΑ ΣΤΑΥΡΩΤΑ ΓΙΝΟΜΕΝΑ.” 1995. Thesis, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH). Accessed May 11, 2021. http://hdl.handle.net/10442/hedi/9074.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

ΧΑΤΖΑΡΑΣ, ΙΩΑΝΝΗΣ. “ΕΝΕΛΙΞΕΙΣ ΚΑΙ ΕΡΜΗΤΙΑΝΕΣ ΜΟΡΦΕΣ ΣΕ ΚΛΑΣΣΙΚΑ ΣΤΑΥΡΩΤΑ ΓΙΝΟΜΕΝΑ.” 1995. Web. 11 May 2021.

Vancouver:

ΧΑΤΖΑΡΑΣ . ΕΝΕΛΙΞΕΙΣ ΚΑΙ ΕΡΜΗΤΙΑΝΕΣ ΜΟΡΦΕΣ ΣΕ ΚΛΑΣΣΙΚΑ ΣΤΑΥΡΩΤΑ ΓΙΝΟΜΕΝΑ. [Internet] [Thesis]. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH); 1995. [cited 2021 May 11]. Available from: http://hdl.handle.net/10442/hedi/9074.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

ΧΑΤΖΑΡΑΣ . ΕΝΕΛΙΞΕΙΣ ΚΑΙ ΕΡΜΗΤΙΑΝΕΣ ΜΟΡΦΕΣ ΣΕ ΚΛΑΣΣΙΚΑ ΣΤΑΥΡΩΤΑ ΓΙΝΟΜΕΝΑ. [Thesis]. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης (ΑΠΘ); Aristotle University Of Thessaloniki (AUTH); 1995. Available from: http://hdl.handle.net/10442/hedi/9074

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Thiago Castilho de Mello. Sobre bases normais para extensões galoisianas de corpos.

Degree: 2008, University of São Paulo

Neste trabalho apresentamos várias demonstrações do Teorema da Base Normal para certos tipos de extensões galoisianas de corpos, algumas existenciais e outras construtivas, destacando as… (more)

Subjects/Keywords: Base normal generalizada; Bases normal; Construção de bases normais; Elemento normal; Elemento primitivo; Extensões abelianas; Extensões cíclicas; Forma hermitiana; Forma traço; Teoria de Galois; Abelian extension; Construction of normal bases; Cyclic extension; Galois theory; Generalized normal base; Hermitian form; Normal base; Normal element; Primitive element; Trace map

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mello, T. C. d. (2008). Sobre bases normais para extensões galoisianas de corpos. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/55/55135/tde-21052008-150202/

Chicago Manual of Style (16th Edition):

Mello, Thiago Castilho de. “Sobre bases normais para extensões galoisianas de corpos.” 2008. Masters Thesis, University of São Paulo. Accessed May 11, 2021. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-21052008-150202/.

MLA Handbook (7th Edition):

Mello, Thiago Castilho de. “Sobre bases normais para extensões galoisianas de corpos.” 2008. Web. 11 May 2021.

Vancouver:

Mello TCd. Sobre bases normais para extensões galoisianas de corpos. [Internet] [Masters thesis]. University of São Paulo; 2008. [cited 2021 May 11]. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-21052008-150202/.

Council of Science Editors:

Mello TCd. Sobre bases normais para extensões galoisianas de corpos. [Masters Thesis]. University of São Paulo; 2008. Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-21052008-150202/

.