Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Hamilton Jacobi equations). Showing records 1 – 30 of 58 total matches.

[1] [2]

Search Limiters

Last 2 Years | English Only

Degrees

Country

▼ Search Limiters

1. Attouchi, Amal. Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion.

Degree: Docteur es, Mathématiques, 2014, Paris 13

Cette thèse est consacrée à l’étude des propriétés qualitatives de solutions d’une équation d’évolution de type Hamilton-Jacobi avec une diffusion donnée par l’opérateur p-Laplacien. On… (more)

Subjects/Keywords: Hamilton-Jacobi, équation de; Hamilton-Jacobi equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Attouchi, A. (2014). Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion. (Doctoral Dissertation). Paris 13. Retrieved from http://www.theses.fr/2014PA132022

Chicago Manual of Style (16th Edition):

Attouchi, Amal. “Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion.” 2014. Doctoral Dissertation, Paris 13. Accessed October 23, 2019. http://www.theses.fr/2014PA132022.

MLA Handbook (7th Edition):

Attouchi, Amal. “Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion.” 2014. Web. 23 Oct 2019.

Vancouver:

Attouchi A. Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion. [Internet] [Doctoral dissertation]. Paris 13; 2014. [cited 2019 Oct 23]. Available from: http://www.theses.fr/2014PA132022.

Council of Science Editors:

Attouchi A. Etude qualitative des équations de Hamilton-Jacobi avec diffusion non linéaire. : Local and global behavior for Hamilton-Jacobi equations with degenerate difusion. [Doctoral Dissertation]. Paris 13; 2014. Available from: http://www.theses.fr/2014PA132022


University of Texas – Austin

2. Martin, Lindsay Joan. Methods for solving Hamilton-Jacobi-Bellman equations.

Degree: PhD, Mathematics, 2019, University of Texas – Austin

 The goal of this thesis is to present two frameworks for the computation of the solutions of Hamilton-Jacobi-Bellman (HJB) equations. In Chapter 2, we present… (more)

Subjects/Keywords: Hamilton-Jacobi-Bellman equations; Eikonal equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Martin, L. J. (2019). Methods for solving Hamilton-Jacobi-Bellman equations. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://dx.doi.org/10.26153/tsw/3012

Chicago Manual of Style (16th Edition):

Martin, Lindsay Joan. “Methods for solving Hamilton-Jacobi-Bellman equations.” 2019. Doctoral Dissertation, University of Texas – Austin. Accessed October 23, 2019. http://dx.doi.org/10.26153/tsw/3012.

MLA Handbook (7th Edition):

Martin, Lindsay Joan. “Methods for solving Hamilton-Jacobi-Bellman equations.” 2019. Web. 23 Oct 2019.

Vancouver:

Martin LJ. Methods for solving Hamilton-Jacobi-Bellman equations. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2019. [cited 2019 Oct 23]. Available from: http://dx.doi.org/10.26153/tsw/3012.

Council of Science Editors:

Martin LJ. Methods for solving Hamilton-Jacobi-Bellman equations. [Doctoral Dissertation]. University of Texas – Austin; 2019. Available from: http://dx.doi.org/10.26153/tsw/3012

3. Dao Nguyen, Anh. Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms.

Degree: Docteur es, Mathématiques, 2013, Université François-Rabelais de Tours

Cette thèse est consacrée à l’étude d’équation aux dérivée partielles dy type Hamilton- Jacobi ∂tu - Δu + |∇u|q = 0, in Ω × (0,T),… (more)

Subjects/Keywords: Solutions d'équations; Equations Hamilton-Jacobi; Termes d'absorption

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dao Nguyen, A. (2013). Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms. (Doctoral Dissertation). Université François-Rabelais de Tours. Retrieved from http://www.theses.fr/2013TOUR4045

Chicago Manual of Style (16th Edition):

Dao Nguyen, Anh. “Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms.” 2013. Doctoral Dissertation, Université François-Rabelais de Tours. Accessed October 23, 2019. http://www.theses.fr/2013TOUR4045.

MLA Handbook (7th Edition):

Dao Nguyen, Anh. “Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms.” 2013. Web. 23 Oct 2019.

Vancouver:

Dao Nguyen A. Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms. [Internet] [Doctoral dissertation]. Université François-Rabelais de Tours; 2013. [cited 2019 Oct 23]. Available from: http://www.theses.fr/2013TOUR4045.

Council of Science Editors:

Dao Nguyen A. Trace initiale des solutions d'équations hamilton-jacobi avec termes d'absorption : Initial trace of solutions of Hamilton-Jacobi equations with absorption terms. [Doctoral Dissertation]. Université François-Rabelais de Tours; 2013. Available from: http://www.theses.fr/2013TOUR4045


University of Arizona

4. Baumeister, Richard, 1951-. APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS .

Degree: 1977, University of Arizona

Subjects/Keywords: Hamilton-Jacobi equations.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Baumeister, Richard, 1. (1977). APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/298471

Chicago Manual of Style (16th Edition):

Baumeister, Richard, 1951-. “APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS .” 1977. Doctoral Dissertation, University of Arizona. Accessed October 23, 2019. http://hdl.handle.net/10150/298471.

MLA Handbook (7th Edition):

Baumeister, Richard, 1951-. “APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS .” 1977. Web. 23 Oct 2019.

Vancouver:

Baumeister, Richard 1. APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS . [Internet] [Doctoral dissertation]. University of Arizona; 1977. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/10150/298471.

Council of Science Editors:

Baumeister, Richard 1. APPLICATIONS OF CLEBSCH POTENTIALS TO VARIATIONAL PRINCIPLES IN THE THEORY OF PHYSICAL FIELDS . [Doctoral Dissertation]. University of Arizona; 1977. Available from: http://hdl.handle.net/10150/298471


University of Waterloo

5. Han, Dong. Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations.

Degree: 2011, University of Waterloo

 We propose multigrid methods for solving Hamilton-Jacobi-Bellman (HJB) and Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations. The methods are based on the full approximation scheme. We propose a damped-relaxation… (more)

Subjects/Keywords: multigrid methods; full approximation scheme; relaxation scheme; policy iteration; Hamilton-Jacobi-Bellman Equations; Hamilton-Jacobi-Bellman-Isaacs Equations; jump in control

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Han, D. (2011). Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/6021

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Han, Dong. “Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations.” 2011. Thesis, University of Waterloo. Accessed October 23, 2019. http://hdl.handle.net/10012/6021.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Han, Dong. “Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations.” 2011. Web. 23 Oct 2019.

Vancouver:

Han D. Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations. [Internet] [Thesis]. University of Waterloo; 2011. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/10012/6021.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Han D. Multigrid Methods for Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations. [Thesis]. University of Waterloo; 2011. Available from: http://hdl.handle.net/10012/6021

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Irvine

6. Gao, Hongwei. Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D.

Degree: Mathematics, 2016, University of California – Irvine

 This dissertation considers the random homogenization of coercive Hamilton-Jacobi equations and it gives the most generalized result in 1-D. Basically, we can prove that in… (more)

Subjects/Keywords: Mathematics; G-equations; Hamilton-Jacobi equation; homogenization; nonconvex; random; strain effect

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gao, H. (2016). Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D. (Thesis). University of California – Irvine. Retrieved from http://www.escholarship.org/uc/item/0wx3x8kw

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gao, Hongwei. “Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D.” 2016. Thesis, University of California – Irvine. Accessed October 23, 2019. http://www.escholarship.org/uc/item/0wx3x8kw.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gao, Hongwei. “Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D.” 2016. Web. 23 Oct 2019.

Vancouver:

Gao H. Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D. [Internet] [Thesis]. University of California – Irvine; 2016. [cited 2019 Oct 23]. Available from: http://www.escholarship.org/uc/item/0wx3x8kw.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gao H. Random Homogenization of Coercive Hamilton-Jacobi equations in 1-D. [Thesis]. University of California – Irvine; 2016. Available from: http://www.escholarship.org/uc/item/0wx3x8kw

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


King Abdullah University of Science and Technology

7. Duisembay, Serikbolsyn. Convergent Difference Schemes for Hamilton-Jacobi equations.

Degree: 2018, King Abdullah University of Science and Technology

 In this thesis, we consider second-order fully nonlinear partial differential equations of elliptic type. Our aim is to develop computational methods using convergent difference schemes… (more)

Subjects/Keywords: Hamilton-Jacobi equations; difference schemes; Viscosity solutions; numerical methods

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duisembay, S. (2018). Convergent Difference Schemes for Hamilton-Jacobi equations. (Thesis). King Abdullah University of Science and Technology. Retrieved from http://hdl.handle.net/10754/627772

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Duisembay, Serikbolsyn. “Convergent Difference Schemes for Hamilton-Jacobi equations.” 2018. Thesis, King Abdullah University of Science and Technology. Accessed October 23, 2019. http://hdl.handle.net/10754/627772.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Duisembay, Serikbolsyn. “Convergent Difference Schemes for Hamilton-Jacobi equations.” 2018. Web. 23 Oct 2019.

Vancouver:

Duisembay S. Convergent Difference Schemes for Hamilton-Jacobi equations. [Internet] [Thesis]. King Abdullah University of Science and Technology; 2018. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/10754/627772.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Duisembay S. Convergent Difference Schemes for Hamilton-Jacobi equations. [Thesis]. King Abdullah University of Science and Technology; 2018. Available from: http://hdl.handle.net/10754/627772

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Minnesota

8. Merev, Ivan Georgiev. A posteriori error estimates for time-dependent Hamilton-Jacobi equations.

Degree: PhD, Mathematics, 2010, University of Minnesota

 We present a local a posteriori error estimate for general numerical methods for time-dependent Hamilton-Jacobi equations. Since Hamilton-Jacobi equations find applications in many areas there… (more)

Subjects/Keywords: A posteriori error estimates; Hamilton-Jacobi equations; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Merev, I. G. (2010). A posteriori error estimates for time-dependent Hamilton-Jacobi equations. (Doctoral Dissertation). University of Minnesota. Retrieved from http://purl.umn.edu/92278

Chicago Manual of Style (16th Edition):

Merev, Ivan Georgiev. “A posteriori error estimates for time-dependent Hamilton-Jacobi equations.” 2010. Doctoral Dissertation, University of Minnesota. Accessed October 23, 2019. http://purl.umn.edu/92278.

MLA Handbook (7th Edition):

Merev, Ivan Georgiev. “A posteriori error estimates for time-dependent Hamilton-Jacobi equations.” 2010. Web. 23 Oct 2019.

Vancouver:

Merev IG. A posteriori error estimates for time-dependent Hamilton-Jacobi equations. [Internet] [Doctoral dissertation]. University of Minnesota; 2010. [cited 2019 Oct 23]. Available from: http://purl.umn.edu/92278.

Council of Science Editors:

Merev IG. A posteriori error estimates for time-dependent Hamilton-Jacobi equations. [Doctoral Dissertation]. University of Minnesota; 2010. Available from: http://purl.umn.edu/92278


University of Illinois – Urbana-Champaign

9. Garnica, Alvaro David. A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics.

Degree: MS, Civil Engineering, 2016, University of Illinois – Urbana-Champaign

Hamilton-Jacobi equations have repeatedly emerged in many fields of physics, most notably, optimal control, differential games, geometric optics, and image processing. This thesis presents a… (more)

Subjects/Keywords: Electroelastotstatics; Hamilton-Jacobi equations; Homogenization; WENO scheme; Elastic energy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Garnica, A. D. (2016). A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/92764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Garnica, Alvaro David. “A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics.” 2016. Thesis, University of Illinois – Urbana-Champaign. Accessed October 23, 2019. http://hdl.handle.net/2142/92764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Garnica, Alvaro David. “A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics.” 2016. Web. 23 Oct 2019.

Vancouver:

Garnica AD. A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2016. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/2142/92764.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Garnica AD. A WENO finite difference scheme for a new class of Hamilton-Jacobi equations in electroelastostatics. [Thesis]. University of Illinois – Urbana-Champaign; 2016. Available from: http://hdl.handle.net/2142/92764

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

10. Bouin, Emeric. Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis.

Degree: Docteur es, Mathématiques, 2014, Lyon, École normale supérieure

Cette thèse est consacrée à l'étude de phénomènes de propagation dans des modèles d’EDP venant de la biologie. On étudie des équations cinétiques inspirées par… (more)

Subjects/Keywords: Equations cinétiques; Équations de réaction-diffusion; Équations de Hamilton-Jacobi; Phénomènes de propagation; Propagation accélérée; Modélisation; Kinetic equations; Reaction-diffusion equations; Hamilton-Jacobi equations; Front propagation; Acceleration; Modelling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bouin, E. (2014). Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis. (Doctoral Dissertation). Lyon, École normale supérieure. Retrieved from http://www.theses.fr/2014ENSL0960

Chicago Manual of Style (16th Edition):

Bouin, Emeric. “Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis.” 2014. Doctoral Dissertation, Lyon, École normale supérieure. Accessed October 23, 2019. http://www.theses.fr/2014ENSL0960.

MLA Handbook (7th Edition):

Bouin, Emeric. “Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis.” 2014. Web. 23 Oct 2019.

Vancouver:

Bouin E. Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis. [Internet] [Doctoral dissertation]. Lyon, École normale supérieure; 2014. [cited 2019 Oct 23]. Available from: http://www.theses.fr/2014ENSL0960.

Council of Science Editors:

Bouin E. Propagation de fronts structurés en biologie - Modélisation et analyse mathématique : Propagation of structured fronts in biology - Modelling and Mathematical analysis. [Doctoral Dissertation]. Lyon, École normale supérieure; 2014. Available from: http://www.theses.fr/2014ENSL0960


Georgia Tech

11. Mayorga Tatarin, Sergio. On a classical solution to the master equation of a first order mean field game.

Degree: PhD, Mathematics, 2019, Georgia Tech

 For a first order (deterministic) mean-field game with nonlocal couplings, a classical solution is constructed for the associated, so-called master equation, a partial differential equation… (more)

Subjects/Keywords: Mean field games; Master equation; Hamilton-Jacobi equations; Fixed-point method; Characteristic equations; Wasserstein gradient

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mayorga Tatarin, S. (2019). On a classical solution to the master equation of a first order mean field game. (Doctoral Dissertation). Georgia Tech. Retrieved from http://hdl.handle.net/1853/61760

Chicago Manual of Style (16th Edition):

Mayorga Tatarin, Sergio. “On a classical solution to the master equation of a first order mean field game.” 2019. Doctoral Dissertation, Georgia Tech. Accessed October 23, 2019. http://hdl.handle.net/1853/61760.

MLA Handbook (7th Edition):

Mayorga Tatarin, Sergio. “On a classical solution to the master equation of a first order mean field game.” 2019. Web. 23 Oct 2019.

Vancouver:

Mayorga Tatarin S. On a classical solution to the master equation of a first order mean field game. [Internet] [Doctoral dissertation]. Georgia Tech; 2019. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/1853/61760.

Council of Science Editors:

Mayorga Tatarin S. On a classical solution to the master equation of a first order mean field game. [Doctoral Dissertation]. Georgia Tech; 2019. Available from: http://hdl.handle.net/1853/61760


Michigan State University

12. Wang, Zixuan. Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations.

Degree: 2015, Michigan State University

Thesis Ph. D. Michigan State University. Applied Mathematics 2015

This thesis focuses on two related topics, which are to design efficient discontinuous Galerkin (DG) schemes… (more)

Subjects/Keywords: Galerkin methods; Hamilton-Jacobi equations – Numerical solutions; Differential equations, Elliptic – Numerical solutions; Applied mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, Z. (2015). Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations. (Thesis). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:3704

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wang, Zixuan. “Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations.” 2015. Thesis, Michigan State University. Accessed October 23, 2019. http://etd.lib.msu.edu/islandora/object/etd:3704.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wang, Zixuan. “Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations.” 2015. Web. 23 Oct 2019.

Vancouver:

Wang Z. Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations. [Internet] [Thesis]. Michigan State University; 2015. [cited 2019 Oct 23]. Available from: http://etd.lib.msu.edu/islandora/object/etd:3704.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wang Z. Discontinuous Galerkin methods for Hamilton-Jacobi equations and high-dimensional elliptic equations. [Thesis]. Michigan State University; 2015. Available from: http://etd.lib.msu.edu/islandora/object/etd:3704

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

13. Wu, Xiaochi. Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation.

Degree: Docteur es, Mathématiques, 2018, Brest

Cette thèse concerne les jeux différentiels à somme nulle et à deux joueurs avec information incomplète. La structure de l'information est liée à un signal… (more)

Subjects/Keywords: Jeux Différentiels; Information incomplète; Equations d’Hamilton-Jacobi; Révélation; Signaux; Differential games; Incomplete information; Hamilton-Jacobi equations; Revealing; Signals; 519.32

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wu, X. (2018). Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation. (Doctoral Dissertation). Brest. Retrieved from http://www.theses.fr/2018BRES0023

Chicago Manual of Style (16th Edition):

Wu, Xiaochi. “Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation.” 2018. Doctoral Dissertation, Brest. Accessed October 23, 2019. http://www.theses.fr/2018BRES0023.

MLA Handbook (7th Edition):

Wu, Xiaochi. “Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation.” 2018. Web. 23 Oct 2019.

Vancouver:

Wu X. Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation. [Internet] [Doctoral dissertation]. Brest; 2018. [cited 2019 Oct 23]. Available from: http://www.theses.fr/2018BRES0023.

Council of Science Editors:

Wu X. Jeux différentiels avec information incomplète : signaux et révélations : Differential games with incomplete information : signals and revelation. [Doctoral Dissertation]. Brest; 2018. Available from: http://www.theses.fr/2018BRES0023

14. Therme, Nicolas. Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards.

Degree: Docteur es, Mathématiques, 2015, Aix Marseille Université

Dans les installations nucléaires, les explosions, qu’elles soient d’origine interne ou externe, peuvent entrainer la rupture du confinement et le rejet de matières radioactives dans… (more)

Subjects/Keywords: Volumes finis; Equations d'Euler; Hamilton-Jacobi; Muscl; Mailage décalé; Stabilité; Analyse numérique; Fluides compressibles; Finite Volumes; Euler equations; Hamilton-Jacobi; Compressible flows; Staggered discretization; Muscl; Numerical Analysis; Stability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Therme, N. (2015). Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards. (Doctoral Dissertation). Aix Marseille Université. Retrieved from http://www.theses.fr/2015AIXM4775

Chicago Manual of Style (16th Edition):

Therme, Nicolas. “Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards.” 2015. Doctoral Dissertation, Aix Marseille Université. Accessed October 23, 2019. http://www.theses.fr/2015AIXM4775.

MLA Handbook (7th Edition):

Therme, Nicolas. “Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards.” 2015. Web. 23 Oct 2019.

Vancouver:

Therme N. Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards. [Internet] [Doctoral dissertation]. Aix Marseille Université 2015. [cited 2019 Oct 23]. Available from: http://www.theses.fr/2015AIXM4775.

Council of Science Editors:

Therme N. Schémas numériques pour la simulation de l'explosion : numerical schemes for explosion hazards. [Doctoral Dissertation]. Aix Marseille Université 2015. Available from: http://www.theses.fr/2015AIXM4775


University of Oxford

15. Smears, Iain Robert Nicholas. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.

Degree: PhD, 2015, University of Oxford

 We propose a discontinuous Galerkin finite element method (DGFEM) for fully nonlinear elliptic Hamilton – Jacobi – Bellman (HJB) partial differential equations (PDE) of second order with… (more)

Subjects/Keywords: 515; Mathematics; Numerical analysis; Finite element methods; discontinuous Galerkin; Hamilton-Jacobi-Bellman equations; Cordes coefficients

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smears, I. R. N. (2015). Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822

Chicago Manual of Style (16th Edition):

Smears, Iain Robert Nicholas. “Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.” 2015. Doctoral Dissertation, University of Oxford. Accessed October 23, 2019. http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822.

MLA Handbook (7th Edition):

Smears, Iain Robert Nicholas. “Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients.” 2015. Web. 23 Oct 2019.

Vancouver:

Smears IRN. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. [Internet] [Doctoral dissertation]. University of Oxford; 2015. [cited 2019 Oct 23]. Available from: http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822.

Council of Science Editors:

Smears IRN. Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients. [Doctoral Dissertation]. University of Oxford; 2015. Available from: http://ora.ox.ac.uk/objects/uuid:7f2a46f5-f81b-48c3-87c4-eaf9ebc54d02 ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.664822


Rhodes University

16. Adams, Ross Montague. A study of a class of invariant optimal control problems on the Euclidean group SE(2).

Degree: Faculty of Science, Mathematics (Pure and Applied), 2011, Rhodes University

 The aim of this thesis is to study a class of left-invariant optimal control problems on the matrix Lie group SE(2). We classify, under detached… (more)

Subjects/Keywords: Matrix groups; Lie groups; Extremal problems (Mathematics); Maximum principles (Mathematics); Hamilton-Jacobi equations; Lyapunov stability

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Adams, R. M. (2011). A study of a class of invariant optimal control problems on the Euclidean group SE(2). (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1006060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Adams, Ross Montague. “A study of a class of invariant optimal control problems on the Euclidean group SE(2).” 2011. Thesis, Rhodes University. Accessed October 23, 2019. http://hdl.handle.net/10962/d1006060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Adams, Ross Montague. “A study of a class of invariant optimal control problems on the Euclidean group SE(2).” 2011. Web. 23 Oct 2019.

Vancouver:

Adams RM. A study of a class of invariant optimal control problems on the Euclidean group SE(2). [Internet] [Thesis]. Rhodes University; 2011. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/10962/d1006060.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Adams RM. A study of a class of invariant optimal control problems on the Euclidean group SE(2). [Thesis]. Rhodes University; 2011. Available from: http://hdl.handle.net/10962/d1006060

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of British Columbia

17. Offin, Daniel C. A Hamilton-Jacobi approach to the differential inclusion problem .

Degree: 1979, University of British Columbia

 In the classical calculus of variations, the Hamilton - Jacobi theory leads, under general hypotheses, to sufficient conditions for a local minimum. The optimal control… (more)

Subjects/Keywords: Hamilton-Jacobi equations; Calculus of variations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Offin, D. C. (1979). A Hamilton-Jacobi approach to the differential inclusion problem . (Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/21432

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Offin, Daniel C. “A Hamilton-Jacobi approach to the differential inclusion problem .” 1979. Thesis, University of British Columbia. Accessed October 23, 2019. http://hdl.handle.net/2429/21432.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Offin, Daniel C. “A Hamilton-Jacobi approach to the differential inclusion problem .” 1979. Web. 23 Oct 2019.

Vancouver:

Offin DC. A Hamilton-Jacobi approach to the differential inclusion problem . [Internet] [Thesis]. University of British Columbia; 1979. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/2429/21432.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Offin DC. A Hamilton-Jacobi approach to the differential inclusion problem . [Thesis]. University of British Columbia; 1979. Available from: http://hdl.handle.net/2429/21432

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oklahoma

18. Acharya, Keshav Raj. Specral Theory of Canonical Systems.

Degree: PhD, 2013, University of Oklahoma

 Next, we prove Remling's theorem on canonical systems. We follow the similartechniques of Remling from [14]. More precisely, we rst prove Breimesser-Pearson theorem on canonical… (more)

Subjects/Keywords: Spectral theory (Mathematics); Hilbert space; Hamilton-Jacobi equations; Schrödinger equation; Quantum theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Acharya, K. R. (2013). Specral Theory of Canonical Systems. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/318768

Chicago Manual of Style (16th Edition):

Acharya, Keshav Raj. “Specral Theory of Canonical Systems.” 2013. Doctoral Dissertation, University of Oklahoma. Accessed October 23, 2019. http://hdl.handle.net/11244/318768.

MLA Handbook (7th Edition):

Acharya, Keshav Raj. “Specral Theory of Canonical Systems.” 2013. Web. 23 Oct 2019.

Vancouver:

Acharya KR. Specral Theory of Canonical Systems. [Internet] [Doctoral dissertation]. University of Oklahoma; 2013. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/11244/318768.

Council of Science Editors:

Acharya KR. Specral Theory of Canonical Systems. [Doctoral Dissertation]. University of Oklahoma; 2013. Available from: http://hdl.handle.net/11244/318768


University of Sydney

19. Malloch, Hamish Jr. The valuation of options on traded accounts: continuous and discrete time models .

Degree: 2010, University of Sydney

 In this thesis we are concerned with valuing options on traded accounts using both continuous and discrete time models. An option on a traded account… (more)

Subjects/Keywords: options on traded accounts; passport options; stochastic control; Hamilton Jacobi Bellman equations; binomial trees

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Malloch, H. J. (2010). The valuation of options on traded accounts: continuous and discrete time models . (Thesis). University of Sydney. Retrieved from http://hdl.handle.net/2123/7239

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Malloch, Hamish Jr. “The valuation of options on traded accounts: continuous and discrete time models .” 2010. Thesis, University of Sydney. Accessed October 23, 2019. http://hdl.handle.net/2123/7239.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Malloch, Hamish Jr. “The valuation of options on traded accounts: continuous and discrete time models .” 2010. Web. 23 Oct 2019.

Vancouver:

Malloch HJ. The valuation of options on traded accounts: continuous and discrete time models . [Internet] [Thesis]. University of Sydney; 2010. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/2123/7239.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Malloch HJ. The valuation of options on traded accounts: continuous and discrete time models . [Thesis]. University of Sydney; 2010. Available from: http://hdl.handle.net/2123/7239

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Technical University of Lisbon

20. Pólvora, Pedro Ribeiro Coelho Fouto. Optimal value of a firm investing in exogeneous technology.

Degree: 2012, Technical University of Lisbon

Mestrado em Matemática Financeira

Neste trabalho estudamos o valor ótimo para uma Firma cujo valor função depende de um nível de tecnologia exógeno. Em qualquer… (more)

Subjects/Keywords: Opções reais de investimento; processos de salto de Poisson; Equações Hamilton-Jacobi-Bellman; Tempos de paragem; Real investment options; Poisson jump processes; Hamilton-Jacobi-Bellman equations; Stopping times

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pólvora, P. R. C. F. (2012). Optimal value of a firm investing in exogeneous technology. (Thesis). Technical University of Lisbon. Retrieved from http://www.rcaap.pt/detail.jsp?id=oai:www.repository.utl.pt:10400.5/10368

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pólvora, Pedro Ribeiro Coelho Fouto. “Optimal value of a firm investing in exogeneous technology.” 2012. Thesis, Technical University of Lisbon. Accessed October 23, 2019. http://www.rcaap.pt/detail.jsp?id=oai:www.repository.utl.pt:10400.5/10368.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pólvora, Pedro Ribeiro Coelho Fouto. “Optimal value of a firm investing in exogeneous technology.” 2012. Web. 23 Oct 2019.

Vancouver:

Pólvora PRCF. Optimal value of a firm investing in exogeneous technology. [Internet] [Thesis]. Technical University of Lisbon; 2012. [cited 2019 Oct 23]. Available from: http://www.rcaap.pt/detail.jsp?id=oai:www.repository.utl.pt:10400.5/10368.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pólvora PRCF. Optimal value of a firm investing in exogeneous technology. [Thesis]. Technical University of Lisbon; 2012. Available from: http://www.rcaap.pt/detail.jsp?id=oai:www.repository.utl.pt:10400.5/10368

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

21. Mateos González, Álvaro. Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale.

Degree: Docteur es, Mathématiques, 2017, Lyon

Cette thèse est consacrée à l'analyse asymptotique d'équations aux dérivées partielles issues de modèles de déplacement sous-diffusif en biologie cellulaire. Notre motivation biologique est fondée… (more)

Subjects/Keywords: Analyse asymptotique; Equations aux dérivées partielles; Diffusion anormale; Équations structurées; Entropie relative; Equations de Hamilton-Jacobi; Sous diffusion en biologie cellulaire; Asomptic analysis; Partial differential equations; Anomalous diffusion; Structured equations; Relative entropy; Hamilton-Jacobi equations; Subdiffusion in cell biology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mateos González, A. (2017). Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2017LYSEN069

Chicago Manual of Style (16th Edition):

Mateos González, Álvaro. “Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale.” 2017. Doctoral Dissertation, Lyon. Accessed October 23, 2019. http://www.theses.fr/2017LYSEN069.

MLA Handbook (7th Edition):

Mateos González, Álvaro. “Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale.” 2017. Web. 23 Oct 2019.

Vancouver:

Mateos González A. Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale. [Internet] [Doctoral dissertation]. Lyon; 2017. [cited 2019 Oct 23]. Available from: http://www.theses.fr/2017LYSEN069.

Council of Science Editors:

Mateos González A. Asymptotic Analysis of Partial Differential Equations Arising in Biological Processes of Anomalous Diffusion : Analyse asymptotique d’équations aux dérivées partielles issues de processus biologiques de diffusion anormale. [Doctoral Dissertation]. Lyon; 2017. Available from: http://www.theses.fr/2017LYSEN069

22. Scarinci, Teresa. Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal.

Degree: Docteur es, Mathématiques, 2015, Université Pierre et Marie Curie – Paris VI

Dans cette thèse nous étudions une classe d’équations de Hamilton-Jacobi-Bellman provenant de la théorie du contrôle optimal des équations différentielles ordinaires. Nous nous intéressons principalement… (more)

Subjects/Keywords: Equations d'Hamilton-Jacobi-Bellman; Relation de sensibilité; Contrôle optimal; Inclusion différentielles; Solutions de viscosité; Problème de mayer; Hamilton-Jacobi-Bellman equations; Optimal control; Sensitivity relations; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scarinci, T. (2015). Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2015PA066573

Chicago Manual of Style (16th Edition):

Scarinci, Teresa. “Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal.” 2015. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed October 23, 2019. http://www.theses.fr/2015PA066573.

MLA Handbook (7th Edition):

Scarinci, Teresa. “Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal.” 2015. Web. 23 Oct 2019.

Vancouver:

Scarinci T. Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2015. [cited 2019 Oct 23]. Available from: http://www.theses.fr/2015PA066573.

Council of Science Editors:

Scarinci T. Sensitivity Relations and Regularity of Solutions of HJB Equations arising in Optimal Control : Relations de sensibilité et régularité des solutions d'une classe d'équations d'HJB en controle optimal. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2015. Available from: http://www.theses.fr/2015PA066573

23. Sedrakyan, Hayk. Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control.

Degree: Docteur es, Mathématiques Appliquées, 2014, Université Pierre et Marie Curie – Paris VI

Cette thèse se compose de deux parties principales. Dans la première partie, le Chapitre 3 est consacré à l'étude du comportement limite d'un système contrôlé… (more)

Subjects/Keywords: Perturbations singulières; Problème de Bolza; Condition de nonexpansivité; Solution de viscosité; Equations d'Hamilton-Jacobi; Contraintes d'état; Bolza problem; Hamilton-Jacobi equations; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sedrakyan, H. (2014). Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control. (Doctoral Dissertation). Université Pierre et Marie Curie – Paris VI. Retrieved from http://www.theses.fr/2014PA066681

Chicago Manual of Style (16th Edition):

Sedrakyan, Hayk. “Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control.” 2014. Doctoral Dissertation, Université Pierre et Marie Curie – Paris VI. Accessed October 23, 2019. http://www.theses.fr/2014PA066681.

MLA Handbook (7th Edition):

Sedrakyan, Hayk. “Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control.” 2014. Web. 23 Oct 2019.

Vancouver:

Sedrakyan H. Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control. [Internet] [Doctoral dissertation]. Université Pierre et Marie Curie – Paris VI; 2014. [cited 2019 Oct 23]. Available from: http://www.theses.fr/2014PA066681.

Council of Science Editors:

Sedrakyan H. Comportement limite des systèmes singuliers et les limites de fonctions valeur en contrôle optimal : Limit behavior of singular systems and the limits of value functions in optimal control. [Doctoral Dissertation]. Université Pierre et Marie Curie – Paris VI; 2014. Available from: http://www.theses.fr/2014PA066681


University of Waterloo

24. Amarala, Swathi. Monotone Numerical Methods for Nonlinear Systems and Second Order Partial Differential Equations.

Degree: 2015, University of Waterloo

 Multigrid methods are numerical solvers for partial differential equations (PDEs) that systematically exploit the relationship between approximate solutions on multiple grids to arrive at a… (more)

Subjects/Keywords: Numerical Methods; Monotone Methods; Partial Differential Equations; Multigrid Methods; Viscosity Solution; Wide Stencil Discretization; Euler Equations; Hamilton-Jacobi-Bellman Equations; Hamilton-Jacobi-Bellman-Isaacs Equations; Systems of PDEs; High Dimensional PDEs with Cross Derivatives; Total Variation Diminishing; Monotonicity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Amarala, S. (2015). Monotone Numerical Methods for Nonlinear Systems and Second Order Partial Differential Equations. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/9490

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Amarala, Swathi. “Monotone Numerical Methods for Nonlinear Systems and Second Order Partial Differential Equations.” 2015. Thesis, University of Waterloo. Accessed October 23, 2019. http://hdl.handle.net/10012/9490.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Amarala, Swathi. “Monotone Numerical Methods for Nonlinear Systems and Second Order Partial Differential Equations.” 2015. Web. 23 Oct 2019.

Vancouver:

Amarala S. Monotone Numerical Methods for Nonlinear Systems and Second Order Partial Differential Equations. [Internet] [Thesis]. University of Waterloo; 2015. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/10012/9490.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Amarala S. Monotone Numerical Methods for Nonlinear Systems and Second Order Partial Differential Equations. [Thesis]. University of Waterloo; 2015. Available from: http://hdl.handle.net/10012/9490

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

25. Zou, Bin. Stochastic Control in Optimal Insurance and Investment with Regime Switching.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2014, University of Alberta

 Motivated by the financial crisis of 2007-2009 and the increasing demand for portfolio and risk management, we study optimal insurance and investment problems with regime… (more)

Subjects/Keywords: Economic Analysis; Stochastic Control; Financial Crisis; Risk Management; Optimal Insurance; Hamilton-Jacobi-Bellman equations; Optimal Consumption and Investment; Regime Switching

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zou, B. (2014). Stochastic Control in Optimal Insurance and Investment with Regime Switching. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/0v838297v

Chicago Manual of Style (16th Edition):

Zou, Bin. “Stochastic Control in Optimal Insurance and Investment with Regime Switching.” 2014. Doctoral Dissertation, University of Alberta. Accessed October 23, 2019. https://era.library.ualberta.ca/files/0v838297v.

MLA Handbook (7th Edition):

Zou, Bin. “Stochastic Control in Optimal Insurance and Investment with Regime Switching.” 2014. Web. 23 Oct 2019.

Vancouver:

Zou B. Stochastic Control in Optimal Insurance and Investment with Regime Switching. [Internet] [Doctoral dissertation]. University of Alberta; 2014. [cited 2019 Oct 23]. Available from: https://era.library.ualberta.ca/files/0v838297v.

Council of Science Editors:

Zou B. Stochastic Control in Optimal Insurance and Investment with Regime Switching. [Doctoral Dissertation]. University of Alberta; 2014. Available from: https://era.library.ualberta.ca/files/0v838297v


Macquarie University

26. Manic, Ludmila. Linear programming based approaches to optimal control problems with long run average optimality criteria.

Degree: 2015, Macquarie University

"August 31, 2015"

Empirical thesis.

I. Use of approximations of Hamilton-Jacobi-Bellman inequality for solving long run average problems of optimal control  – II. On near… (more)

Subjects/Keywords: Mathematical optimization; Hamilton-Jacobi equations; Linear programming; optimal control problems; singularly perturbed optimal control problems; averaging; occupational measures; numerical solution

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Manic, L. (2015). Linear programming based approaches to optimal control problems with long run average optimality criteria. (Doctoral Dissertation). Macquarie University. Retrieved from http://hdl.handle.net/1959.14/1069099

Chicago Manual of Style (16th Edition):

Manic, Ludmila. “Linear programming based approaches to optimal control problems with long run average optimality criteria.” 2015. Doctoral Dissertation, Macquarie University. Accessed October 23, 2019. http://hdl.handle.net/1959.14/1069099.

MLA Handbook (7th Edition):

Manic, Ludmila. “Linear programming based approaches to optimal control problems with long run average optimality criteria.” 2015. Web. 23 Oct 2019.

Vancouver:

Manic L. Linear programming based approaches to optimal control problems with long run average optimality criteria. [Internet] [Doctoral dissertation]. Macquarie University; 2015. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/1959.14/1069099.

Council of Science Editors:

Manic L. Linear programming based approaches to optimal control problems with long run average optimality criteria. [Doctoral Dissertation]. Macquarie University; 2015. Available from: http://hdl.handle.net/1959.14/1069099


Rhodes University

27. Matravers, David Richard. The Hamilton-Jacobi theory in general relativity theory and certain Petrov type D metrics.

Degree: Faculty of Science, Mathematics (Pure and Applied), 1973, Rhodes University

 Introduction: The discovery of new solutions to Einstein's field equations has long been a problem in General Relativity. However due to new techniques of Newman… (more)

Subjects/Keywords: Hamilton-Jacobi equations; General relativity (Physics); Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Matravers, D. R. (1973). The Hamilton-Jacobi theory in general relativity theory and certain Petrov type D metrics. (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1007551

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Matravers, David Richard. “The Hamilton-Jacobi theory in general relativity theory and certain Petrov type D metrics.” 1973. Thesis, Rhodes University. Accessed October 23, 2019. http://hdl.handle.net/10962/d1007551.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Matravers, David Richard. “The Hamilton-Jacobi theory in general relativity theory and certain Petrov type D metrics.” 1973. Web. 23 Oct 2019.

Vancouver:

Matravers DR. The Hamilton-Jacobi theory in general relativity theory and certain Petrov type D metrics. [Internet] [Thesis]. Rhodes University; 1973. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/10962/d1007551.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Matravers DR. The Hamilton-Jacobi theory in general relativity theory and certain Petrov type D metrics. [Thesis]. Rhodes University; 1973. Available from: http://hdl.handle.net/10962/d1007551

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

28. Pusch, Gordon D. Differential algebraic methods for obtaining approximate numerical solutions to the Hamilton-Jacobi equation.

Degree: PhD, Physics, 1990, Virginia Tech

Subjects/Keywords: Hamilton-Jacobi equations; LD5655.V856 1990.P873

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pusch, G. D. (1990). Differential algebraic methods for obtaining approximate numerical solutions to the Hamilton-Jacobi equation. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/28441

Chicago Manual of Style (16th Edition):

Pusch, Gordon D. “Differential algebraic methods for obtaining approximate numerical solutions to the Hamilton-Jacobi equation.” 1990. Doctoral Dissertation, Virginia Tech. Accessed October 23, 2019. http://hdl.handle.net/10919/28441.

MLA Handbook (7th Edition):

Pusch, Gordon D. “Differential algebraic methods for obtaining approximate numerical solutions to the Hamilton-Jacobi equation.” 1990. Web. 23 Oct 2019.

Vancouver:

Pusch GD. Differential algebraic methods for obtaining approximate numerical solutions to the Hamilton-Jacobi equation. [Internet] [Doctoral dissertation]. Virginia Tech; 1990. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/10919/28441.

Council of Science Editors:

Pusch GD. Differential algebraic methods for obtaining approximate numerical solutions to the Hamilton-Jacobi equation. [Doctoral Dissertation]. Virginia Tech; 1990. Available from: http://hdl.handle.net/10919/28441


University of Waterloo

29. Chen, Yangang. Numerical Methods for Hamilton-Jacobi-Bellman Equations with Applications.

Degree: 2019, University of Waterloo

Hamilton-Jacobi-Bellman (HJB) equations are nonlinear controlled partial differential equations (PDEs). In this thesis, we propose various numerical methods for HJB equations arising from three specific… (more)

Subjects/Keywords: Hamilton-Jacobi-Bellman equations; finite difference; multigrid methods; neural networks; mean field games; American options; image registration

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, Y. (2019). Numerical Methods for Hamilton-Jacobi-Bellman Equations with Applications. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/14947

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chen, Yangang. “Numerical Methods for Hamilton-Jacobi-Bellman Equations with Applications.” 2019. Thesis, University of Waterloo. Accessed October 23, 2019. http://hdl.handle.net/10012/14947.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chen, Yangang. “Numerical Methods for Hamilton-Jacobi-Bellman Equations with Applications.” 2019. Web. 23 Oct 2019.

Vancouver:

Chen Y. Numerical Methods for Hamilton-Jacobi-Bellman Equations with Applications. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2019 Oct 23]. Available from: http://hdl.handle.net/10012/14947.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chen Y. Numerical Methods for Hamilton-Jacobi-Bellman Equations with Applications. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/14947

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

30. Erdélyi, Béla. Symplectic approximation of Hamiltonian flows and accurate simulation of fringe field effects.

Degree: PhD, Department of Physics and Astronomy, 2001, Michigan State University

Subjects/Keywords: Hamiltonian systems; Symplectic groups; Hamilton-Jacobi equations

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Erdélyi, B. (2001). Symplectic approximation of Hamiltonian flows and accurate simulation of fringe field effects. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:30950

Chicago Manual of Style (16th Edition):

Erdélyi, Béla. “Symplectic approximation of Hamiltonian flows and accurate simulation of fringe field effects.” 2001. Doctoral Dissertation, Michigan State University. Accessed October 23, 2019. http://etd.lib.msu.edu/islandora/object/etd:30950.

MLA Handbook (7th Edition):

Erdélyi, Béla. “Symplectic approximation of Hamiltonian flows and accurate simulation of fringe field effects.” 2001. Web. 23 Oct 2019.

Vancouver:

Erdélyi B. Symplectic approximation of Hamiltonian flows and accurate simulation of fringe field effects. [Internet] [Doctoral dissertation]. Michigan State University; 2001. [cited 2019 Oct 23]. Available from: http://etd.lib.msu.edu/islandora/object/etd:30950.

Council of Science Editors:

Erdélyi B. Symplectic approximation of Hamiltonian flows and accurate simulation of fringe field effects. [Doctoral Dissertation]. Michigan State University; 2001. Available from: http://etd.lib.msu.edu/islandora/object/etd:30950

[1] [2]

.