Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(HOMOTOPY GROUPS COHOMOTOPY GROUPS ALGEBRAIC TOPOLOGY ). Showing records 1 – 30 of 10919 total matches.

[1] [2] [3] [4] [5] … [364]

Search Limiters

Last 2 Years | English Only

Degrees

Levels

Languages

Country

▼ Search Limiters


ETH Zürich

1. Curjel, Caspar Robert. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.

Degree: 1961, ETH Zürich

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Curjel, C. R. (1961). Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135022

Chicago Manual of Style (16th Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/135022.

MLA Handbook (7th Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Web. 31 Oct 2020.

Vancouver:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1961. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/135022.

Council of Science Editors:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Doctoral Dissertation]. ETH Zürich; 1961. Available from: http://hdl.handle.net/20.500.11850/135022


ETH Zürich

2. Kervaire, Michel André. Courbure intégrale généralisée et homotopie.

Degree: 1956, ETH Zürich

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kervaire, M. A. (1956). Courbure intégrale généralisée et homotopie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133361

Chicago Manual of Style (16th Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/133361.

MLA Handbook (7th Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Web. 31 Oct 2020.

Vancouver:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Internet] [Doctoral dissertation]. ETH Zürich; 1956. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/133361.

Council of Science Editors:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Doctoral Dissertation]. ETH Zürich; 1956. Available from: http://hdl.handle.net/20.500.11850/133361


ETH Zürich

3. Stamm, Emil. Ueber die Homotopiegruppen gewisser Faserungen.

Degree: 1964, ETH Zürich

Subjects/Keywords: FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stamm, E. (1964). Ueber die Homotopiegruppen gewisser Faserungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131691

Chicago Manual of Style (16th Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/131691.

MLA Handbook (7th Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Web. 31 Oct 2020.

Vancouver:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1964. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/131691.

Council of Science Editors:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Doctoral Dissertation]. ETH Zürich; 1964. Available from: http://hdl.handle.net/20.500.11850/131691


ETH Zürich

4. Huber, Thomas. Rotation quasimorphisms for surfaces.

Degree: 2013, ETH Zürich

Subjects/Keywords: RÄUME KONSTANTER KRÜMMUNG (DIFFERENTIALGEOMETRIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SPACES OF CONSTANT CURVATURE (DIFFERENTIAL GEOMETRY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huber, T. (2013). Rotation quasimorphisms for surfaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153998

Chicago Manual of Style (16th Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/153998.

MLA Handbook (7th Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Web. 31 Oct 2020.

Vancouver:

Huber T. Rotation quasimorphisms for surfaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2013. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/153998.

Council of Science Editors:

Huber T. Rotation quasimorphisms for surfaces. [Doctoral Dissertation]. ETH Zürich; 2013. Available from: http://hdl.handle.net/20.500.11850/153998


ETH Zürich

5. Specker, Ernst P. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.

Degree: 1949, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); DREIDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); THREE-DIMENSIONAL MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Specker, E. P. (1949). Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133460

Chicago Manual of Style (16th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/133460.

MLA Handbook (7th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Web. 31 Oct 2020.

Vancouver:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Internet] [Doctoral dissertation]. ETH Zürich; 1949. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/133460.

Council of Science Editors:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Doctoral Dissertation]. ETH Zürich; 1949. Available from: http://hdl.handle.net/20.500.11850/133460


ETH Zürich

6. Ebersold, Johannes Michael. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.

Degree: 1955, ETH Zürich

Subjects/Keywords: FIXPUNKTE UND KOINZIDENZEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIXED POINTS AND COINCIDENCE POINTS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ebersold, J. M. (1955). Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132667

Chicago Manual of Style (16th Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/132667.

MLA Handbook (7th Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Web. 31 Oct 2020.

Vancouver:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Internet] [Doctoral dissertation]. ETH Zürich; 1955. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/132667.

Council of Science Editors:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Doctoral Dissertation]. ETH Zürich; 1955. Available from: http://hdl.handle.net/20.500.11850/132667


ETH Zürich

7. Wang, Ming-Xi. Rational points and transcendental points.

Degree: 2011, ETH Zürich

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); ELLIPTIC FUNCTIONS + ELLIPTIC INTEGRALS (MATHEMATICAL ANALYSIS); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ELLIPTISCHE FUNKTIONEN + ELLIPTISCHE INTEGRALE (ANALYSIS); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); ENDOMORPHISM RINGS (ALGEBRA); ENDOMORPHISMENRINGE (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, M. (2011). Rational points and transcendental points. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/41776

Chicago Manual of Style (16th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/41776.

MLA Handbook (7th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Web. 31 Oct 2020.

Vancouver:

Wang M. Rational points and transcendental points. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/41776.

Council of Science Editors:

Wang M. Rational points and transcendental points. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/41776


ETH Zürich

8. Strubel, Tobias. Fenchel-Nielsen coordinates for maximal representations.

Degree: 2011, ETH Zürich

Subjects/Keywords: LINEARE DARSTELLUNGEN VON LIE-ALGEBREN UND LIE-GRUPPEN; SYMPLEKTISCHE GRUPPEN (ALGEBRA); TEICHMÜLLERRÄUME (ANALYTISCHE RÄUME); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); LINEAR REPRESENTATIONS OF LIE ALGEBRAS AND LIE GROUPS; SYMPLECTIC GROUPS (ALGEBRA); TEICHMÜLLER SPACES (ANALYTIC SPACES); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Strubel, T. (2011). Fenchel-Nielsen coordinates for maximal representations. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153151

Chicago Manual of Style (16th Edition):

Strubel, Tobias. “Fenchel-Nielsen coordinates for maximal representations.” 2011. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/153151.

MLA Handbook (7th Edition):

Strubel, Tobias. “Fenchel-Nielsen coordinates for maximal representations.” 2011. Web. 31 Oct 2020.

Vancouver:

Strubel T. Fenchel-Nielsen coordinates for maximal representations. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/153151.

Council of Science Editors:

Strubel T. Fenchel-Nielsen coordinates for maximal representations. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/153151


ETH Zürich

9. Fornera, Linda Rita. Caractéristique eulérienne de groupes et rangs de modules projectifs.

Degree: 1986, ETH Zürich

Subjects/Keywords: CW-KOMPLEXE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); PROJEKTIVE MODULN + FLACHE MODULN (ALGEBRA); VON NEUMANN-ALGEBREN (FUNKTIONALANALYSIS); CW COMPLEXES (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); PROJECTIVE MODULES + FLAT MODULES (ALGEBRA); VON NEUMANN ALGEBRAS (FUNCTIONAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fornera, L. R. (1986). Caractéristique eulérienne de groupes et rangs de modules projectifs. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/138980

Chicago Manual of Style (16th Edition):

Fornera, Linda Rita. “Caractéristique eulérienne de groupes et rangs de modules projectifs.” 1986. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/138980.

MLA Handbook (7th Edition):

Fornera, Linda Rita. “Caractéristique eulérienne de groupes et rangs de modules projectifs.” 1986. Web. 31 Oct 2020.

Vancouver:

Fornera LR. Caractéristique eulérienne de groupes et rangs de modules projectifs. [Internet] [Doctoral dissertation]. ETH Zürich; 1986. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/138980.

Council of Science Editors:

Fornera LR. Caractéristique eulérienne de groupes et rangs de modules projectifs. [Doctoral Dissertation]. ETH Zürich; 1986. Available from: http://hdl.handle.net/20.500.11850/138980


Rutgers University

10. Wilson, Glen M., 1988-. Motivic stable stems over finite fields.

Degree: PhD, Mathematics, 2016, Rutgers University

Let l be a prime. For any algebraically closed field F of positive characteristic p different from l, we show that for all natural numbers… (more)

Subjects/Keywords: Homotopy theory; Homotopy groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilson, Glen M., 1. (2016). Motivic stable stems over finite fields. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/50158/

Chicago Manual of Style (16th Edition):

Wilson, Glen M., 1988-. “Motivic stable stems over finite fields.” 2016. Doctoral Dissertation, Rutgers University. Accessed October 31, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/50158/.

MLA Handbook (7th Edition):

Wilson, Glen M., 1988-. “Motivic stable stems over finite fields.” 2016. Web. 31 Oct 2020.

Vancouver:

Wilson, Glen M. 1. Motivic stable stems over finite fields. [Internet] [Doctoral dissertation]. Rutgers University; 2016. [cited 2020 Oct 31]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50158/.

Council of Science Editors:

Wilson, Glen M. 1. Motivic stable stems over finite fields. [Doctoral Dissertation]. Rutgers University; 2016. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50158/


University of Illinois – Chicago

11. Jaskowiak, Luke Andrew. Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields.

Degree: 2019, University of Illinois – Chicago

 The focus of this work is to approach the question of the classification of semisimple algebraic groups over perfect fields from the perspective of I.… (more)

Subjects/Keywords: Algebraic groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jaskowiak, L. A. (2019). Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23841

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jaskowiak, Luke Andrew. “Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields.” 2019. Thesis, University of Illinois – Chicago. Accessed October 31, 2020. http://hdl.handle.net/10027/23841.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jaskowiak, Luke Andrew. “Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields.” 2019. Web. 31 Oct 2020.

Vancouver:

Jaskowiak LA. Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields. [Internet] [Thesis]. University of Illinois – Chicago; 2019. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10027/23841.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jaskowiak LA. Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields. [Thesis]. University of Illinois – Chicago; 2019. Available from: http://hdl.handle.net/10027/23841

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Université Catholique de Louvain

12. Stulemeijer, Thierry. Semisimple algebraic groups from a topological group perspective.

Degree: 2017, Université Catholique de Louvain

An algebraic group is a mathematical concept finding its origins in the theory of Lie groups, which nowadays plays a central role in theoretical physics.… (more)

Subjects/Keywords: Algebraic groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stulemeijer, T. (2017). Semisimple algebraic groups from a topological group perspective. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/188311

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Stulemeijer, Thierry. “Semisimple algebraic groups from a topological group perspective.” 2017. Thesis, Université Catholique de Louvain. Accessed October 31, 2020. http://hdl.handle.net/2078.1/188311.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Stulemeijer, Thierry. “Semisimple algebraic groups from a topological group perspective.” 2017. Web. 31 Oct 2020.

Vancouver:

Stulemeijer T. Semisimple algebraic groups from a topological group perspective. [Internet] [Thesis]. Université Catholique de Louvain; 2017. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2078.1/188311.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Stulemeijer T. Semisimple algebraic groups from a topological group perspective. [Thesis]. Université Catholique de Louvain; 2017. Available from: http://hdl.handle.net/2078.1/188311

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oregon

13. Merrill, Leanne. Periodic Margolis Self Maps at p=2.

Degree: PhD, Department of Mathematics, 2018, University of Oregon

 The Periodicity theorem of Hopkins and Smith tells us that any finite spectrum supports a vn-map for some n. We are interested in finding finite… (more)

Subjects/Keywords: Algebraic topology; Homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Merrill, L. (2018). Periodic Margolis Self Maps at p=2. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/23144

Chicago Manual of Style (16th Edition):

Merrill, Leanne. “Periodic Margolis Self Maps at p=2.” 2018. Doctoral Dissertation, University of Oregon. Accessed October 31, 2020. http://hdl.handle.net/1794/23144.

MLA Handbook (7th Edition):

Merrill, Leanne. “Periodic Margolis Self Maps at p=2.” 2018. Web. 31 Oct 2020.

Vancouver:

Merrill L. Periodic Margolis Self Maps at p=2. [Internet] [Doctoral dissertation]. University of Oregon; 2018. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1794/23144.

Council of Science Editors:

Merrill L. Periodic Margolis Self Maps at p=2. [Doctoral Dissertation]. University of Oregon; 2018. Available from: http://hdl.handle.net/1794/23144


University of Oxford

14. Palmer, Martin. Configuration spaces and homological stability.

Degree: PhD, 2012, University of Oxford

 In this thesis we study the homological behaviour of configuration spaces as the number of objects in the configuration goes to infinity. For unordered configurations… (more)

Subjects/Keywords: 514; Algebraic topology; Mathematics; configuration spaces; homological stability; alternating groups; braid groups; spaces of submanifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Palmer, M. (2012). Configuration spaces and homological stability. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7e056dbd-2cdd-4eac-9473-53f750371f9a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580990

Chicago Manual of Style (16th Edition):

Palmer, Martin. “Configuration spaces and homological stability.” 2012. Doctoral Dissertation, University of Oxford. Accessed October 31, 2020. http://ora.ox.ac.uk/objects/uuid:7e056dbd-2cdd-4eac-9473-53f750371f9a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580990.

MLA Handbook (7th Edition):

Palmer, Martin. “Configuration spaces and homological stability.” 2012. Web. 31 Oct 2020.

Vancouver:

Palmer M. Configuration spaces and homological stability. [Internet] [Doctoral dissertation]. University of Oxford; 2012. [cited 2020 Oct 31]. Available from: http://ora.ox.ac.uk/objects/uuid:7e056dbd-2cdd-4eac-9473-53f750371f9a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580990.

Council of Science Editors:

Palmer M. Configuration spaces and homological stability. [Doctoral Dissertation]. University of Oxford; 2012. Available from: http://ora.ox.ac.uk/objects/uuid:7e056dbd-2cdd-4eac-9473-53f750371f9a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580990


University of Zambia

15. Mwamba, Patrick. On projective representations on finite abelian group .

Degree: 2012, University of Zambia

 Saeed [11] has considered Schur multipliers of some of the finite abelian groups.The study of the schur multipliers of abelian groups is the first step… (more)

Subjects/Keywords: Finite Groups; Linear Algebraic Groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mwamba, P. (2012). On projective representations on finite abelian group . (Thesis). University of Zambia. Retrieved from http://hdl.handle.net/123456789/1690

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Mwamba, Patrick. “On projective representations on finite abelian group .” 2012. Thesis, University of Zambia. Accessed October 31, 2020. http://hdl.handle.net/123456789/1690.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Mwamba, Patrick. “On projective representations on finite abelian group .” 2012. Web. 31 Oct 2020.

Vancouver:

Mwamba P. On projective representations on finite abelian group . [Internet] [Thesis]. University of Zambia; 2012. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/123456789/1690.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mwamba P. On projective representations on finite abelian group . [Thesis]. University of Zambia; 2012. Available from: http://hdl.handle.net/123456789/1690

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Berkeley

16. Cho, Chang-Yeon. Topological types of Algebraic stacks.

Degree: Mathematics, 2016, University of California – Berkeley

 In developing homotopy theory in algebraic geometry, Michael Artin and Barry Mazur studied the \'etale homotopy types of schemes. Later, Eric Friedlander generalized them to… (more)

Subjects/Keywords: Mathematics; algebraic geometry; algebraic stacks; algebraic topology; \'etale homotopy; homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cho, C. (2016). Topological types of Algebraic stacks. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/1pv4m6nr

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cho, Chang-Yeon. “Topological types of Algebraic stacks.” 2016. Thesis, University of California – Berkeley. Accessed October 31, 2020. http://www.escholarship.org/uc/item/1pv4m6nr.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cho, Chang-Yeon. “Topological types of Algebraic stacks.” 2016. Web. 31 Oct 2020.

Vancouver:

Cho C. Topological types of Algebraic stacks. [Internet] [Thesis]. University of California – Berkeley; 2016. [cited 2020 Oct 31]. Available from: http://www.escholarship.org/uc/item/1pv4m6nr.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cho C. Topological types of Algebraic stacks. [Thesis]. University of California – Berkeley; 2016. Available from: http://www.escholarship.org/uc/item/1pv4m6nr

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


California State University – San Bernardino

17. Katykhin, Sergey. Hyperbolic Triangle Groups.

Degree: MAin Mathematics, Mathematics, 2020, California State University – San Bernardino

  This paper will be on hyperbolic reflections and triangle groups. We will compare hyperbolic reflection groups to Euclidean reflection groups. The goal of this… (more)

Subjects/Keywords: Hyperbolic Triangles Reflection Groups; Algebra; Algebraic Geometry; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Katykhin, S. (2020). Hyperbolic Triangle Groups. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/1109

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Katykhin, Sergey. “Hyperbolic Triangle Groups.” 2020. Thesis, California State University – San Bernardino. Accessed October 31, 2020. https://scholarworks.lib.csusb.edu/etd/1109.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Katykhin, Sergey. “Hyperbolic Triangle Groups.” 2020. Web. 31 Oct 2020.

Vancouver:

Katykhin S. Hyperbolic Triangle Groups. [Internet] [Thesis]. California State University – San Bernardino; 2020. [cited 2020 Oct 31]. Available from: https://scholarworks.lib.csusb.edu/etd/1109.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Katykhin S. Hyperbolic Triangle Groups. [Thesis]. California State University – San Bernardino; 2020. Available from: https://scholarworks.lib.csusb.edu/etd/1109

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Edinburgh

18. Avery, Thomas Charles. Structure and semantics.

Degree: PhD, 2017, University of Edinburgh

Algebraic theories describe mathematical structures that are defined in terms of operations and equations, and are extremely important throughout mathematics. Many generalisations of the classical… (more)

Subjects/Keywords: algebraic theory; monads; topology; theories as structure; finite groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Avery, T. C. (2017). Structure and semantics. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/29517

Chicago Manual of Style (16th Edition):

Avery, Thomas Charles. “Structure and semantics.” 2017. Doctoral Dissertation, University of Edinburgh. Accessed October 31, 2020. http://hdl.handle.net/1842/29517.

MLA Handbook (7th Edition):

Avery, Thomas Charles. “Structure and semantics.” 2017. Web. 31 Oct 2020.

Vancouver:

Avery TC. Structure and semantics. [Internet] [Doctoral dissertation]. University of Edinburgh; 2017. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1842/29517.

Council of Science Editors:

Avery TC. Structure and semantics. [Doctoral Dissertation]. University of Edinburgh; 2017. Available from: http://hdl.handle.net/1842/29517

19. Vieira, Renato Vasconcellos. Topologia algébrica não-abeliana.

Degree: Mestrado, Matemática, 2014, University of São Paulo

O presente trabalho é uma apresentação de aplicações de estruturas da álgebra de dimensões altas para a teoria de homotopia. Mais precisamente mostramos que existe… (more)

Subjects/Keywords: $n$-Cubos cruzados de grupos; algebraic topology; cat$^n$-groups; cat$^n$-grupos; Crossed $n$-cubes of groups; Generalized Seifert-van Kampen theorem; homotopy theory.; teorema generalizado de Seifert-van Kampen; teoria de homotopia.; topologia algébrica

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vieira, R. V. (2014). Topologia algébrica não-abeliana. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11022014-095205/ ;

Chicago Manual of Style (16th Edition):

Vieira, Renato Vasconcellos. “Topologia algébrica não-abeliana.” 2014. Masters Thesis, University of São Paulo. Accessed October 31, 2020. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11022014-095205/ ;.

MLA Handbook (7th Edition):

Vieira, Renato Vasconcellos. “Topologia algébrica não-abeliana.” 2014. Web. 31 Oct 2020.

Vancouver:

Vieira RV. Topologia algébrica não-abeliana. [Internet] [Masters thesis]. University of São Paulo; 2014. [cited 2020 Oct 31]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11022014-095205/ ;.

Council of Science Editors:

Vieira RV. Topologia algébrica não-abeliana. [Masters Thesis]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11022014-095205/ ;

20. Cadegan-Schlieper, William Arthur. On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups.

Degree: Mathematics, 2018, UCLA

 The Weyl group used in Lie theory can be generalized into reflection groups in more general division algebras; in particular, to complex reflection groups and… (more)

Subjects/Keywords: Mathematics; algebraic topology; braid groups; group theory; quaternions; rational homotopy theory; reflection groups

…Schlieper,W. An Algebraic Invariant Distinguishing Imprimitive Complex Reflection Groups… …Section 2.2, we use topology to find a short exact sequence in the cohomology groups of the… …Lie algebra generated by the rational homotopy groups πn (MA ) ⊗ Q with… …Presented at the conference Interactions between Representation Theory and Algebraic Geometry at… …the University of Chicago in 2017. viii Analyses of the number of points in Lie groups of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cadegan-Schlieper, W. A. (2018). On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/55d9x74d

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Cadegan-Schlieper, William Arthur. “On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups.” 2018. Thesis, UCLA. Accessed October 31, 2020. http://www.escholarship.org/uc/item/55d9x74d.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Cadegan-Schlieper, William Arthur. “On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups.” 2018. Web. 31 Oct 2020.

Vancouver:

Cadegan-Schlieper WA. On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups. [Internet] [Thesis]. UCLA; 2018. [cited 2020 Oct 31]. Available from: http://www.escholarship.org/uc/item/55d9x74d.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cadegan-Schlieper WA. On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups. [Thesis]. UCLA; 2018. Available from: http://www.escholarship.org/uc/item/55d9x74d

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of North Texas

21. Opalecky, Robert Vincent. A Topological Uniqueness Result for the Special Linear Groups.

Degree: 1997, University of North Texas

 The goal of this paper is to establish the dependency of the topology of a simple Lie group, specifically any of the special linear groups,… (more)

Subjects/Keywords: Lie groups; topology; mathematics; Linear algebraic groups.; Topology.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Opalecky, R. V. (1997). A Topological Uniqueness Result for the Special Linear Groups. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc278561/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Opalecky, Robert Vincent. “A Topological Uniqueness Result for the Special Linear Groups.” 1997. Thesis, University of North Texas. Accessed October 31, 2020. https://digital.library.unt.edu/ark:/67531/metadc278561/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Opalecky, Robert Vincent. “A Topological Uniqueness Result for the Special Linear Groups.” 1997. Web. 31 Oct 2020.

Vancouver:

Opalecky RV. A Topological Uniqueness Result for the Special Linear Groups. [Internet] [Thesis]. University of North Texas; 1997. [cited 2020 Oct 31]. Available from: https://digital.library.unt.edu/ark:/67531/metadc278561/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Opalecky RV. A Topological Uniqueness Result for the Special Linear Groups. [Thesis]. University of North Texas; 1997. Available from: https://digital.library.unt.edu/ark:/67531/metadc278561/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brigham Young University

22. Larsen, Nicholas Guy. A New Family of Topological Invariants.

Degree: MS, 2018, Brigham Young University

 We define an extension of the nth homotopy group which can distinguish a larger class of spaces. (E.g., a converging sequence of disjoint circles and… (more)

Subjects/Keywords: algebraic topology; homotopy; fundamental group; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Larsen, N. G. (2018). A New Family of Topological Invariants. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd

Chicago Manual of Style (16th Edition):

Larsen, Nicholas Guy. “A New Family of Topological Invariants.” 2018. Masters Thesis, Brigham Young University. Accessed October 31, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd.

MLA Handbook (7th Edition):

Larsen, Nicholas Guy. “A New Family of Topological Invariants.” 2018. Web. 31 Oct 2020.

Vancouver:

Larsen NG. A New Family of Topological Invariants. [Internet] [Masters thesis]. Brigham Young University; 2018. [cited 2020 Oct 31]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd.

Council of Science Editors:

Larsen NG. A New Family of Topological Invariants. [Masters Thesis]. Brigham Young University; 2018. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd


University of Adelaide

23. Roberts, David Michael. Fundamental bigroupoids and 2-covering spaces.

Degree: 2010, University of Adelaide

 This thesis introduces two main concepts: a fundamental bigroupoid of a topological groupoid and 2-covering spaces, a categorification of covering spaces. The first is applied… (more)

Subjects/Keywords: category theory; groupoids; algebraic topology; homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Roberts, D. M. (2010). Fundamental bigroupoids and 2-covering spaces. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/62680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Roberts, David Michael. “Fundamental bigroupoids and 2-covering spaces.” 2010. Thesis, University of Adelaide. Accessed October 31, 2020. http://hdl.handle.net/2440/62680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Roberts, David Michael. “Fundamental bigroupoids and 2-covering spaces.” 2010. Web. 31 Oct 2020.

Vancouver:

Roberts DM. Fundamental bigroupoids and 2-covering spaces. [Internet] [Thesis]. University of Adelaide; 2010. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2440/62680.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roberts DM. Fundamental bigroupoids and 2-covering spaces. [Thesis]. University of Adelaide; 2010. Available from: http://hdl.handle.net/2440/62680

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Oregon

24. Reid, Benjamin. Constructing a v2 Self Map at p=3.

Degree: PhD, Department of Mathematics, 2017, University of Oregon

 Working at the prime p = 3, we construct a stably finite spectrum, Z, with a v21 self map f. Further, both ExtA(H*(Z),Z3) and ExtA(H*(Z),H*(Z))… (more)

Subjects/Keywords: Algebraic topology; Stable Homotopy Theory; v_n Periodicity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Reid, B. (2017). Constructing a v2 Self Map at p=3. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/22690

Chicago Manual of Style (16th Edition):

Reid, Benjamin. “Constructing a v2 Self Map at p=3.” 2017. Doctoral Dissertation, University of Oregon. Accessed October 31, 2020. http://hdl.handle.net/1794/22690.

MLA Handbook (7th Edition):

Reid, Benjamin. “Constructing a v2 Self Map at p=3.” 2017. Web. 31 Oct 2020.

Vancouver:

Reid B. Constructing a v2 Self Map at p=3. [Internet] [Doctoral dissertation]. University of Oregon; 2017. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1794/22690.

Council of Science Editors:

Reid B. Constructing a v2 Self Map at p=3. [Doctoral Dissertation]. University of Oregon; 2017. Available from: http://hdl.handle.net/1794/22690


University of Oregon

25. Hazel, Christy. The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes.

Degree: PhD, Department of Mathematics, 2020, University of Oregon

 Let C2 denote the cyclic group of order two. Given a manifold with a C2-action, we can consider its equivariant Bredon RO(C2)-graded cohomology. We first… (more)

Subjects/Keywords: Algebraic Topology; Bredon Cohomology; Equivariant Homotopy Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hazel, C. (2020). The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes. (Doctoral Dissertation). University of Oregon. Retrieved from https://scholarsbank.uoregon.edu/xmlui/handle/1794/25652

Chicago Manual of Style (16th Edition):

Hazel, Christy. “The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes.” 2020. Doctoral Dissertation, University of Oregon. Accessed October 31, 2020. https://scholarsbank.uoregon.edu/xmlui/handle/1794/25652.

MLA Handbook (7th Edition):

Hazel, Christy. “The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes.” 2020. Web. 31 Oct 2020.

Vancouver:

Hazel C. The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes. [Internet] [Doctoral dissertation]. University of Oregon; 2020. [cited 2020 Oct 31]. Available from: https://scholarsbank.uoregon.edu/xmlui/handle/1794/25652.

Council of Science Editors:

Hazel C. The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes. [Doctoral Dissertation]. University of Oregon; 2020. Available from: https://scholarsbank.uoregon.edu/xmlui/handle/1794/25652


University of British Columbia

26. Jardine, J. F. Algebraic homotopy theory, groups, and K-theory.

Degree: PhD, Mathematics, 1981, University of British Columbia

 Let Mk be the category of algebras over a unique factorization domain k, and let ind-Affk denote the category of pro-representable functors from Mk to… (more)

Subjects/Keywords: Homotopy groups; Groups; Homotopy theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jardine, J. F. (1981). Algebraic homotopy theory, groups, and K-theory. (Doctoral Dissertation). University of British Columbia. Retrieved from http://hdl.handle.net/2429/23058

Chicago Manual of Style (16th Edition):

Jardine, J F. “Algebraic homotopy theory, groups, and K-theory.” 1981. Doctoral Dissertation, University of British Columbia. Accessed October 31, 2020. http://hdl.handle.net/2429/23058.

MLA Handbook (7th Edition):

Jardine, J F. “Algebraic homotopy theory, groups, and K-theory.” 1981. Web. 31 Oct 2020.

Vancouver:

Jardine JF. Algebraic homotopy theory, groups, and K-theory. [Internet] [Doctoral dissertation]. University of British Columbia; 1981. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2429/23058.

Council of Science Editors:

Jardine JF. Algebraic homotopy theory, groups, and K-theory. [Doctoral Dissertation]. University of British Columbia; 1981. Available from: http://hdl.handle.net/2429/23058


University of Rochester

27. Larson, Donald Matthew (1978 - ). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3.

Degree: PhD, 2013, University of Rochester

 In this thesis we obtain a near-complete description of the E2 term of the Adams-Novikov spectral sequence converging to the homotopy groups of a spectrum… (more)

Subjects/Keywords: Algebraic topology; Homotopy theory; Stable homotopy theory; Topological modular forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Larson, D. M. (. -. ). (2013). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/27845

Chicago Manual of Style (16th Edition):

Larson, Donald Matthew (1978 - ). “The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3.” 2013. Doctoral Dissertation, University of Rochester. Accessed October 31, 2020. http://hdl.handle.net/1802/27845.

MLA Handbook (7th Edition):

Larson, Donald Matthew (1978 - ). “The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3.” 2013. Web. 31 Oct 2020.

Vancouver:

Larson DM(-). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3. [Internet] [Doctoral dissertation]. University of Rochester; 2013. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1802/27845.

Council of Science Editors:

Larson DM(-). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3. [Doctoral Dissertation]. University of Rochester; 2013. Available from: http://hdl.handle.net/1802/27845


Harvard University

28. Shi, XiaoLin. Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory.

Degree: PhD, 2019, Harvard University

In this thesis, we show that Lubin – Tate spectra at the prime 2 are Real oriented and Real Landweber exact. The proof is by application… (more)

Subjects/Keywords: Algebraic Topology; Chromatic Homotopy Theory; Equivariant Homotopy Theory; Slice Spectral Sequence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shi, X. (2019). Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555

Chicago Manual of Style (16th Edition):

Shi, XiaoLin. “Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory.” 2019. Doctoral Dissertation, Harvard University. Accessed October 31, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555.

MLA Handbook (7th Edition):

Shi, XiaoLin. “Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory.” 2019. Web. 31 Oct 2020.

Vancouver:

Shi X. Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2020 Oct 31]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555.

Council of Science Editors:

Shi X. Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555


University of Notre Dame

29. Phillip Jedlovec. Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>.

Degree: Mathematics, 2018, University of Notre Dame

  In this dissertation, we give a new proof of the main results of Ando, Hopkins, and Strickland regarding the generalized homology of the even… (more)

Subjects/Keywords: Homotopy Theory; Algebraic Topology; Mathematics; Unstable Homotopy Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jedlovec, P. (2018). Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/hd76rx9419z

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Jedlovec, Phillip. “Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>.” 2018. Thesis, University of Notre Dame. Accessed October 31, 2020. https://curate.nd.edu/show/hd76rx9419z.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Jedlovec, Phillip. “Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>.” 2018. Web. 31 Oct 2020.

Vancouver:

Jedlovec P. Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>. [Internet] [Thesis]. University of Notre Dame; 2018. [cited 2020 Oct 31]. Available from: https://curate.nd.edu/show/hd76rx9419z.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jedlovec P. Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>. [Thesis]. University of Notre Dame; 2018. Available from: https://curate.nd.edu/show/hd76rx9419z

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

30. Ondrus, Alexander A. Minimal anisotropic groups of higher real rank.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2010, University of Alberta

 The purpose of this thesis is to give a classification of anisotropic algebraic groups over number fields of higher real rank. This will complete the… (more)

Subjects/Keywords: anisotropic; algebraic groups; lattices

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ondrus, A. A. (2010). Minimal anisotropic groups of higher real rank. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/mg74qm37v

Chicago Manual of Style (16th Edition):

Ondrus, Alexander A. “Minimal anisotropic groups of higher real rank.” 2010. Doctoral Dissertation, University of Alberta. Accessed October 31, 2020. https://era.library.ualberta.ca/files/mg74qm37v.

MLA Handbook (7th Edition):

Ondrus, Alexander A. “Minimal anisotropic groups of higher real rank.” 2010. Web. 31 Oct 2020.

Vancouver:

Ondrus AA. Minimal anisotropic groups of higher real rank. [Internet] [Doctoral dissertation]. University of Alberta; 2010. [cited 2020 Oct 31]. Available from: https://era.library.ualberta.ca/files/mg74qm37v.

Council of Science Editors:

Ondrus AA. Minimal anisotropic groups of higher real rank. [Doctoral Dissertation]. University of Alberta; 2010. Available from: https://era.library.ualberta.ca/files/mg74qm37v

[1] [2] [3] [4] [5] … [364]

.