Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(HOMOTOPY GROUPS COHOMOTOPY GROUPS ALGEBRAIC TOPOLOGY )`

.
Showing records 1 – 30 of
10919 total matches.

◁ [1] [2] [3] [4] [5] … [364] ▶

Search Limiters

Dates

- 2016 – 2020 (2837)
- 2011 – 2015 (3794)
- 2006 – 2010 (2220)
- 2001 – 2005 (733)
- 1996 – 2000 (425)
- 1991 – 1995 (282)
- 1986 – 1990 (278)
- 1981 – 1985 (224)
- 1976 – 1980 (212)
- 1971 – 1975 (252)

Universities

- University of Florida (796)
- Michigan State University (240)
- University of São Paulo (226)
- The Ohio State University (213)
- ETH Zürich (211)
- University of Michigan (166)
- Brno University of Technology (159)
- Delft University of Technology (134)
- University of Texas – Austin (124)
- Virginia Tech (117)
- Georgia Tech (112)
- University of Illinois – Urbana-Champaign (112)
- Universidade Estadual de Campinas (104)
- University of Oxford (95)
- University of Manchester (84)

Department

- Mathematics (829)
- Department of Mathematics (143)
- Mathématiques (137)
- Psychology (137)
- Graduate School (83)
- Electrical and Computer Engineering (73)
- Electrical Engineering (67)
- Mechanical Engineering (64)
- Computer Science (63)
- Informatique (57)
- Chemistry (56)
- Sociology (54)
- Political Science (53)
- Pure Sciences (50)
- Physics (43)

Degrees

- PhD (2893)
- Docteur es (587)
- MS (562)
- MA (324)
- Master (146)
- Mestrado (124)
- MAin Mathematics (60)
- EdD (34)
- MSc (31)
- MA- MA (23)
- Image (17)
- MSEd (12)
- Doctor of Education (EdD) (11)
- MSW (11)
- MS(M.S.) (10)

Levels

- doctoral (4532)
- masters (1819)
- thesis (173)
- project (30)
- doctor of philosophy ph.d. (10)

Languages

Country

- US (4992)
- Brazil (795)
- Canada (639)
- France (587)
- UK (550)
- Sweden (431)
- Australia (349)
- Netherlands (349)
- South Africa (343)
- Greece (226)
- Switzerland (213)
- India (200)
- Czech Republic (159)
- Portugal (137)
- Hong Kong (127)

▼ Search Limiters

ETH Zürich

1. Curjel, Caspar Robert. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.

Degree: 1961, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/135022

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Curjel, C. R. (1961). Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135022

Chicago Manual of Style (16^{th} Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/135022.

MLA Handbook (7^{th} Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Web. 31 Oct 2020.

Vancouver:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1961. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/135022.

Council of Science Editors:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Doctoral Dissertation]. ETH Zürich; 1961. Available from: http://hdl.handle.net/20.500.11850/135022

ETH Zürich

2. Kervaire, Michel André. Courbure intégrale généralisée et homotopie.

Degree: 1956, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/133361

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Kervaire, M. A. (1956). Courbure intégrale généralisée et homotopie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133361

Chicago Manual of Style (16^{th} Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/133361.

MLA Handbook (7^{th} Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Web. 31 Oct 2020.

Vancouver:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Internet] [Doctoral dissertation]. ETH Zürich; 1956. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/133361.

Council of Science Editors:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Doctoral Dissertation]. ETH Zürich; 1956. Available from: http://hdl.handle.net/20.500.11850/133361

ETH Zürich

3. Stamm, Emil. Ueber die Homotopiegruppen gewisser Faserungen.

Degree: 1964, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/131691

Subjects/Keywords: FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stamm, E. (1964). Ueber die Homotopiegruppen gewisser Faserungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131691

Chicago Manual of Style (16^{th} Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/131691.

MLA Handbook (7^{th} Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Web. 31 Oct 2020.

Vancouver:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1964. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/131691.

Council of Science Editors:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Doctoral Dissertation]. ETH Zürich; 1964. Available from: http://hdl.handle.net/20.500.11850/131691

ETH Zürich

4. Huber, Thomas. Rotation quasimorphisms for surfaces.

Degree: 2013, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/153998

Subjects/Keywords: RÄUME KONSTANTER KRÜMMUNG (DIFFERENTIALGEOMETRIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SPACES OF CONSTANT CURVATURE (DIFFERENTIAL GEOMETRY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Huber, T. (2013). Rotation quasimorphisms for surfaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153998

Chicago Manual of Style (16^{th} Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/153998.

MLA Handbook (7^{th} Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Web. 31 Oct 2020.

Vancouver:

Huber T. Rotation quasimorphisms for surfaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2013. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/153998.

Council of Science Editors:

Huber T. Rotation quasimorphisms for surfaces. [Doctoral Dissertation]. ETH Zürich; 2013. Available from: http://hdl.handle.net/20.500.11850/153998

ETH Zürich

5. Specker, Ernst P. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.

Degree: 1949, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/133460

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); DREIDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); THREE-DIMENSIONAL MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Specker, E. P. (1949). Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133460

Chicago Manual of Style (16^{th} Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/133460.

MLA Handbook (7^{th} Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Web. 31 Oct 2020.

Vancouver:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Internet] [Doctoral dissertation]. ETH Zürich; 1949. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/133460.

Council of Science Editors:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Doctoral Dissertation]. ETH Zürich; 1949. Available from: http://hdl.handle.net/20.500.11850/133460

ETH Zürich

6. Ebersold, Johannes Michael. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.

Degree: 1955, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/132667

Subjects/Keywords: FIXPUNKTE UND KOINZIDENZEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIXED POINTS AND COINCIDENCE POINTS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ebersold, J. M. (1955). Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132667

Chicago Manual of Style (16^{th} Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/132667.

MLA Handbook (7^{th} Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Web. 31 Oct 2020.

Vancouver:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Internet] [Doctoral dissertation]. ETH Zürich; 1955. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/132667.

Council of Science Editors:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Doctoral Dissertation]. ETH Zürich; 1955. Available from: http://hdl.handle.net/20.500.11850/132667

ETH Zürich

7. Wang, Ming-Xi. Rational points and transcendental points.

Degree: 2011, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/41776

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); ELLIPTIC FUNCTIONS + ELLIPTIC INTEGRALS (MATHEMATICAL ANALYSIS); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ELLIPTISCHE FUNKTIONEN + ELLIPTISCHE INTEGRALE (ANALYSIS); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); ENDOMORPHISM RINGS (ALGEBRA); ENDOMORPHISMENRINGE (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wang, M. (2011). Rational points and transcendental points. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/41776

Chicago Manual of Style (16^{th} Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/41776.

MLA Handbook (7^{th} Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Web. 31 Oct 2020.

Vancouver:

Wang M. Rational points and transcendental points. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/41776.

Council of Science Editors:

Wang M. Rational points and transcendental points. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/41776

ETH Zürich

8. Strubel, Tobias. Fenchel-Nielsen coordinates for maximal representations.

Degree: 2011, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/153151

Subjects/Keywords: LINEARE DARSTELLUNGEN VON LIE-ALGEBREN UND LIE-GRUPPEN; SYMPLEKTISCHE GRUPPEN (ALGEBRA); TEICHMÜLLERRÄUME (ANALYTISCHE RÄUME); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); LINEAR REPRESENTATIONS OF LIE ALGEBRAS AND LIE GROUPS; SYMPLECTIC GROUPS (ALGEBRA); TEICHMÜLLER SPACES (ANALYTIC SPACES); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Strubel, T. (2011). Fenchel-Nielsen coordinates for maximal representations. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153151

Chicago Manual of Style (16^{th} Edition):

Strubel, Tobias. “Fenchel-Nielsen coordinates for maximal representations.” 2011. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/153151.

MLA Handbook (7^{th} Edition):

Strubel, Tobias. “Fenchel-Nielsen coordinates for maximal representations.” 2011. Web. 31 Oct 2020.

Vancouver:

Strubel T. Fenchel-Nielsen coordinates for maximal representations. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/153151.

Council of Science Editors:

Strubel T. Fenchel-Nielsen coordinates for maximal representations. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/153151

ETH Zürich

9. Fornera, Linda Rita. Caractéristique eulérienne de groupes et rangs de modules projectifs.

Degree: 1986, ETH Zürich

URL: http://hdl.handle.net/20.500.11850/138980

Subjects/Keywords: CW-KOMPLEXE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); PROJEKTIVE MODULN + FLACHE MODULN (ALGEBRA); VON NEUMANN-ALGEBREN (FUNKTIONALANALYSIS); CW COMPLEXES (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); PROJECTIVE MODULES + FLAT MODULES (ALGEBRA); VON NEUMANN ALGEBRAS (FUNCTIONAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Fornera, L. R. (1986). Caractéristique eulérienne de groupes et rangs de modules projectifs. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/138980

Chicago Manual of Style (16^{th} Edition):

Fornera, Linda Rita. “Caractéristique eulérienne de groupes et rangs de modules projectifs.” 1986. Doctoral Dissertation, ETH Zürich. Accessed October 31, 2020. http://hdl.handle.net/20.500.11850/138980.

MLA Handbook (7^{th} Edition):

Fornera, Linda Rita. “Caractéristique eulérienne de groupes et rangs de modules projectifs.” 1986. Web. 31 Oct 2020.

Vancouver:

Fornera LR. Caractéristique eulérienne de groupes et rangs de modules projectifs. [Internet] [Doctoral dissertation]. ETH Zürich; 1986. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/20.500.11850/138980.

Council of Science Editors:

Fornera LR. Caractéristique eulérienne de groupes et rangs de modules projectifs. [Doctoral Dissertation]. ETH Zürich; 1986. Available from: http://hdl.handle.net/20.500.11850/138980

Rutgers University

10. Wilson, Glen M., 1988-. Motivic stable stems over finite fields.

Degree: PhD, Mathematics, 2016, Rutgers University

URL: https://rucore.libraries.rutgers.edu/rutgers-lib/50158/

►

Let l be a prime. For any algebraically closed field F of positive characteristic p different from l, we show that for all natural numbers… (more)

Subjects/Keywords: Homotopy theory; Homotopy groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wilson, Glen M., 1. (2016). Motivic stable stems over finite fields. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/50158/

Chicago Manual of Style (16^{th} Edition):

Wilson, Glen M., 1988-. “Motivic stable stems over finite fields.” 2016. Doctoral Dissertation, Rutgers University. Accessed October 31, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/50158/.

MLA Handbook (7^{th} Edition):

Wilson, Glen M., 1988-. “Motivic stable stems over finite fields.” 2016. Web. 31 Oct 2020.

Vancouver:

Wilson, Glen M. 1. Motivic stable stems over finite fields. [Internet] [Doctoral dissertation]. Rutgers University; 2016. [cited 2020 Oct 31]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50158/.

Council of Science Editors:

Wilson, Glen M. 1. Motivic stable stems over finite fields. [Doctoral Dissertation]. Rutgers University; 2016. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/50158/

University of Illinois – Chicago

11.
Jaskowiak, Luke Andrew.
Survey Of The Classification Theory of Semisimple *Algebraic* * Groups* Over Perfect Fields.

Degree: 2019, University of Illinois – Chicago

URL: http://hdl.handle.net/10027/23841

► The focus of this work is to approach the question of the classification of semisimple *algebraic* *groups* over perfect fields from the perspective of I.…
(more)

Subjects/Keywords: Algebraic groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jaskowiak, L. A. (2019). Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields. (Thesis). University of Illinois – Chicago. Retrieved from http://hdl.handle.net/10027/23841

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Jaskowiak, Luke Andrew. “Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields.” 2019. Thesis, University of Illinois – Chicago. Accessed October 31, 2020. http://hdl.handle.net/10027/23841.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Jaskowiak, Luke Andrew. “Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields.” 2019. Web. 31 Oct 2020.

Vancouver:

Jaskowiak LA. Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields. [Internet] [Thesis]. University of Illinois – Chicago; 2019. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/10027/23841.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jaskowiak LA. Survey Of The Classification Theory of Semisimple Algebraic Groups Over Perfect Fields. [Thesis]. University of Illinois – Chicago; 2019. Available from: http://hdl.handle.net/10027/23841

Not specified: Masters Thesis or Doctoral Dissertation

Université Catholique de Louvain

12.
Stulemeijer, Thierry.
Semisimple *algebraic* * groups* from a topological group perspective.

Degree: 2017, Université Catholique de Louvain

URL: http://hdl.handle.net/2078.1/188311

►

An *algebraic* group is a mathematical concept finding its origins in the theory of Lie * groups*, which nowadays plays a central role in theoretical physics.…
(more)

Subjects/Keywords: Algebraic groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Stulemeijer, T. (2017). Semisimple algebraic groups from a topological group perspective. (Thesis). Université Catholique de Louvain. Retrieved from http://hdl.handle.net/2078.1/188311

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Stulemeijer, Thierry. “Semisimple algebraic groups from a topological group perspective.” 2017. Thesis, Université Catholique de Louvain. Accessed October 31, 2020. http://hdl.handle.net/2078.1/188311.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Stulemeijer, Thierry. “Semisimple algebraic groups from a topological group perspective.” 2017. Web. 31 Oct 2020.

Vancouver:

Stulemeijer T. Semisimple algebraic groups from a topological group perspective. [Internet] [Thesis]. Université Catholique de Louvain; 2017. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2078.1/188311.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Stulemeijer T. Semisimple algebraic groups from a topological group perspective. [Thesis]. Université Catholique de Louvain; 2017. Available from: http://hdl.handle.net/2078.1/188311

Not specified: Masters Thesis or Doctoral Dissertation

University of Oregon

13. Merrill, Leanne. Periodic Margolis Self Maps at p=2.

Degree: PhD, Department of Mathematics, 2018, University of Oregon

URL: http://hdl.handle.net/1794/23144

► The Periodicity theorem of Hopkins and Smith tells us that any finite spectrum supports a v_{n}-map for some n. We are interested in finding finite…
(more)

Subjects/Keywords: Algebraic topology; Homotopy theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Merrill, L. (2018). Periodic Margolis Self Maps at p=2. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/23144

Chicago Manual of Style (16^{th} Edition):

Merrill, Leanne. “Periodic Margolis Self Maps at p=2.” 2018. Doctoral Dissertation, University of Oregon. Accessed October 31, 2020. http://hdl.handle.net/1794/23144.

MLA Handbook (7^{th} Edition):

Merrill, Leanne. “Periodic Margolis Self Maps at p=2.” 2018. Web. 31 Oct 2020.

Vancouver:

Merrill L. Periodic Margolis Self Maps at p=2. [Internet] [Doctoral dissertation]. University of Oregon; 2018. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1794/23144.

Council of Science Editors:

Merrill L. Periodic Margolis Self Maps at p=2. [Doctoral Dissertation]. University of Oregon; 2018. Available from: http://hdl.handle.net/1794/23144

University of Oxford

14. Palmer, Martin. Configuration spaces and homological stability.

Degree: PhD, 2012, University of Oxford

URL: http://ora.ox.ac.uk/objects/uuid:7e056dbd-2cdd-4eac-9473-53f750371f9a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580990

► In this thesis we study the homological behaviour of configuration spaces as the number of objects in the configuration goes to infinity. For unordered configurations…
(more)

Subjects/Keywords: 514; Algebraic topology; Mathematics; configuration spaces; homological stability; alternating groups; braid groups; spaces of submanifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Palmer, M. (2012). Configuration spaces and homological stability. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:7e056dbd-2cdd-4eac-9473-53f750371f9a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580990

Chicago Manual of Style (16^{th} Edition):

Palmer, Martin. “Configuration spaces and homological stability.” 2012. Doctoral Dissertation, University of Oxford. Accessed October 31, 2020. http://ora.ox.ac.uk/objects/uuid:7e056dbd-2cdd-4eac-9473-53f750371f9a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580990.

MLA Handbook (7^{th} Edition):

Palmer, Martin. “Configuration spaces and homological stability.” 2012. Web. 31 Oct 2020.

Vancouver:

Palmer M. Configuration spaces and homological stability. [Internet] [Doctoral dissertation]. University of Oxford; 2012. [cited 2020 Oct 31]. Available from: http://ora.ox.ac.uk/objects/uuid:7e056dbd-2cdd-4eac-9473-53f750371f9a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580990.

Council of Science Editors:

Palmer M. Configuration spaces and homological stability. [Doctoral Dissertation]. University of Oxford; 2012. Available from: http://ora.ox.ac.uk/objects/uuid:7e056dbd-2cdd-4eac-9473-53f750371f9a ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580990

University of Zambia

15. Mwamba, Patrick. On projective representations on finite abelian group .

Degree: 2012, University of Zambia

URL: http://hdl.handle.net/123456789/1690

► Saeed [11] has considered Schur multipliers of some of the finite abelian *groups*.The study of the schur multipliers of abelian *groups* is the first step…
(more)

Subjects/Keywords: Finite Groups; Linear Algebraic Groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Mwamba, P. (2012). On projective representations on finite abelian group . (Thesis). University of Zambia. Retrieved from http://hdl.handle.net/123456789/1690

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Mwamba, Patrick. “On projective representations on finite abelian group .” 2012. Thesis, University of Zambia. Accessed October 31, 2020. http://hdl.handle.net/123456789/1690.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Mwamba, Patrick. “On projective representations on finite abelian group .” 2012. Web. 31 Oct 2020.

Vancouver:

Mwamba P. On projective representations on finite abelian group . [Internet] [Thesis]. University of Zambia; 2012. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/123456789/1690.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Mwamba P. On projective representations on finite abelian group . [Thesis]. University of Zambia; 2012. Available from: http://hdl.handle.net/123456789/1690

Not specified: Masters Thesis or Doctoral Dissertation

University of California – Berkeley

16.
Cho, Chang-Yeon.
Topological types of *Algebraic* stacks.

Degree: Mathematics, 2016, University of California – Berkeley

URL: http://www.escholarship.org/uc/item/1pv4m6nr

► In developing *homotopy* theory in *algebraic* geometry, Michael Artin and Barry Mazur studied the \'etale *homotopy* types of schemes. Later, Eric Friedlander generalized them to…
(more)

Subjects/Keywords: Mathematics; algebraic geometry; algebraic stacks; algebraic topology; \'etale homotopy; homotopy theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cho, C. (2016). Topological types of Algebraic stacks. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/1pv4m6nr

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Cho, Chang-Yeon. “Topological types of Algebraic stacks.” 2016. Thesis, University of California – Berkeley. Accessed October 31, 2020. http://www.escholarship.org/uc/item/1pv4m6nr.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Cho, Chang-Yeon. “Topological types of Algebraic stacks.” 2016. Web. 31 Oct 2020.

Vancouver:

Cho C. Topological types of Algebraic stacks. [Internet] [Thesis]. University of California – Berkeley; 2016. [cited 2020 Oct 31]. Available from: http://www.escholarship.org/uc/item/1pv4m6nr.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cho C. Topological types of Algebraic stacks. [Thesis]. University of California – Berkeley; 2016. Available from: http://www.escholarship.org/uc/item/1pv4m6nr

Not specified: Masters Thesis or Doctoral Dissertation

California State University – San Bernardino

17.
Katykhin, Sergey.
Hyperbolic Triangle *Groups*.

Degree: MAin Mathematics, Mathematics, 2020, California State University – San Bernardino

URL: https://scholarworks.lib.csusb.edu/etd/1109

► This paper will be on hyperbolic reflections and triangle *groups*. We will compare hyperbolic reflection *groups* to Euclidean reflection *groups*. The goal of this…
(more)

Subjects/Keywords: Hyperbolic Triangles Reflection Groups; Algebra; Algebraic Geometry; Geometry and Topology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Katykhin, S. (2020). Hyperbolic Triangle Groups. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/1109

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Katykhin, Sergey. “Hyperbolic Triangle Groups.” 2020. Thesis, California State University – San Bernardino. Accessed October 31, 2020. https://scholarworks.lib.csusb.edu/etd/1109.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Katykhin, Sergey. “Hyperbolic Triangle Groups.” 2020. Web. 31 Oct 2020.

Vancouver:

Katykhin S. Hyperbolic Triangle Groups. [Internet] [Thesis]. California State University – San Bernardino; 2020. [cited 2020 Oct 31]. Available from: https://scholarworks.lib.csusb.edu/etd/1109.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Katykhin S. Hyperbolic Triangle Groups. [Thesis]. California State University – San Bernardino; 2020. Available from: https://scholarworks.lib.csusb.edu/etd/1109

Not specified: Masters Thesis or Doctoral Dissertation

University of Edinburgh

18. Avery, Thomas Charles. Structure and semantics.

Degree: PhD, 2017, University of Edinburgh

URL: http://hdl.handle.net/1842/29517

► *Algebraic* theories describe mathematical structures that are defined in terms of operations and equations, and are extremely important throughout mathematics. Many generalisations of the classical…
(more)

Subjects/Keywords: algebraic theory; monads; topology; theories as structure; finite groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Avery, T. C. (2017). Structure and semantics. (Doctoral Dissertation). University of Edinburgh. Retrieved from http://hdl.handle.net/1842/29517

Chicago Manual of Style (16^{th} Edition):

Avery, Thomas Charles. “Structure and semantics.” 2017. Doctoral Dissertation, University of Edinburgh. Accessed October 31, 2020. http://hdl.handle.net/1842/29517.

MLA Handbook (7^{th} Edition):

Avery, Thomas Charles. “Structure and semantics.” 2017. Web. 31 Oct 2020.

Vancouver:

Avery TC. Structure and semantics. [Internet] [Doctoral dissertation]. University of Edinburgh; 2017. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1842/29517.

Council of Science Editors:

Avery TC. Structure and semantics. [Doctoral Dissertation]. University of Edinburgh; 2017. Available from: http://hdl.handle.net/1842/29517

19. Vieira, Renato Vasconcellos. Topologia algébrica não-abeliana.

Degree: Mestrado, Matemática, 2014, University of São Paulo

URL: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11022014-095205/ ;

►

O presente trabalho é uma apresentação de aplicações de estruturas da álgebra de dimensões altas para a teoria de homotopia. Mais precisamente mostramos que existe… (more)

Subjects/Keywords: $n$-Cubos cruzados de grupos; algebraic topology; cat$^n$-groups; cat$^n$-grupos; Crossed $n$-cubes of groups; Generalized Seifert-van Kampen theorem; homotopy theory.; teorema generalizado de Seifert-van Kampen; teoria de homotopia.; topologia algébrica

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Vieira, R. V. (2014). Topologia algébrica não-abeliana. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11022014-095205/ ;

Chicago Manual of Style (16^{th} Edition):

Vieira, Renato Vasconcellos. “Topologia algébrica não-abeliana.” 2014. Masters Thesis, University of São Paulo. Accessed October 31, 2020. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11022014-095205/ ;.

MLA Handbook (7^{th} Edition):

Vieira, Renato Vasconcellos. “Topologia algébrica não-abeliana.” 2014. Web. 31 Oct 2020.

Vancouver:

Vieira RV. Topologia algébrica não-abeliana. [Internet] [Masters thesis]. University of São Paulo; 2014. [cited 2020 Oct 31]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11022014-095205/ ;.

Council of Science Editors:

Vieira RV. Topologia algébrica não-abeliana. [Masters Thesis]. University of São Paulo; 2014. Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-11022014-095205/ ;

20.
Cadegan-Schlieper, William Arthur.
On the Geometry and *Topology* of Hyperplane Complements Associated to Complex and Quaternionic Reflection *Groups*.

Degree: Mathematics, 2018, UCLA

URL: http://www.escholarship.org/uc/item/55d9x74d

► The Weyl group used in Lie theory can be generalized into reflection *groups* in more general division algebras; in particular, to complex reflection *groups* and…
(more)

Subjects/Keywords: Mathematics; algebraic topology; braid groups; group theory; quaternions; rational homotopy theory; reflection groups

…Schlieper,W. An *Algebraic* Invariant Distinguishing Imprimitive Complex Reflection *Groups*… …Section 2.2, we use *topology* to find a short exact sequence in the cohomology *groups* of the… …Lie algebra generated by the rational *homotopy* *groups* πn (MA ) ⊗ Q with… …Presented at the conference Interactions between Representation Theory and *Algebraic* Geometry at… …the University of Chicago in 2017.
viii
Analyses of the number of points in Lie *groups* of…

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Cadegan-Schlieper, W. A. (2018). On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups. (Thesis). UCLA. Retrieved from http://www.escholarship.org/uc/item/55d9x74d

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Cadegan-Schlieper, William Arthur. “On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups.” 2018. Thesis, UCLA. Accessed October 31, 2020. http://www.escholarship.org/uc/item/55d9x74d.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Cadegan-Schlieper, William Arthur. “On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups.” 2018. Web. 31 Oct 2020.

Vancouver:

Cadegan-Schlieper WA. On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups. [Internet] [Thesis]. UCLA; 2018. [cited 2020 Oct 31]. Available from: http://www.escholarship.org/uc/item/55d9x74d.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Cadegan-Schlieper WA. On the Geometry and Topology of Hyperplane Complements Associated to Complex and Quaternionic Reflection Groups. [Thesis]. UCLA; 2018. Available from: http://www.escholarship.org/uc/item/55d9x74d

Not specified: Masters Thesis or Doctoral Dissertation

University of North Texas

21.
Opalecky, Robert Vincent.
A Topological Uniqueness Result for the Special Linear *Groups*.

Degree: 1997, University of North Texas

URL: https://digital.library.unt.edu/ark:/67531/metadc278561/

► The goal of this paper is to establish the dependency of the *topology* of a simple Lie group, specifically any of the special linear *groups*,…
(more)

Subjects/Keywords: Lie groups; topology; mathematics; Linear algebraic groups.; Topology.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Opalecky, R. V. (1997). A Topological Uniqueness Result for the Special Linear Groups. (Thesis). University of North Texas. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc278561/

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Opalecky, Robert Vincent. “A Topological Uniqueness Result for the Special Linear Groups.” 1997. Thesis, University of North Texas. Accessed October 31, 2020. https://digital.library.unt.edu/ark:/67531/metadc278561/.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Opalecky, Robert Vincent. “A Topological Uniqueness Result for the Special Linear Groups.” 1997. Web. 31 Oct 2020.

Vancouver:

Opalecky RV. A Topological Uniqueness Result for the Special Linear Groups. [Internet] [Thesis]. University of North Texas; 1997. [cited 2020 Oct 31]. Available from: https://digital.library.unt.edu/ark:/67531/metadc278561/.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Opalecky RV. A Topological Uniqueness Result for the Special Linear Groups. [Thesis]. University of North Texas; 1997. Available from: https://digital.library.unt.edu/ark:/67531/metadc278561/

Not specified: Masters Thesis or Doctoral Dissertation

Brigham Young University

22. Larsen, Nicholas Guy. A New Family of Topological Invariants.

Degree: MS, 2018, Brigham Young University

URL: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd

► We define an extension of the nth *homotopy* group which can distinguish a larger class of spaces. (E.g., a converging sequence of disjoint circles and…
(more)

Subjects/Keywords: algebraic topology; homotopy; fundamental group; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Larsen, N. G. (2018). A New Family of Topological Invariants. (Masters Thesis). Brigham Young University. Retrieved from https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd

Chicago Manual of Style (16^{th} Edition):

Larsen, Nicholas Guy. “A New Family of Topological Invariants.” 2018. Masters Thesis, Brigham Young University. Accessed October 31, 2020. https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd.

MLA Handbook (7^{th} Edition):

Larsen, Nicholas Guy. “A New Family of Topological Invariants.” 2018. Web. 31 Oct 2020.

Vancouver:

Larsen NG. A New Family of Topological Invariants. [Internet] [Masters thesis]. Brigham Young University; 2018. [cited 2020 Oct 31]. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd.

Council of Science Editors:

Larsen NG. A New Family of Topological Invariants. [Masters Thesis]. Brigham Young University; 2018. Available from: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=7757&context=etd

University of Adelaide

23. Roberts, David Michael. Fundamental bigroupoids and 2-covering spaces.

Degree: 2010, University of Adelaide

URL: http://hdl.handle.net/2440/62680

► This thesis introduces two main concepts: a fundamental bigroupoid of a topological groupoid and 2-covering spaces, a categorification of covering spaces. The first is applied…
(more)

Subjects/Keywords: category theory; groupoids; algebraic topology; homotopy theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Roberts, D. M. (2010). Fundamental bigroupoids and 2-covering spaces. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/62680

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Roberts, David Michael. “Fundamental bigroupoids and 2-covering spaces.” 2010. Thesis, University of Adelaide. Accessed October 31, 2020. http://hdl.handle.net/2440/62680.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Roberts, David Michael. “Fundamental bigroupoids and 2-covering spaces.” 2010. Web. 31 Oct 2020.

Vancouver:

Roberts DM. Fundamental bigroupoids and 2-covering spaces. [Internet] [Thesis]. University of Adelaide; 2010. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2440/62680.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Roberts DM. Fundamental bigroupoids and 2-covering spaces. [Thesis]. University of Adelaide; 2010. Available from: http://hdl.handle.net/2440/62680

Not specified: Masters Thesis or Doctoral Dissertation

University of Oregon

24. Reid, Benjamin. Constructing a v2 Self Map at p=3.

Degree: PhD, Department of Mathematics, 2017, University of Oregon

URL: http://hdl.handle.net/1794/22690

► Working at the prime p = 3, we construct a stably finite spectrum, Z, with a v_{2}^{1} self map f. Further, both Ext_{A}(H*(Z),Z_{3}) and Ext_{A}(H*(Z),H*(Z))…
(more)

Subjects/Keywords: Algebraic topology; Stable Homotopy Theory; v_n Periodicity

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Reid, B. (2017). Constructing a v2 Self Map at p=3. (Doctoral Dissertation). University of Oregon. Retrieved from http://hdl.handle.net/1794/22690

Chicago Manual of Style (16^{th} Edition):

Reid, Benjamin. “Constructing a v2 Self Map at p=3.” 2017. Doctoral Dissertation, University of Oregon. Accessed October 31, 2020. http://hdl.handle.net/1794/22690.

MLA Handbook (7^{th} Edition):

Reid, Benjamin. “Constructing a v2 Self Map at p=3.” 2017. Web. 31 Oct 2020.

Vancouver:

Reid B. Constructing a v2 Self Map at p=3. [Internet] [Doctoral dissertation]. University of Oregon; 2017. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1794/22690.

Council of Science Editors:

Reid B. Constructing a v2 Self Map at p=3. [Doctoral Dissertation]. University of Oregon; 2017. Available from: http://hdl.handle.net/1794/22690

University of Oregon

25. Hazel, Christy. The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes.

Degree: PhD, Department of Mathematics, 2020, University of Oregon

URL: https://scholarsbank.uoregon.edu/xmlui/handle/1794/25652

► Let C2 denote the cyclic group of order two. Given a manifold with a C2-action, we can consider its equivariant Bredon RO(C2)-graded cohomology. We first…
(more)

Subjects/Keywords: Algebraic Topology; Bredon Cohomology; Equivariant Homotopy Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hazel, C. (2020). The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes. (Doctoral Dissertation). University of Oregon. Retrieved from https://scholarsbank.uoregon.edu/xmlui/handle/1794/25652

Chicago Manual of Style (16^{th} Edition):

Hazel, Christy. “The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes.” 2020. Doctoral Dissertation, University of Oregon. Accessed October 31, 2020. https://scholarsbank.uoregon.edu/xmlui/handle/1794/25652.

MLA Handbook (7^{th} Edition):

Hazel, Christy. “The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes.” 2020. Web. 31 Oct 2020.

Vancouver:

Hazel C. The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes. [Internet] [Doctoral dissertation]. University of Oregon; 2020. [cited 2020 Oct 31]. Available from: https://scholarsbank.uoregon.edu/xmlui/handle/1794/25652.

Council of Science Editors:

Hazel C. The RO(C2)-graded Cohomology of C2-Surfaces and Equivariant Fundamental Classes. [Doctoral Dissertation]. University of Oregon; 2020. Available from: https://scholarsbank.uoregon.edu/xmlui/handle/1794/25652

University of British Columbia

26.
Jardine, J. F.
*Algebraic**homotopy* theory, * groups*, and K-theory.

Degree: PhD, Mathematics, 1981, University of British Columbia

URL: http://hdl.handle.net/2429/23058

► Let Mk be the category of algebras over a unique factorization domain k, and let ind-Affk denote the category of pro-representable functors from Mk to…
(more)

Subjects/Keywords: Homotopy groups; Groups; Homotopy theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jardine, J. F. (1981). Algebraic homotopy theory, groups, and K-theory. (Doctoral Dissertation). University of British Columbia. Retrieved from http://hdl.handle.net/2429/23058

Chicago Manual of Style (16^{th} Edition):

Jardine, J F. “Algebraic homotopy theory, groups, and K-theory.” 1981. Doctoral Dissertation, University of British Columbia. Accessed October 31, 2020. http://hdl.handle.net/2429/23058.

MLA Handbook (7^{th} Edition):

Jardine, J F. “Algebraic homotopy theory, groups, and K-theory.” 1981. Web. 31 Oct 2020.

Vancouver:

Jardine JF. Algebraic homotopy theory, groups, and K-theory. [Internet] [Doctoral dissertation]. University of British Columbia; 1981. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/2429/23058.

Council of Science Editors:

Jardine JF. Algebraic homotopy theory, groups, and K-theory. [Doctoral Dissertation]. University of British Columbia; 1981. Available from: http://hdl.handle.net/2429/23058

University of Rochester

27. Larson, Donald Matthew (1978 - ). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3.

Degree: PhD, 2013, University of Rochester

URL: http://hdl.handle.net/1802/27845

► In this thesis we obtain a near-complete description of the E_{2} term of the Adams-Novikov spectral sequence converging to the *homotopy* *groups* of a spectrum…
(more)

Subjects/Keywords: Algebraic topology; Homotopy theory; Stable homotopy theory; Topological modular forms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Larson, D. M. (. -. ). (2013). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3. (Doctoral Dissertation). University of Rochester. Retrieved from http://hdl.handle.net/1802/27845

Chicago Manual of Style (16^{th} Edition):

Larson, Donald Matthew (1978 - ). “The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3.” 2013. Doctoral Dissertation, University of Rochester. Accessed October 31, 2020. http://hdl.handle.net/1802/27845.

MLA Handbook (7^{th} Edition):

Larson, Donald Matthew (1978 - ). “The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3.” 2013. Web. 31 Oct 2020.

Vancouver:

Larson DM(-). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3. [Internet] [Doctoral dissertation]. University of Rochester; 2013. [cited 2020 Oct 31]. Available from: http://hdl.handle.net/1802/27845.

Council of Science Editors:

Larson DM(-). The Adams-Novikov E2 term for Behrens' spectrum Q(2) at the prime 3. [Doctoral Dissertation]. University of Rochester; 2013. Available from: http://hdl.handle.net/1802/27845

Harvard University

28. Shi, XiaoLin. Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory.

Degree: PhD, 2019, Harvard University

URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555

►

In this thesis, we show that Lubin – Tate spectra at the prime 2 are Real oriented and Real Landweber exact. The proof is by application… (more)

Subjects/Keywords: Algebraic Topology; Chromatic Homotopy Theory; Equivariant Homotopy Theory; Slice Spectral Sequence

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Shi, X. (2019). Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555

Chicago Manual of Style (16^{th} Edition):

Shi, XiaoLin. “Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory.” 2019. Doctoral Dissertation, Harvard University. Accessed October 31, 2020. http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555.

MLA Handbook (7^{th} Edition):

Shi, XiaoLin. “Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory.” 2019. Web. 31 Oct 2020.

Vancouver:

Shi X. Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory. [Internet] [Doctoral dissertation]. Harvard University; 2019. [cited 2020 Oct 31]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555.

Council of Science Editors:

Shi X. Real Orientations of Lubin – Tate Spectra and the Slice Spectral Sequence of a C4-Equivariant Height-4 Theory. [Doctoral Dissertation]. Harvard University; 2019. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029555

University of Notre Dame

29. Phillip Jedlovec. Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>.

Degree: Mathematics, 2018, University of Notre Dame

URL: https://curate.nd.edu/show/hd76rx9419z

► In this dissertation, we give a new proof of the main results of Ando, Hopkins, and Strickland regarding the generalized homology of the even…
(more)

Subjects/Keywords: Homotopy Theory; Algebraic Topology; Mathematics; Unstable Homotopy Theory

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Jedlovec, P. (2018). Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/hd76rx9419z

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Jedlovec, Phillip. “Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>.” 2018. Thesis, University of Notre Dame. Accessed October 31, 2020. https://curate.nd.edu/show/hd76rx9419z.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Jedlovec, Phillip. “Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>.” 2018. Web. 31 Oct 2020.

Vancouver:

Jedlovec P. Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>. [Internet] [Thesis]. University of Notre Dame; 2018. [cited 2020 Oct 31]. Available from: https://curate.nd.edu/show/hd76rx9419z.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Jedlovec P. Hopf Rings and the Ando-Hopkins-Strickland Theorem</h1>. [Thesis]. University of Notre Dame; 2018. Available from: https://curate.nd.edu/show/hd76rx9419z

Not specified: Masters Thesis or Doctoral Dissertation

University of Alberta

30.
Ondrus, Alexander A.
Minimal anisotropic * groups* of higher real rank.

Degree: PhD, Department of Mathematical and Statistical Sciences, 2010, University of Alberta

URL: https://era.library.ualberta.ca/files/mg74qm37v

► The purpose of this thesis is to give a classification of anisotropic *algebraic* *groups* over number fields of higher real rank. This will complete the…
(more)

Subjects/Keywords: anisotropic; algebraic groups; lattices

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ondrus, A. A. (2010). Minimal anisotropic groups of higher real rank. (Doctoral Dissertation). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/mg74qm37v

Chicago Manual of Style (16^{th} Edition):

Ondrus, Alexander A. “Minimal anisotropic groups of higher real rank.” 2010. Doctoral Dissertation, University of Alberta. Accessed October 31, 2020. https://era.library.ualberta.ca/files/mg74qm37v.

MLA Handbook (7^{th} Edition):

Ondrus, Alexander A. “Minimal anisotropic groups of higher real rank.” 2010. Web. 31 Oct 2020.

Vancouver:

Ondrus AA. Minimal anisotropic groups of higher real rank. [Internet] [Doctoral dissertation]. University of Alberta; 2010. [cited 2020 Oct 31]. Available from: https://era.library.ualberta.ca/files/mg74qm37v.

Council of Science Editors:

Ondrus AA. Minimal anisotropic groups of higher real rank. [Doctoral Dissertation]. University of Alberta; 2010. Available from: https://era.library.ualberta.ca/files/mg74qm37v