Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(HOMOTOPIEGRUPPEN KOHOMOTOPIEGRUPPEN ALGEBRAISCHE TOPOLOGIE ). Showing records 1 – 30 of 476 total matches.

[1] [2] [3] [4] [5] … [16]

Search Limiters

Last 2 Years | English Only

Department

Languages

Country

▼ Search Limiters


ETH Zürich

1. Curjel, Caspar Robert. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.

Degree: 1961, ETH Zürich

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Curjel, C. R. (1961). Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135022

Chicago Manual of Style (16th Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/135022.

MLA Handbook (7th Edition):

Curjel, Caspar Robert. “Ueber die Homotopie- und Cohomologiegruppen von Abbildungen.” 1961. Web. 28 Oct 2020.

Vancouver:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1961. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/135022.

Council of Science Editors:

Curjel CR. Ueber die Homotopie- und Cohomologiegruppen von Abbildungen. [Doctoral Dissertation]. ETH Zürich; 1961. Available from: http://hdl.handle.net/20.500.11850/135022


ETH Zürich

2. Stamm, Emil. Ueber die Homotopiegruppen gewisser Faserungen.

Degree: 1964, ETH Zürich

Subjects/Keywords: FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stamm, E. (1964). Ueber die Homotopiegruppen gewisser Faserungen. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131691

Chicago Manual of Style (16th Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/131691.

MLA Handbook (7th Edition):

Stamm, Emil. “Ueber die Homotopiegruppen gewisser Faserungen.” 1964. Web. 28 Oct 2020.

Vancouver:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Internet] [Doctoral dissertation]. ETH Zürich; 1964. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/131691.

Council of Science Editors:

Stamm E. Ueber die Homotopiegruppen gewisser Faserungen. [Doctoral Dissertation]. ETH Zürich; 1964. Available from: http://hdl.handle.net/20.500.11850/131691


ETH Zürich

3. Kervaire, Michel André. Courbure intégrale généralisée et homotopie.

Degree: 1956, ETH Zürich

Subjects/Keywords: HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kervaire, M. A. (1956). Courbure intégrale généralisée et homotopie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133361

Chicago Manual of Style (16th Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/133361.

MLA Handbook (7th Edition):

Kervaire, Michel André. “Courbure intégrale généralisée et homotopie.” 1956. Web. 28 Oct 2020.

Vancouver:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Internet] [Doctoral dissertation]. ETH Zürich; 1956. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/133361.

Council of Science Editors:

Kervaire MA. Courbure intégrale généralisée et homotopie. [Doctoral Dissertation]. ETH Zürich; 1956. Available from: http://hdl.handle.net/20.500.11850/133361


ETH Zürich

4. Huber, Thomas. Rotation quasimorphisms for surfaces.

Degree: 2013, ETH Zürich

Subjects/Keywords: RÄUME KONSTANTER KRÜMMUNG (DIFFERENTIALGEOMETRIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SPACES OF CONSTANT CURVATURE (DIFFERENTIAL GEOMETRY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Huber, T. (2013). Rotation quasimorphisms for surfaces. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153998

Chicago Manual of Style (16th Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/153998.

MLA Handbook (7th Edition):

Huber, Thomas. “Rotation quasimorphisms for surfaces.” 2013. Web. 28 Oct 2020.

Vancouver:

Huber T. Rotation quasimorphisms for surfaces. [Internet] [Doctoral dissertation]. ETH Zürich; 2013. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/153998.

Council of Science Editors:

Huber T. Rotation quasimorphisms for surfaces. [Doctoral Dissertation]. ETH Zürich; 2013. Available from: http://hdl.handle.net/20.500.11850/153998


ETH Zürich

5. Specker, Ernst P. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.

Degree: 1949, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); DREIDIMENSIONALE MANNIGFALTIGKEITEN (TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); THREE-DIMENSIONAL MANIFOLDS (TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Specker, E. P. (1949). Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133460

Chicago Manual of Style (16th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/133460.

MLA Handbook (7th Edition):

Specker, Ernst P. “Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten.” 1949. Web. 28 Oct 2020.

Vancouver:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Internet] [Doctoral dissertation]. ETH Zürich; 1949. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/133460.

Council of Science Editors:

Specker EP. Die erste Cohomologiegruppe von Ueberlagerungen und Homotopieeigenschaften dreidimensionaler Mannigfaltigkeiten. [Doctoral Dissertation]. ETH Zürich; 1949. Available from: http://hdl.handle.net/20.500.11850/133460


ETH Zürich

6. Ebersold, Johannes Michael. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.

Degree: 1955, ETH Zürich

Subjects/Keywords: FIXPUNKTE UND KOINZIDENZEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); FIXED POINTS AND COINCIDENCE POINTS (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ebersold, J. M. (1955). Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132667

Chicago Manual of Style (16th Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/132667.

MLA Handbook (7th Edition):

Ebersold, Johannes Michael. “Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie.” 1955. Web. 28 Oct 2020.

Vancouver:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Internet] [Doctoral dissertation]. ETH Zürich; 1955. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/132667.

Council of Science Editors:

Ebersold JM. Ueber die Rolle des Whiteheadschen Homotopieproduktes für die Homologie-Theorie. [Doctoral Dissertation]. ETH Zürich; 1955. Available from: http://hdl.handle.net/20.500.11850/132667


ETH Zürich

7. Wang, Ming-Xi. Rational points and transcendental points.

Degree: 2011, ETH Zürich

Subjects/Keywords: ABELSCHE VARIETÄTEN + ABELSCHE SCHEMATA (ALGEBRAISCHE GEOMETRIE); ABELIAN VARIETIES + ABELIAN SCHEMES (ALGEBRAIC GEOMETRY); ELLIPTIC FUNCTIONS + ELLIPTIC INTEGRALS (MATHEMATICAL ANALYSIS); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ELLIPTISCHE FUNKTIONEN + ELLIPTISCHE INTEGRALE (ANALYSIS); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); ENDOMORPHISM RINGS (ALGEBRA); ENDOMORPHISMENRINGE (ALGEBRA); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wang, M. (2011). Rational points and transcendental points. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/41776

Chicago Manual of Style (16th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/41776.

MLA Handbook (7th Edition):

Wang, Ming-Xi. “Rational points and transcendental points.” 2011. Web. 28 Oct 2020.

Vancouver:

Wang M. Rational points and transcendental points. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/41776.

Council of Science Editors:

Wang M. Rational points and transcendental points. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/41776


ETH Zürich

8. Fornera, Linda Rita. Caractéristique eulérienne de groupes et rangs de modules projectifs.

Degree: 1986, ETH Zürich

Subjects/Keywords: CW-KOMPLEXE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); PROJEKTIVE MODULN + FLACHE MODULN (ALGEBRA); VON NEUMANN-ALGEBREN (FUNKTIONALANALYSIS); CW COMPLEXES (ALGEBRAIC TOPOLOGY); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); PROJECTIVE MODULES + FLAT MODULES (ALGEBRA); VON NEUMANN ALGEBRAS (FUNCTIONAL ANALYSIS); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fornera, L. R. (1986). Caractéristique eulérienne de groupes et rangs de modules projectifs. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/138980

Chicago Manual of Style (16th Edition):

Fornera, Linda Rita. “Caractéristique eulérienne de groupes et rangs de modules projectifs.” 1986. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/138980.

MLA Handbook (7th Edition):

Fornera, Linda Rita. “Caractéristique eulérienne de groupes et rangs de modules projectifs.” 1986. Web. 28 Oct 2020.

Vancouver:

Fornera LR. Caractéristique eulérienne de groupes et rangs de modules projectifs. [Internet] [Doctoral dissertation]. ETH Zürich; 1986. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/138980.

Council of Science Editors:

Fornera LR. Caractéristique eulérienne de groupes et rangs de modules projectifs. [Doctoral Dissertation]. ETH Zürich; 1986. Available from: http://hdl.handle.net/20.500.11850/138980


ETH Zürich

9. Strubel, Tobias. Fenchel-Nielsen coordinates for maximal representations.

Degree: 2011, ETH Zürich

Subjects/Keywords: LINEARE DARSTELLUNGEN VON LIE-ALGEBREN UND LIE-GRUPPEN; SYMPLEKTISCHE GRUPPEN (ALGEBRA); TEICHMÜLLERRÄUME (ANALYTISCHE RÄUME); HOMOTOPIEGRUPPEN + KOHOMOTOPIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); LINEAR REPRESENTATIONS OF LIE ALGEBRAS AND LIE GROUPS; SYMPLECTIC GROUPS (ALGEBRA); TEICHMÜLLER SPACES (ANALYTIC SPACES); HOMOTOPY GROUPS + COHOMOTOPY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Strubel, T. (2011). Fenchel-Nielsen coordinates for maximal representations. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/153151

Chicago Manual of Style (16th Edition):

Strubel, Tobias. “Fenchel-Nielsen coordinates for maximal representations.” 2011. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/153151.

MLA Handbook (7th Edition):

Strubel, Tobias. “Fenchel-Nielsen coordinates for maximal representations.” 2011. Web. 28 Oct 2020.

Vancouver:

Strubel T. Fenchel-Nielsen coordinates for maximal representations. [Internet] [Doctoral dissertation]. ETH Zürich; 2011. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/153151.

Council of Science Editors:

Strubel T. Fenchel-Nielsen coordinates for maximal representations. [Doctoral Dissertation]. ETH Zürich; 2011. Available from: http://hdl.handle.net/20.500.11850/153151


University of Vienna

10. Grüning, Julius. Lens spaces.

Degree: 2015, University of Vienna

Diese Masterarbeit beschäftigt sich mit Linsenräumen. Ein Linsenraum entsteht als Quotientenraum einer Wirkung einer endlichen zyklischen Gruppe auf eine Sphäre ungerader Dimension. Es werden einige verschiedene Konstruktionen von Linsenräumen besprochen. Außerdem werden die bekannten Homotopie- wie Homöomorphie-Klassifikationsresultate vorgestellt und bewiesen.

Subjects/Keywords: 31.61 Algebraische Topologie; Linsenräume / Linsenraum / algebraische Topologie / Homotopie / Homologie / Homöomorphie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Grüning, J. (2015). Lens spaces. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/40559/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Grüning, Julius. “Lens spaces.” 2015. Thesis, University of Vienna. Accessed October 28, 2020. http://othes.univie.ac.at/40559/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Grüning, Julius. “Lens spaces.” 2015. Web. 28 Oct 2020.

Vancouver:

Grüning J. Lens spaces. [Internet] [Thesis]. University of Vienna; 2015. [cited 2020 Oct 28]. Available from: http://othes.univie.ac.at/40559/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Grüning J. Lens spaces. [Thesis]. University of Vienna; 2015. Available from: http://othes.univie.ac.at/40559/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Ruhr Universität Bochum

11. Möllers, Jan-David. K(1)-local complex E∞-orientations.

Degree: 2010, Ruhr Universität Bochum

 In dieser Dissertation werden K(1)-lokale komplexe E_unendlich Orientierungen und H_unendlich Orientierungen untersucht (E_unendlich Abbildungen vom komplexen Kobordismenspektrum in ein K(1)-lokales E_unendlich Spektrum). Das Hauptresultat liefert… (more)

Subjects/Keywords: Algebraische Topologie; Stabile Homotopietheorie; Dimension unendlich; Bernoullische Zahl

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Möllers, J. (2010). K(1)-local complex E∞-orientations. (Thesis). Ruhr Universität Bochum. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Möllers, Jan-David. “K(1)-local complex E∞-orientations.” 2010. Thesis, Ruhr Universität Bochum. Accessed October 28, 2020. http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Möllers, Jan-David. “K(1)-local complex E∞-orientations.” 2010. Web. 28 Oct 2020.

Vancouver:

Möllers J. K(1)-local complex E∞-orientations. [Internet] [Thesis]. Ruhr Universität Bochum; 2010. [cited 2020 Oct 28]. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Möllers J. K(1)-local complex E∞-orientations. [Thesis]. Ruhr Universität Bochum; 2010. Available from: http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:294-31107

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

12. Kröncke, Klaus. Comparison theorems in Riemannian geometry.

Degree: 2010, University of Vienna

Im ersten Kapitel führen wir zunächst Grundkonzepte der Krümmung ein. Danach fassen wir die wichtigsten Resultate aus der Überlagerungstheorie zusammen. Zuletzt beschreiben wir Mannigfaltigkeiten konstanter… (more)

Subjects/Keywords: 31.52 Differentialgeometrie; 31.55 Globale Analysis; 31.61 Algebraische Topologie; Globale Riemannsche Geometrie; Global Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kröncke, K. (2010). Comparison theorems in Riemannian geometry. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Thesis, University of Vienna. Accessed October 28, 2020. http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kröncke, Klaus. “Comparison theorems in Riemannian geometry.” 2010. Web. 28 Oct 2020.

Vancouver:

Kröncke K. Comparison theorems in Riemannian geometry. [Internet] [Thesis]. University of Vienna; 2010. [cited 2020 Oct 28]. Available from: http://othes.univie.ac.at/10736/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Kröncke K. Comparison theorems in Riemannian geometry. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/10736/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

13. Scheimbauer, Claudia Isabella. Factorization Homology as a Fully Extended Topological Field Theory.

Degree: 2014, ETH Zürich

Subjects/Keywords: QUANTENFELDTHEORIE; TOPOLOGISCHE INVARIANTEN; TOPOLOGISCHE KATEGORIEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGISCHE ALGEBRA IN ABELSCHEN KATEGORIEN; HOMOTOPIEGRUPPEN IN KATEGORIEN (ALGEBRA); BORDISMUS + KOBORDISMUS (ALGEBRAISCHE TOPOLOGIE); QUANTUM FIELD THEORY; TOPOLOGICAL INVARIANTS; TOPOLOGICAL CATEGORIES (ALGEBRAIC TOPOLOGY); HOMOLOGICAL ALGEBRA IN ABELIAN CATEGORIES; HOMOTOPY GROUPS IN CATEGORIES (ALGEBRA); BORDISM + COBORDISM (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; info:eu-repo/classification/ddc/510; Mathematics; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Scheimbauer, C. I. (2014). Factorization Homology as a Fully Extended Topological Field Theory. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154981

Chicago Manual of Style (16th Edition):

Scheimbauer, Claudia Isabella. “Factorization Homology as a Fully Extended Topological Field Theory.” 2014. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/154981.

MLA Handbook (7th Edition):

Scheimbauer, Claudia Isabella. “Factorization Homology as a Fully Extended Topological Field Theory.” 2014. Web. 28 Oct 2020.

Vancouver:

Scheimbauer CI. Factorization Homology as a Fully Extended Topological Field Theory. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/154981.

Council of Science Editors:

Scheimbauer CI. Factorization Homology as a Fully Extended Topological Field Theory. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154981

14. Heijne, Bas Leonard. Elliptic delsarte surfaces.

Degree: 2011, NARCIS

 Een elliptische kromme is een kromme waarop een optelling gedefinieerd is. Een elliptisch oppervlak is vervolgens een oppervlak dat bestaat uit is opgebouwd uit oneindig… (more)

Subjects/Keywords: proefschriften (vorm); elliptische oppervlakten; ellipsen (wiskunde); algebraische topologie

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Heijne, B. L. (2011). Elliptic delsarte surfaces. (Doctoral Dissertation). NARCIS. Retrieved from https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html

Chicago Manual of Style (16th Edition):

Heijne, Bas Leonard. “Elliptic delsarte surfaces.” 2011. Doctoral Dissertation, NARCIS. Accessed October 28, 2020. https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html.

MLA Handbook (7th Edition):

Heijne, Bas Leonard. “Elliptic delsarte surfaces.” 2011. Web. 28 Oct 2020.

Vancouver:

Heijne BL. Elliptic delsarte surfaces. [Internet] [Doctoral dissertation]. NARCIS; 2011. [cited 2020 Oct 28]. Available from: https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html.

Council of Science Editors:

Heijne BL. Elliptic delsarte surfaces. [Doctoral Dissertation]. NARCIS; 2011. Available from: https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; 288d2504-8a96-40bd-8a99-46d143073d85 ; 11370/288d2504-8a96-40bd-8a99-46d143073d85 ; urn:nbn:nl:ui:11-dbi/4ecb95c1782f1 ; https://www.rug.nl/research/portal/en/publications/elliptic-delsarte-surfaces(288d2504-8a96-40bd-8a99-46d143073d85).html


University of Vienna

15. Wellisch, Manuel. Knotentheorie und Spoke Diagrams.

Degree: 2017, University of Vienna

 E. Harasko hat mit der Einführung der Spoke Diagrams und den Reidemeister-Bewegungen für Spoke Diagrams eine neue und effektive Methode geschaffen Knoten zu vereinfachen (siehe… (more)

Subjects/Keywords: 31.61 Algebraische Topologie; 31.69 Topologie: Sonstiges; 31.99 Mathematik: Sonstiges; 31.00 Mathematik: Allgemeines; Knoten / Knotentheorie / Spoke Diagrams / Reidemeister / Harasko / Wellisch / Spokes; knots / knot theory / spoke diagrams / Reidemeister / Harasko / Wellisch / spokes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wellisch, M. (2017). Knotentheorie und Spoke Diagrams. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/47004/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wellisch, Manuel. “Knotentheorie und Spoke Diagrams.” 2017. Thesis, University of Vienna. Accessed October 28, 2020. http://othes.univie.ac.at/47004/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wellisch, Manuel. “Knotentheorie und Spoke Diagrams.” 2017. Web. 28 Oct 2020.

Vancouver:

Wellisch M. Knotentheorie und Spoke Diagrams. [Internet] [Thesis]. University of Vienna; 2017. [cited 2020 Oct 28]. Available from: http://othes.univie.ac.at/47004/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wellisch M. Knotentheorie und Spoke Diagrams. [Thesis]. University of Vienna; 2017. Available from: http://othes.univie.ac.at/47004/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

16. Thöni, Werner. Aequivariante Homotopie und Cohomologie.

Degree: 1964, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); KOHOMOLOGIE-OPERATIONEN (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); COHOMOLOGY OPERATIONS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Thöni, W. (1964). Aequivariante Homotopie und Cohomologie. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/132448

Chicago Manual of Style (16th Edition):

Thöni, Werner. “Aequivariante Homotopie und Cohomologie.” 1964. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/132448.

MLA Handbook (7th Edition):

Thöni, Werner. “Aequivariante Homotopie und Cohomologie.” 1964. Web. 28 Oct 2020.

Vancouver:

Thöni W. Aequivariante Homotopie und Cohomologie. [Internet] [Doctoral dissertation]. ETH Zürich; 1964. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/132448.

Council of Science Editors:

Thöni W. Aequivariante Homotopie und Cohomologie. [Doctoral Dissertation]. ETH Zürich; 1964. Available from: http://hdl.handle.net/20.500.11850/132448


ETH Zürich

17. Meier, Werner. Beiträge zur algebraischen Homotopietheorie der Moduln.

Degree: 1962, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Meier, W. (1962). Beiträge zur algebraischen Homotopietheorie der Moduln. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131688

Chicago Manual of Style (16th Edition):

Meier, Werner. “Beiträge zur algebraischen Homotopietheorie der Moduln.” 1962. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/131688.

MLA Handbook (7th Edition):

Meier, Werner. “Beiträge zur algebraischen Homotopietheorie der Moduln.” 1962. Web. 28 Oct 2020.

Vancouver:

Meier W. Beiträge zur algebraischen Homotopietheorie der Moduln. [Internet] [Doctoral dissertation]. ETH Zürich; 1962. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/131688.

Council of Science Editors:

Meier W. Beiträge zur algebraischen Homotopietheorie der Moduln. [Doctoral Dissertation]. ETH Zürich; 1962. Available from: http://hdl.handle.net/20.500.11850/131688


ETH Zürich

18. Fatt, Milton Jacob. On the homotopical approach to algebraic topology and the Hurewicz theorem.

Degree: 1963, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fatt, M. J. (1963). On the homotopical approach to algebraic topology and the Hurewicz theorem. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131384

Chicago Manual of Style (16th Edition):

Fatt, Milton Jacob. “On the homotopical approach to algebraic topology and the Hurewicz theorem.” 1963. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/131384.

MLA Handbook (7th Edition):

Fatt, Milton Jacob. “On the homotopical approach to algebraic topology and the Hurewicz theorem.” 1963. Web. 28 Oct 2020.

Vancouver:

Fatt MJ. On the homotopical approach to algebraic topology and the Hurewicz theorem. [Internet] [Doctoral dissertation]. ETH Zürich; 1963. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/131384.

Council of Science Editors:

Fatt MJ. On the homotopical approach to algebraic topology and the Hurewicz theorem. [Doctoral Dissertation]. ETH Zürich; 1963. Available from: http://hdl.handle.net/20.500.11850/131384


ETH Zürich

19. Eckmann, Beno. Zur Homotopietheorie gefaserter Räume.

Degree: 1941, ETH Zürich

Subjects/Keywords: HOMOTOPIETHEORIE (ALGEBRAISCHE TOPOLOGIE); FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); HOMOTOPY THEORY (ALGEBRAIC TOPOLOGY); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Eckmann, B. (1941). Zur Homotopietheorie gefaserter Räume. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133370

Chicago Manual of Style (16th Edition):

Eckmann, Beno. “Zur Homotopietheorie gefaserter Räume.” 1941. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/133370.

MLA Handbook (7th Edition):

Eckmann, Beno. “Zur Homotopietheorie gefaserter Räume.” 1941. Web. 28 Oct 2020.

Vancouver:

Eckmann B. Zur Homotopietheorie gefaserter Räume. [Internet] [Doctoral dissertation]. ETH Zürich; 1941. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/133370.

Council of Science Editors:

Eckmann B. Zur Homotopietheorie gefaserter Räume. [Doctoral Dissertation]. ETH Zürich; 1941. Available from: http://hdl.handle.net/20.500.11850/133370


ETH Zürich

20. Gysin, Werner. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten.

Degree: 1941, ETH Zürich

Subjects/Keywords: HOMOLOGIETHEORIE + DUALITÄTSTHEOREME (ALGEBRAISCHE TOPOLOGIE); KOMPLEXE (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY THEORY + DUALITY THEOREMS (ALGEBRAIC TOPOLOGY); COMPLEXES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gysin, W. (1941). Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/133473

Chicago Manual of Style (16th Edition):

Gysin, Werner. “Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten.” 1941. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/133473.

MLA Handbook (7th Edition):

Gysin, Werner. “Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten.” 1941. Web. 28 Oct 2020.

Vancouver:

Gysin W. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. [Internet] [Doctoral dissertation]. ETH Zürich; 1941. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/133473.

Council of Science Editors:

Gysin W. Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten. [Doctoral Dissertation]. ETH Zürich; 1941. Available from: http://hdl.handle.net/20.500.11850/133473


University of Vienna

21. Haiden, Fabian. Refined combinatorial torsion.

Degree: 2010, University of Vienna

Wir untersuchen eine Variante der Reidemeister- und Whitehead-Torsion von CW-Komplexen und glatten Mannigfaltigkeiten von V. Turaev. Die notwendigen algebraischen Hilfsmittel werden dabei in Analogie zu… (more)

Subjects/Keywords: 31.61 Algebraische Topologie; 31.65 Mannigfaltigkeiten, Zellkomplexe; 31.27 Kategorientheorie; monoidale Kategorie / 2-Gruppe / algebraische K-Theorie / Determinantenlinie / Quasiisomorphismus / Whitehead-Gruppe / Whitehead-Torsion / Reidemeister-Torsion / Morse-Theorie / Scheibenbündel; monoidal category / 2-group / algebraic K-theory / determinant line / quasi-isomorphism / Whitehead group / Whitehead torsion / Reidemeister torsion / Morse-theory / disc bundle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haiden, F. (2010). Refined combinatorial torsion. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/9916/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Haiden, Fabian. “Refined combinatorial torsion.” 2010. Thesis, University of Vienna. Accessed October 28, 2020. http://othes.univie.ac.at/9916/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Haiden, Fabian. “Refined combinatorial torsion.” 2010. Web. 28 Oct 2020.

Vancouver:

Haiden F. Refined combinatorial torsion. [Internet] [Thesis]. University of Vienna; 2010. [cited 2020 Oct 28]. Available from: http://othes.univie.ac.at/9916/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Haiden F. Refined combinatorial torsion. [Thesis]. University of Vienna; 2010. Available from: http://othes.univie.ac.at/9916/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

22. Rovelli, Luca. Explicit equivariant compactification and Riemann-Roch for algebraic groups.

Degree: 2002, ETH Zürich

Subjects/Keywords: RIEMANN-ROCH-THEOREM FÜR ALGEBRAISCHE VARIETÄTEN (ALGEBRAISCHE GEOMETRIE); KOMPAKTIFIZIERUNGEN (TOPOLOGIE); ABELSCHE GRUPPEN (ALGEBRA); ALGEBRAISCHE GRUPPEN (ALGEBRAISCHE GEOMETRIE); FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); RIEMANN-ROCH THEOREM FOR ALGEBRAIC VARIETIES (ALGEBRAIC GEOMETRY); COMPACTIFICATIONS (TOPOLOGY); ABELIAN GROUPS (ALGEBRA); ALGEBRAIC GROUPS (ALGEBRAIC GEOMETRY); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rovelli, L. (2002). Explicit equivariant compactification and Riemann-Roch for algebraic groups. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/146972

Chicago Manual of Style (16th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/146972.

MLA Handbook (7th Edition):

Rovelli, Luca. “Explicit equivariant compactification and Riemann-Roch for algebraic groups.” 2002. Web. 28 Oct 2020.

Vancouver:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Internet] [Doctoral dissertation]. ETH Zürich; 2002. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/146972.

Council of Science Editors:

Rovelli L. Explicit equivariant compactification and Riemann-Roch for algebraic groups. [Doctoral Dissertation]. ETH Zürich; 2002. Available from: http://hdl.handle.net/20.500.11850/146972


ETH Zürich

23. Janda, Felix. Relations in the tautological ring.

Degree: 2015, ETH Zürich

Subjects/Keywords: MODULRÄUME (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE ZYKLEN (ALGEBRAISCHE GEOMETRIE); RINGTHEORIE (ALGEBRA); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); MODULI SPACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); ALGEBRAIC CYCLES (ALGEBRAIC GEOMETRY); RING THEORY (ALGEBRA); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Janda, F. (2015). Relations in the tautological ring. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155246

Chicago Manual of Style (16th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/155246.

MLA Handbook (7th Edition):

Janda, Felix. “Relations in the tautological ring.” 2015. Web. 28 Oct 2020.

Vancouver:

Janda F. Relations in the tautological ring. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/155246.

Council of Science Editors:

Janda F. Relations in the tautological ring. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155246


ETH Zürich

24. Brändli, Emil Rudolf. Beiträge zur Theorie des Cohomologieringes.

Degree: 1948, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN UND KOHOMOLOGIEGRUPPEN SIMPLIZIALER MENGEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); KOHOMOLOGIE-OPERATIONEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY AND COHOMOLOGY GROUPS OF SIMPLICIAL SETS (ALGEBRAIC TOPOLOGY); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); COHOMOLOGY OPERATIONS (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brändli, E. R. (1948). Beiträge zur Theorie des Cohomologieringes. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/135213

Chicago Manual of Style (16th Edition):

Brändli, Emil Rudolf. “Beiträge zur Theorie des Cohomologieringes.” 1948. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/135213.

MLA Handbook (7th Edition):

Brändli, Emil Rudolf. “Beiträge zur Theorie des Cohomologieringes.” 1948. Web. 28 Oct 2020.

Vancouver:

Brändli ER. Beiträge zur Theorie des Cohomologieringes. [Internet] [Doctoral dissertation]. ETH Zürich; 1948. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/135213.

Council of Science Editors:

Brändli ER. Beiträge zur Theorie des Cohomologieringes. [Doctoral Dissertation]. ETH Zürich; 1948. Available from: http://hdl.handle.net/20.500.11850/135213


ETH Zürich

25. Kundert, Esayas. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.

Degree: 1951, ETH Zürich

Subjects/Keywords: FASERRÄUME + FASERBÜNDEL (ALGEBRAISCHE TOPOLOGIE); SCHNITT-THEORIE (ALGEBRAISCHE GEOMETRIE); FIBRE SPACES + FIBRE BUNDLES (ALGEBRAIC TOPOLOGY); INTERSECTION THEORY (ALGEBRAIC GEOMETRY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kundert, E. (1951). Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/131941

Chicago Manual of Style (16th Edition):

Kundert, Esayas. “Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.” 1951. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/131941.

MLA Handbook (7th Edition):

Kundert, Esayas. “Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente.” 1951. Web. 28 Oct 2020.

Vancouver:

Kundert E. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. [Internet] [Doctoral dissertation]. ETH Zürich; 1951. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/131941.

Council of Science Editors:

Kundert E. Ueber Schnittflächen in speziellen Faserungen und Felder reeller und komplexer Linienelemente. [Doctoral Dissertation]. ETH Zürich; 1951. Available from: http://hdl.handle.net/20.500.11850/131941


ETH Zürich

26. Haug, Luis. On Lagrangian quantum homology and Lagrangian cobordisms.

Degree: 2014, ETH Zürich

Subjects/Keywords: SYMPLEKTISCHE MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); LAGRANGE-MANNIGFALTIGKEITEN (DIFFERENTIALGEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); BORDISMUS + KOBORDISMUS (ALGEBRAISCHE TOPOLOGIE); SYMPLECTIC MANIFOLDS (DIFFERENTIAL GEOMETRY); LAGRANGE MANIFOLDS (DIFFERENTIAL GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); BORDISM + COBORDISM (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Haug, L. (2014). On Lagrangian quantum homology and Lagrangian cobordisms. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/154582

Chicago Manual of Style (16th Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/154582.

MLA Handbook (7th Edition):

Haug, Luis. “On Lagrangian quantum homology and Lagrangian cobordisms.” 2014. Web. 28 Oct 2020.

Vancouver:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Internet] [Doctoral dissertation]. ETH Zürich; 2014. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/154582.

Council of Science Editors:

Haug L. On Lagrangian quantum homology and Lagrangian cobordisms. [Doctoral Dissertation]. ETH Zürich; 2014. Available from: http://hdl.handle.net/20.500.11850/154582


ETH Zürich

27. Michelle Karlsson. Characteristic classes and bounded cohomology.

Degree: 2004, ETH Zürich

Subjects/Keywords: HOMOLOGIEGRUPPEN + KOHOMOLOGIEGRUPPEN (ALGEBRAISCHE TOPOLOGIE); SIMPLIZIALE KOMPLEXE + SIMPLIZIALE SCHEMEN (ALGEBRAISCHE TOPOLOGIE); HOMOLOGY GROUPS + COHOMOLOGY GROUPS (ALGEBRAIC TOPOLOGY); SIMPLICIAL COMPLEXES + SIMPLICIAL SCHEMES (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karlsson, M. (2004). Characteristic classes and bounded cohomology. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/148350

Chicago Manual of Style (16th Edition):

Karlsson, Michelle. “Characteristic classes and bounded cohomology.” 2004. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/148350.

MLA Handbook (7th Edition):

Karlsson, Michelle. “Characteristic classes and bounded cohomology.” 2004. Web. 28 Oct 2020.

Vancouver:

Karlsson M. Characteristic classes and bounded cohomology. [Internet] [Doctoral dissertation]. ETH Zürich; 2004. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/148350.

Council of Science Editors:

Karlsson M. Characteristic classes and bounded cohomology. [Doctoral Dissertation]. ETH Zürich; 2004. Available from: http://hdl.handle.net/20.500.11850/148350


ETH Zürich

28. Oberdieck, Georg. The enumerative geometry of the Hilbert schemes of points of a K3 surface.

Degree: 2015, ETH Zürich

Subjects/Keywords: HILBERTSCHEMEN (ALGEBRAISCHE GEOMETRIE); K3-FLÄCHEN + ENRIQUES-FLÄCHEN (ALGEBRAISCHE GEOMETRIE); ALGEBRAISCHE KURVEN (ALGEBRAISCHE GEOMETRIE); QUANTENKOHOMOLOGIE (ALGEBRAISCHE TOPOLOGIE); HILBERT SCHEMES (ALGEBRAIC GEOMETRY); K3 SURFACES + ENRIQUES SURFACES (ALGEBRAIC GEOMETRY); ALGEBRAIC CURVES (ALGEBRAIC GEOMETRY); QUANTUM COHOMOLOGY (ALGEBRAIC TOPOLOGY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oberdieck, G. (2015). The enumerative geometry of the Hilbert schemes of points of a K3 surface. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/155291

Chicago Manual of Style (16th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Doctoral Dissertation, ETH Zürich. Accessed October 28, 2020. http://hdl.handle.net/20.500.11850/155291.

MLA Handbook (7th Edition):

Oberdieck, Georg. “The enumerative geometry of the Hilbert schemes of points of a K3 surface.” 2015. Web. 28 Oct 2020.

Vancouver:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Internet] [Doctoral dissertation]. ETH Zürich; 2015. [cited 2020 Oct 28]. Available from: http://hdl.handle.net/20.500.11850/155291.

Council of Science Editors:

Oberdieck G. The enumerative geometry of the Hilbert schemes of points of a K3 surface. [Doctoral Dissertation]. ETH Zürich; 2015. Available from: http://hdl.handle.net/20.500.11850/155291


University of Vienna

29. Bojko, Arkadij. Stability conditions on quivers and semistable non-commutative curve counting.

Degree: 2018, University of Vienna

Der Begriff von Stabilitätkondizionen auf triangulierten Kategorien wurde von T. Bridgeland in "Stability conditions on triangulated categories" eingeführt. Zusätzlich haben wir mit den nicht-kommutativen Kurven,… (more)

Subjects/Keywords: 31.27 Kategorientheorie; 31.12 Kombinatorik, Graphentheorie; 31.29 Algebra: Sonstiges; 31.50 Geometrie: Allgemeines; 31.23 Ideale, Ringe, Moduln, Algebren; 31.60 Topologie: Allgemeines; 31.25 Lineare Algebra, multilineare Algebra; 31.61 Algebraische Topologie; triangulierte Kategorien / derivierte Kategorien / Stabilitätbedingungen / Stabilitätkondizionen / nicht-kommutative / Kurven / semistabil / Representationen von Köchern; triangulated categories / derived categories / stability conditions / non-commutative curve counting / non-commutative / semistable / representations of quivers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bojko, A. (2018). Stability conditions on quivers and semistable non-commutative curve counting. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/52820/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Thesis, University of Vienna. Accessed October 28, 2020. http://othes.univie.ac.at/52820/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Bojko, Arkadij. “Stability conditions on quivers and semistable non-commutative curve counting.” 2018. Web. 28 Oct 2020.

Vancouver:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Internet] [Thesis]. University of Vienna; 2018. [cited 2020 Oct 28]. Available from: http://othes.univie.ac.at/52820/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Bojko A. Stability conditions on quivers and semistable non-commutative curve counting. [Thesis]. University of Vienna; 2018. Available from: http://othes.univie.ac.at/52820/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Vienna

30. Vukadin, Ognjen. Arithmetic groups acting on quaternion hyperbolic spaces.

Degree: 2009, University of Vienna

In dieser Arbeit werden geometrische Methoden (, , , ) zur Konstruktion von Kohomologieklassen in lokal symmetrischen Räumen angewandt, um den Fall von arithmetisch definierten… (more)

Subjects/Keywords: 31.14 Zahlentheorie; 31.61 Algebraische Topologie; 31.30 Topologische Gruppen, Liegruppen; Arithmetische Gruppen / Kohomologie / Quaternionisch hyperbolische Räume; arithmetic groups / cohomology / quaternion hyperbolic spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Vukadin, O. (2009). Arithmetic groups acting on quaternion hyperbolic spaces. (Thesis). University of Vienna. Retrieved from http://othes.univie.ac.at/4861/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Vukadin, Ognjen. “Arithmetic groups acting on quaternion hyperbolic spaces.” 2009. Thesis, University of Vienna. Accessed October 28, 2020. http://othes.univie.ac.at/4861/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Vukadin, Ognjen. “Arithmetic groups acting on quaternion hyperbolic spaces.” 2009. Web. 28 Oct 2020.

Vancouver:

Vukadin O. Arithmetic groups acting on quaternion hyperbolic spaces. [Internet] [Thesis]. University of Vienna; 2009. [cited 2020 Oct 28]. Available from: http://othes.univie.ac.at/4861/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Vukadin O. Arithmetic groups acting on quaternion hyperbolic spaces. [Thesis]. University of Vienna; 2009. Available from: http://othes.univie.ac.at/4861/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5] … [16]

.