Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Group actions). Showing records 1 – 30 of 75 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

Degrees

Country

▼ Search Limiters


Vanderbilt University

1. Hassan Balasubramanya, Sahana. Hyperbolic Structures on groups.

Degree: PhD, Mathematics, 2018, Vanderbilt University

 It is customary in geometric group theory to study groups as metric spaces. The standard way to convert a group G into a geometric object… (more)

Subjects/Keywords: Quasi-parabolic actions; Geometric group theory; Group actions on hyperbolic spaces; Acylindrical actions; Lamplighter groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hassan Balasubramanya, S. (2018). Hyperbolic Structures on groups. (Doctoral Dissertation). Vanderbilt University. Retrieved from http://hdl.handle.net/1803/12391

Chicago Manual of Style (16th Edition):

Hassan Balasubramanya, Sahana. “Hyperbolic Structures on groups.” 2018. Doctoral Dissertation, Vanderbilt University. Accessed September 19, 2020. http://hdl.handle.net/1803/12391.

MLA Handbook (7th Edition):

Hassan Balasubramanya, Sahana. “Hyperbolic Structures on groups.” 2018. Web. 19 Sep 2020.

Vancouver:

Hassan Balasubramanya S. Hyperbolic Structures on groups. [Internet] [Doctoral dissertation]. Vanderbilt University; 2018. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/1803/12391.

Council of Science Editors:

Hassan Balasubramanya S. Hyperbolic Structures on groups. [Doctoral Dissertation]. Vanderbilt University; 2018. Available from: http://hdl.handle.net/1803/12391


Colorado State University

2. Hughes, Justin. Group action on neighborhood complexes of Cayley graphs.

Degree: PhD, Mathematics, 2014, Colorado State University

 Given G a group generated by S ≐ {g1, …, gn}, one can construct the Cayley Graph Cayley (G,S). Given a distance set D ⊂… (more)

Subjects/Keywords: Cayley graphs; neighborhood complexes; group actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hughes, J. (2014). Group action on neighborhood complexes of Cayley graphs. (Doctoral Dissertation). Colorado State University. Retrieved from http://hdl.handle.net/10217/83780

Chicago Manual of Style (16th Edition):

Hughes, Justin. “Group action on neighborhood complexes of Cayley graphs.” 2014. Doctoral Dissertation, Colorado State University. Accessed September 19, 2020. http://hdl.handle.net/10217/83780.

MLA Handbook (7th Edition):

Hughes, Justin. “Group action on neighborhood complexes of Cayley graphs.” 2014. Web. 19 Sep 2020.

Vancouver:

Hughes J. Group action on neighborhood complexes of Cayley graphs. [Internet] [Doctoral dissertation]. Colorado State University; 2014. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/10217/83780.

Council of Science Editors:

Hughes J. Group action on neighborhood complexes of Cayley graphs. [Doctoral Dissertation]. Colorado State University; 2014. Available from: http://hdl.handle.net/10217/83780


McMaster University

3. Kairzhan, Adilbek. Infinite discrete group actions.

Degree: MSc, 2016, McMaster University

The nature of this paper is expository. The purpose is to present the fundamental material concerning actions of infinite discrete groups on the n-sphere and… (more)

Subjects/Keywords: group actions; topological conjugacy; convergence groups; pseudo-Riemannian space forms; compactification of actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kairzhan, A. (2016). Infinite discrete group actions. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/20263

Chicago Manual of Style (16th Edition):

Kairzhan, Adilbek. “Infinite discrete group actions.” 2016. Masters Thesis, McMaster University. Accessed September 19, 2020. http://hdl.handle.net/11375/20263.

MLA Handbook (7th Edition):

Kairzhan, Adilbek. “Infinite discrete group actions.” 2016. Web. 19 Sep 2020.

Vancouver:

Kairzhan A. Infinite discrete group actions. [Internet] [Masters thesis]. McMaster University; 2016. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/11375/20263.

Council of Science Editors:

Kairzhan A. Infinite discrete group actions. [Masters Thesis]. McMaster University; 2016. Available from: http://hdl.handle.net/11375/20263


University of Western Ontario

4. Chaves Ramirez, Sergio. Equivariant cohomology for 2-torus actions and torus actions with compatible involutions.

Degree: 2020, University of Western Ontario

 The Borel equivariant cohomology is an algebraic invariant of topological spaces with actions of a compact group which inherits a canonical module structure over the… (more)

Subjects/Keywords: equivariant cohomology; group actions; torus actions; syzygies; group cohomology; Hamiltonian actions; Weyl invariants; manifold with corners; big polygon spaces.; Algebra; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chaves Ramirez, S. (2020). Equivariant cohomology for 2-torus actions and torus actions with compatible involutions. (Thesis). University of Western Ontario. Retrieved from https://ir.lib.uwo.ca/etd/7049

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chaves Ramirez, Sergio. “Equivariant cohomology for 2-torus actions and torus actions with compatible involutions.” 2020. Thesis, University of Western Ontario. Accessed September 19, 2020. https://ir.lib.uwo.ca/etd/7049.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chaves Ramirez, Sergio. “Equivariant cohomology for 2-torus actions and torus actions with compatible involutions.” 2020. Web. 19 Sep 2020.

Vancouver:

Chaves Ramirez S. Equivariant cohomology for 2-torus actions and torus actions with compatible involutions. [Internet] [Thesis]. University of Western Ontario; 2020. [cited 2020 Sep 19]. Available from: https://ir.lib.uwo.ca/etd/7049.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chaves Ramirez S. Equivariant cohomology for 2-torus actions and torus actions with compatible involutions. [Thesis]. University of Western Ontario; 2020. Available from: https://ir.lib.uwo.ca/etd/7049

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Manchester

5. Kocsis, Zoltan. Development of Group Theory in the Language of Internal Set Theory.

Degree: 2019, University of Manchester

 This thesis explores two novel algebraic applications of Internal Set Theory (IST). We propose an explicitly topological formalism of structural approximation of groups, generalizing previous… (more)

Subjects/Keywords: internal set theory; group theory; nonstandard analysis; group actions; sheaves; type theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kocsis, Z. (2019). Development of Group Theory in the Language of Internal Set Theory. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:322301

Chicago Manual of Style (16th Edition):

Kocsis, Zoltan. “Development of Group Theory in the Language of Internal Set Theory.” 2019. Doctoral Dissertation, University of Manchester. Accessed September 19, 2020. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:322301.

MLA Handbook (7th Edition):

Kocsis, Zoltan. “Development of Group Theory in the Language of Internal Set Theory.” 2019. Web. 19 Sep 2020.

Vancouver:

Kocsis Z. Development of Group Theory in the Language of Internal Set Theory. [Internet] [Doctoral dissertation]. University of Manchester; 2019. [cited 2020 Sep 19]. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:322301.

Council of Science Editors:

Kocsis Z. Development of Group Theory in the Language of Internal Set Theory. [Doctoral Dissertation]. University of Manchester; 2019. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:322301


University of Bath

6. Jarrett, Kieran. Non-singular actions of countable groups.

Degree: PhD, 2018, University of Bath

In this thesis we study actions of countable groups on measure spaces underthe assumption that the dynamics are non-singular, with particular reference topointwise ergodic theorems and their relationship to the critical dimensions ofthe action.

Subjects/Keywords: 510; Ergodic Theory; Group actions; Non-singular; Ergodic Theorem; Critical dimensions; Heisenberg group

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jarrett, K. (2018). Non-singular actions of countable groups. (Doctoral Dissertation). University of Bath. Retrieved from https://researchportal.bath.ac.uk/en/studentthesis/nonsingular-actions-of-countable-groups(a3263c79-ada7-473a-afab-3fa3cec0eb88).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761021

Chicago Manual of Style (16th Edition):

Jarrett, Kieran. “Non-singular actions of countable groups.” 2018. Doctoral Dissertation, University of Bath. Accessed September 19, 2020. https://researchportal.bath.ac.uk/en/studentthesis/nonsingular-actions-of-countable-groups(a3263c79-ada7-473a-afab-3fa3cec0eb88).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761021.

MLA Handbook (7th Edition):

Jarrett, Kieran. “Non-singular actions of countable groups.” 2018. Web. 19 Sep 2020.

Vancouver:

Jarrett K. Non-singular actions of countable groups. [Internet] [Doctoral dissertation]. University of Bath; 2018. [cited 2020 Sep 19]. Available from: https://researchportal.bath.ac.uk/en/studentthesis/nonsingular-actions-of-countable-groups(a3263c79-ada7-473a-afab-3fa3cec0eb88).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761021.

Council of Science Editors:

Jarrett K. Non-singular actions of countable groups. [Doctoral Dissertation]. University of Bath; 2018. Available from: https://researchportal.bath.ac.uk/en/studentthesis/nonsingular-actions-of-countable-groups(a3263c79-ada7-473a-afab-3fa3cec0eb88).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761021


University of Manchester

7. Kocsis, Zoltan. Development of group theory in the language of internal set theory.

Degree: PhD, 2019, University of Manchester

 This thesis explores two novel algebraic applications of Internal Set Theory (IST). We propose an explicitly topological formalism of structural approximation of groups, generalizing previous… (more)

Subjects/Keywords: 510; type theory; sheaves; group actions; group theory; internal set theory; nonstandard analysis

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kocsis, Z. (2019). Development of group theory in the language of internal set theory. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/development-of-group-theory-in-the-language-of-internal-set-theory(2f333784-a511-4c85-a7e2-812cc14e6067).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.791236

Chicago Manual of Style (16th Edition):

Kocsis, Zoltan. “Development of group theory in the language of internal set theory.” 2019. Doctoral Dissertation, University of Manchester. Accessed September 19, 2020. https://www.research.manchester.ac.uk/portal/en/theses/development-of-group-theory-in-the-language-of-internal-set-theory(2f333784-a511-4c85-a7e2-812cc14e6067).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.791236.

MLA Handbook (7th Edition):

Kocsis, Zoltan. “Development of group theory in the language of internal set theory.” 2019. Web. 19 Sep 2020.

Vancouver:

Kocsis Z. Development of group theory in the language of internal set theory. [Internet] [Doctoral dissertation]. University of Manchester; 2019. [cited 2020 Sep 19]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/development-of-group-theory-in-the-language-of-internal-set-theory(2f333784-a511-4c85-a7e2-812cc14e6067).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.791236.

Council of Science Editors:

Kocsis Z. Development of group theory in the language of internal set theory. [Doctoral Dissertation]. University of Manchester; 2019. Available from: https://www.research.manchester.ac.uk/portal/en/theses/development-of-group-theory-in-the-language-of-internal-set-theory(2f333784-a511-4c85-a7e2-812cc14e6067).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.791236


California State University – San Bernardino

8. Portenstein, Pamela Mae. BREAKING BREAD, SHAPING UNDERSTANDING: THE ECO-FOOD COMMUNITY AS COGNITIVE SYSTEM.

Degree: MAin English Composition, English, 2015, California State University – San Bernardino

  In this thesis I employ insights from Conversation Analysis and Embodied Cognition Theory to examine the discursive practices of a group of interactants who… (more)

Subjects/Keywords: embodied cognition; conversation analysis; situated actions; group systems theory; Applied Linguistics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Portenstein, P. M. (2015). BREAKING BREAD, SHAPING UNDERSTANDING: THE ECO-FOOD COMMUNITY AS COGNITIVE SYSTEM. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/184

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Portenstein, Pamela Mae. “BREAKING BREAD, SHAPING UNDERSTANDING: THE ECO-FOOD COMMUNITY AS COGNITIVE SYSTEM.” 2015. Thesis, California State University – San Bernardino. Accessed September 19, 2020. https://scholarworks.lib.csusb.edu/etd/184.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Portenstein, Pamela Mae. “BREAKING BREAD, SHAPING UNDERSTANDING: THE ECO-FOOD COMMUNITY AS COGNITIVE SYSTEM.” 2015. Web. 19 Sep 2020.

Vancouver:

Portenstein PM. BREAKING BREAD, SHAPING UNDERSTANDING: THE ECO-FOOD COMMUNITY AS COGNITIVE SYSTEM. [Internet] [Thesis]. California State University – San Bernardino; 2015. [cited 2020 Sep 19]. Available from: https://scholarworks.lib.csusb.edu/etd/184.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Portenstein PM. BREAKING BREAD, SHAPING UNDERSTANDING: THE ECO-FOOD COMMUNITY AS COGNITIVE SYSTEM. [Thesis]. California State University – San Bernardino; 2015. Available from: https://scholarworks.lib.csusb.edu/etd/184

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

9. Michael Perlman. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.

Degree: Mathematics, 2020, University of Notre Dame

  Let G be a connected linear algebraic group acting on a smooth complex variety X with finitely many orbits. In this case, the category… (more)

Subjects/Keywords: Commutative Algebra; Algebraic Geometry; Local Cohomology; D-modules; Group Actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perlman, M. (2020). Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/g732d79512m

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Thesis, University of Notre Dame. Accessed September 19, 2020. https://curate.nd.edu/show/g732d79512m.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perlman, Michael. “Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>.” 2020. Web. 19 Sep 2020.

Vancouver:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Internet] [Thesis]. University of Notre Dame; 2020. [cited 2020 Sep 19]. Available from: https://curate.nd.edu/show/g732d79512m.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perlman M. Equivariant D-Modules on Spaces of Tensors and Applications to Local Cohomology</h1>. [Thesis]. University of Notre Dame; 2020. Available from: https://curate.nd.edu/show/g732d79512m

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

10. Smith, Kathleen. Connectivity and Convexity Properties of the Momentum Map for Group Actions on Hilbert Manifolds.

Degree: 2013, University of Toronto

In the early 1980s a landmark result was obtained by Atiyah and independently Guillemin and Sternberg: the image of the momentum map for a torus… (more)

Subjects/Keywords: connectivity; group actions on HIlbert manifolds; convexity; momentum map; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Smith, K. (2013). Connectivity and Convexity Properties of the Momentum Map for Group Actions on Hilbert Manifolds. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/43721

Chicago Manual of Style (16th Edition):

Smith, Kathleen. “Connectivity and Convexity Properties of the Momentum Map for Group Actions on Hilbert Manifolds.” 2013. Doctoral Dissertation, University of Toronto. Accessed September 19, 2020. http://hdl.handle.net/1807/43721.

MLA Handbook (7th Edition):

Smith, Kathleen. “Connectivity and Convexity Properties of the Momentum Map for Group Actions on Hilbert Manifolds.” 2013. Web. 19 Sep 2020.

Vancouver:

Smith K. Connectivity and Convexity Properties of the Momentum Map for Group Actions on Hilbert Manifolds. [Internet] [Doctoral dissertation]. University of Toronto; 2013. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/1807/43721.

Council of Science Editors:

Smith K. Connectivity and Convexity Properties of the Momentum Map for Group Actions on Hilbert Manifolds. [Doctoral Dissertation]. University of Toronto; 2013. Available from: http://hdl.handle.net/1807/43721

11. Perepechko, Aleksandr. Automorphismes des variétés affines : Automorphisms of affine varieties.

Degree: Docteur es, Mathématiques, 2013, Grenoble; Institut stran Azii i Afriki (Moskva)

La thèse se compose de deux parties. La première partie est consacrée aux transformations des algèbres de dimension finie. Il est facile de voir que… (more)

Subjects/Keywords: Groupes d'automorphismes; Actions des groupes; Variétés affines; Automorphismes spéciaux,; Automorphism groups; Group actions; Affine varieties; Special automorphisms; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perepechko, A. (2013). Automorphismes des variétés affines : Automorphisms of affine varieties. (Doctoral Dissertation). Grenoble; Institut stran Azii i Afriki (Moskva). Retrieved from http://www.theses.fr/2013GRENM065

Chicago Manual of Style (16th Edition):

Perepechko, Aleksandr. “Automorphismes des variétés affines : Automorphisms of affine varieties.” 2013. Doctoral Dissertation, Grenoble; Institut stran Azii i Afriki (Moskva). Accessed September 19, 2020. http://www.theses.fr/2013GRENM065.

MLA Handbook (7th Edition):

Perepechko, Aleksandr. “Automorphismes des variétés affines : Automorphisms of affine varieties.” 2013. Web. 19 Sep 2020.

Vancouver:

Perepechko A. Automorphismes des variétés affines : Automorphisms of affine varieties. [Internet] [Doctoral dissertation]. Grenoble; Institut stran Azii i Afriki (Moskva); 2013. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2013GRENM065.

Council of Science Editors:

Perepechko A. Automorphismes des variétés affines : Automorphisms of affine varieties. [Doctoral Dissertation]. Grenoble; Institut stran Azii i Afriki (Moskva); 2013. Available from: http://www.theses.fr/2013GRENM065


Texas A&M University

12. Wendel, Eric. Receding Horizon Covariance Control.

Degree: MS, Aerospace Engineering, 2012, Texas A&M University

 Covariance assignment theory, introduced in the late 1980s, provided the only means to directly control the steady-state error properties of a linear system subject to… (more)

Subjects/Keywords: receding horizon control; Lie group actions; optimal control theory; Hamiltonian systems; covariance control theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wendel, E. (2012). Receding Horizon Covariance Control. (Masters Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11691

Chicago Manual of Style (16th Edition):

Wendel, Eric. “Receding Horizon Covariance Control.” 2012. Masters Thesis, Texas A&M University. Accessed September 19, 2020. http://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11691.

MLA Handbook (7th Edition):

Wendel, Eric. “Receding Horizon Covariance Control.” 2012. Web. 19 Sep 2020.

Vancouver:

Wendel E. Receding Horizon Covariance Control. [Internet] [Masters thesis]. Texas A&M University; 2012. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11691.

Council of Science Editors:

Wendel E. Receding Horizon Covariance Control. [Masters Thesis]. Texas A&M University; 2012. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11691


McMaster University

13. Anvari, Nima. Equivariant Gauge Theory and Four-Manifolds.

Degree: PhD, 2013, McMaster University

Let p>5 be a prime and X0 a simply-connected 4-manifold with boundary the Poincar\'e homology sphere Σ(2,3,5) and even negative-definite intersection form QX0={E}8 .… (more)

Subjects/Keywords: group actions; four-manifolds; gauge theory; Geometry and Topology; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Anvari, N. (2013). Equivariant Gauge Theory and Four-Manifolds. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/13384

Chicago Manual of Style (16th Edition):

Anvari, Nima. “Equivariant Gauge Theory and Four-Manifolds.” 2013. Doctoral Dissertation, McMaster University. Accessed September 19, 2020. http://hdl.handle.net/11375/13384.

MLA Handbook (7th Edition):

Anvari, Nima. “Equivariant Gauge Theory and Four-Manifolds.” 2013. Web. 19 Sep 2020.

Vancouver:

Anvari N. Equivariant Gauge Theory and Four-Manifolds. [Internet] [Doctoral dissertation]. McMaster University; 2013. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/11375/13384.

Council of Science Editors:

Anvari N. Equivariant Gauge Theory and Four-Manifolds. [Doctoral Dissertation]. McMaster University; 2013. Available from: http://hdl.handle.net/11375/13384


McMaster University

14. Breton, Sacha. Finite Group Actions on the Four-Dimensional Sphere.

Degree: MSc, 2011, McMaster University

Smith theory provides powerful tools for understanding the geometry of singular sets of group actions on spheres. In this thesis, tools from Smith theory… (more)

Subjects/Keywords: group actions; four spheres; smooth manifolds; Geometry and Topology; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Breton, S. (2011). Finite Group Actions on the Four-Dimensional Sphere. (Masters Thesis). McMaster University. Retrieved from http://hdl.handle.net/11375/11102

Chicago Manual of Style (16th Edition):

Breton, Sacha. “Finite Group Actions on the Four-Dimensional Sphere.” 2011. Masters Thesis, McMaster University. Accessed September 19, 2020. http://hdl.handle.net/11375/11102.

MLA Handbook (7th Edition):

Breton, Sacha. “Finite Group Actions on the Four-Dimensional Sphere.” 2011. Web. 19 Sep 2020.

Vancouver:

Breton S. Finite Group Actions on the Four-Dimensional Sphere. [Internet] [Masters thesis]. McMaster University; 2011. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/11375/11102.

Council of Science Editors:

Breton S. Finite Group Actions on the Four-Dimensional Sphere. [Masters Thesis]. McMaster University; 2011. Available from: http://hdl.handle.net/11375/11102


McMaster University

15. Dragomir, George C. CLOSED GEODESICS ON COMPACT DEVELOPABLE ORBIFOLDS.

Degree: PhD, 2011, McMaster University

Existence of closed geodesics on compact manifolds was first proved by Lyusternik and Fet in the 1950s using Morse theory, and the corresponding problem… (more)

Subjects/Keywords: orbifolds; geodesics; finite group actions; infinite torsion groups; Geometry and Topology; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dragomir, G. C. (2011). CLOSED GEODESICS ON COMPACT DEVELOPABLE ORBIFOLDS. (Doctoral Dissertation). McMaster University. Retrieved from http://hdl.handle.net/11375/11273

Chicago Manual of Style (16th Edition):

Dragomir, George C. “CLOSED GEODESICS ON COMPACT DEVELOPABLE ORBIFOLDS.” 2011. Doctoral Dissertation, McMaster University. Accessed September 19, 2020. http://hdl.handle.net/11375/11273.

MLA Handbook (7th Edition):

Dragomir, George C. “CLOSED GEODESICS ON COMPACT DEVELOPABLE ORBIFOLDS.” 2011. Web. 19 Sep 2020.

Vancouver:

Dragomir GC. CLOSED GEODESICS ON COMPACT DEVELOPABLE ORBIFOLDS. [Internet] [Doctoral dissertation]. McMaster University; 2011. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/11375/11273.

Council of Science Editors:

Dragomir GC. CLOSED GEODESICS ON COMPACT DEVELOPABLE ORBIFOLDS. [Doctoral Dissertation]. McMaster University; 2011. Available from: http://hdl.handle.net/11375/11273


University of California – San Diego

16. McAdam, Taylor Jane. Effective Equidistribution in Homogeneous Dynamics with Applications in Number Theory.

Degree: Mathematics, 2019, University of California – San Diego

 We study the asymptotic distribution of almost-prime entries in horospherical flows on the quotient of SL(n,R) by a lattice, where the lattice is either cocompact… (more)

Subjects/Keywords: Mathematics; Dynamical Systems; Ergodic Theory; Group Actions; Homogeneous Dynamics; Lie Groups; Number Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McAdam, T. J. (2019). Effective Equidistribution in Homogeneous Dynamics with Applications in Number Theory. (Thesis). University of California – San Diego. Retrieved from http://www.escholarship.org/uc/item/28k763gr

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McAdam, Taylor Jane. “Effective Equidistribution in Homogeneous Dynamics with Applications in Number Theory.” 2019. Thesis, University of California – San Diego. Accessed September 19, 2020. http://www.escholarship.org/uc/item/28k763gr.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McAdam, Taylor Jane. “Effective Equidistribution in Homogeneous Dynamics with Applications in Number Theory.” 2019. Web. 19 Sep 2020.

Vancouver:

McAdam TJ. Effective Equidistribution in Homogeneous Dynamics with Applications in Number Theory. [Internet] [Thesis]. University of California – San Diego; 2019. [cited 2020 Sep 19]. Available from: http://www.escholarship.org/uc/item/28k763gr.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McAdam TJ. Effective Equidistribution in Homogeneous Dynamics with Applications in Number Theory. [Thesis]. University of California – San Diego; 2019. Available from: http://www.escholarship.org/uc/item/28k763gr

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Manchester

17. Al-Zamil, Qusay Soad. Algebraic topology of PDES.

Degree: PhD, 2012, University of Manchester

 We consider a compact, oriented,smooth Riemannian manifold M (with or without boundary) and wesuppose G is a torus acting by isometries on M. Given X… (more)

Subjects/Keywords: 510; t cohomology; cup product (ring structure ), group actions, Dirichlet to Neumann operator

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Al-Zamil, Q. S. (2012). Algebraic topology of PDES. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/algebraic-topology-of-pdes(6e25e379-5e32-4db8-abd1-e0a892cecea6).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549647

Chicago Manual of Style (16th Edition):

Al-Zamil, Qusay Soad. “Algebraic topology of PDES.” 2012. Doctoral Dissertation, University of Manchester. Accessed September 19, 2020. https://www.research.manchester.ac.uk/portal/en/theses/algebraic-topology-of-pdes(6e25e379-5e32-4db8-abd1-e0a892cecea6).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549647.

MLA Handbook (7th Edition):

Al-Zamil, Qusay Soad. “Algebraic topology of PDES.” 2012. Web. 19 Sep 2020.

Vancouver:

Al-Zamil QS. Algebraic topology of PDES. [Internet] [Doctoral dissertation]. University of Manchester; 2012. [cited 2020 Sep 19]. Available from: https://www.research.manchester.ac.uk/portal/en/theses/algebraic-topology-of-pdes(6e25e379-5e32-4db8-abd1-e0a892cecea6).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549647.

Council of Science Editors:

Al-Zamil QS. Algebraic topology of PDES. [Doctoral Dissertation]. University of Manchester; 2012. Available from: https://www.research.manchester.ac.uk/portal/en/theses/algebraic-topology-of-pdes(6e25e379-5e32-4db8-abd1-e0a892cecea6).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549647


University of Hawaii – Manoa

18. Verrette, Jean. Results on Algebraic Realization of Equivariant Bundles Over the 2-Sphere.

Degree: 2017, University of Hawaii – Manoa

Ph.D. University of Hawaii at Manoa 2016.

We verify the Algebraic Realization Conjecture for complex equivariant vector bundles over the 2-sphere with effective actions by… (more)

Subjects/Keywords: algebraic topology; real algebraic sets; equivariant complex vector bundle; Lie group actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Verrette, J. (2017). Results on Algebraic Realization of Equivariant Bundles Over the 2-Sphere. (Thesis). University of Hawaii – Manoa. Retrieved from http://hdl.handle.net/10125/51514

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Verrette, Jean. “Results on Algebraic Realization of Equivariant Bundles Over the 2-Sphere.” 2017. Thesis, University of Hawaii – Manoa. Accessed September 19, 2020. http://hdl.handle.net/10125/51514.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Verrette, Jean. “Results on Algebraic Realization of Equivariant Bundles Over the 2-Sphere.” 2017. Web. 19 Sep 2020.

Vancouver:

Verrette J. Results on Algebraic Realization of Equivariant Bundles Over the 2-Sphere. [Internet] [Thesis]. University of Hawaii – Manoa; 2017. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/10125/51514.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Verrette J. Results on Algebraic Realization of Equivariant Bundles Over the 2-Sphere. [Thesis]. University of Hawaii – Manoa; 2017. Available from: http://hdl.handle.net/10125/51514

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Pennsylvania

19. Karayayla, Tolga. The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section.

Degree: 2011, University of Pennsylvania

 In this dissertation, we give a classification of (regular) automorphism groups of relatively minimal rational elliptic surfaces with section over the field ℂ which have… (more)

Subjects/Keywords: algebraic geometry; group actions; automorphisms; Mordell-Weil group; elliptic surfaces; Algebraic Geometry; Applied Mathematics; Physical Sciences and Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Karayayla, T. (2011). The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/988

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Karayayla, Tolga. “The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section.” 2011. Thesis, University of Pennsylvania. Accessed September 19, 2020. https://repository.upenn.edu/edissertations/988.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Karayayla, Tolga. “The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section.” 2011. Web. 19 Sep 2020.

Vancouver:

Karayayla T. The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section. [Internet] [Thesis]. University of Pennsylvania; 2011. [cited 2020 Sep 19]. Available from: https://repository.upenn.edu/edissertations/988.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Karayayla T. The Classification of Automorphism Groups of Rational Elliptic Surfaces With Section. [Thesis]. University of Pennsylvania; 2011. Available from: https://repository.upenn.edu/edissertations/988

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

20. Bouljihad, Mohamed. Propriété (T) de Kazhdan relative à l'espace : Kazhdan's property (T) relative to the space.

Degree: Docteur es, Mathématiques, 2016, Lyon

L'objet de cette thèse est l'étude de la propriété (T) relative à l'espace (ou rigidité au sens de Popa) d'actions de groupes dénombrables sur des… (more)

Subjects/Keywords: Propriété (T) relative à l'espace; Théorie ergodique des actions de groupes; Algèbres de von Neumann; Property (T) relative to the space; , Ergodic theory of group actions; Von Neumann algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bouljihad, M. (2016). Propriété (T) de Kazhdan relative à l'espace : Kazhdan's property (T) relative to the space. (Doctoral Dissertation). Lyon. Retrieved from http://www.theses.fr/2016LYSEN010

Chicago Manual of Style (16th Edition):

Bouljihad, Mohamed. “Propriété (T) de Kazhdan relative à l'espace : Kazhdan's property (T) relative to the space.” 2016. Doctoral Dissertation, Lyon. Accessed September 19, 2020. http://www.theses.fr/2016LYSEN010.

MLA Handbook (7th Edition):

Bouljihad, Mohamed. “Propriété (T) de Kazhdan relative à l'espace : Kazhdan's property (T) relative to the space.” 2016. Web. 19 Sep 2020.

Vancouver:

Bouljihad M. Propriété (T) de Kazhdan relative à l'espace : Kazhdan's property (T) relative to the space. [Internet] [Doctoral dissertation]. Lyon; 2016. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2016LYSEN010.

Council of Science Editors:

Bouljihad M. Propriété (T) de Kazhdan relative à l'espace : Kazhdan's property (T) relative to the space. [Doctoral Dissertation]. Lyon; 2016. Available from: http://www.theses.fr/2016LYSEN010

21. Olivier, Baptiste. Rigidité et non-rigidité d'actions de groupes sur les espaces Lp non-commutatifs : Rigidity and non-rigidity of group actions on non-commutative Lp spaces.

Degree: Docteur es, Mathématiques et applications, 2013, Rennes 1; Université européenne de Bretagne

Nous étudions des propriétés de rigidité et des propriétés de non-rigidité forte d'actions de groupes sur des espaces Lp non-commutatifs. Récemment, des variantes de la… (more)

Subjects/Keywords: Rigidité des actions de groupes; Espaces Lp non-commutatifs; Propriété (T); Propriété de Haagerup; Représentations des groupes; Rigidity of group actions; Non-commutative Lp spaces; Haagerup property

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Olivier, B. (2013). Rigidité et non-rigidité d'actions de groupes sur les espaces Lp non-commutatifs : Rigidity and non-rigidity of group actions on non-commutative Lp spaces. (Doctoral Dissertation). Rennes 1; Université européenne de Bretagne. Retrieved from http://www.theses.fr/2013REN1S033

Chicago Manual of Style (16th Edition):

Olivier, Baptiste. “Rigidité et non-rigidité d'actions de groupes sur les espaces Lp non-commutatifs : Rigidity and non-rigidity of group actions on non-commutative Lp spaces.” 2013. Doctoral Dissertation, Rennes 1; Université européenne de Bretagne. Accessed September 19, 2020. http://www.theses.fr/2013REN1S033.

MLA Handbook (7th Edition):

Olivier, Baptiste. “Rigidité et non-rigidité d'actions de groupes sur les espaces Lp non-commutatifs : Rigidity and non-rigidity of group actions on non-commutative Lp spaces.” 2013. Web. 19 Sep 2020.

Vancouver:

Olivier B. Rigidité et non-rigidité d'actions de groupes sur les espaces Lp non-commutatifs : Rigidity and non-rigidity of group actions on non-commutative Lp spaces. [Internet] [Doctoral dissertation]. Rennes 1; Université européenne de Bretagne; 2013. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2013REN1S033.

Council of Science Editors:

Olivier B. Rigidité et non-rigidité d'actions de groupes sur les espaces Lp non-commutatifs : Rigidity and non-rigidity of group actions on non-commutative Lp spaces. [Doctoral Dissertation]. Rennes 1; Université européenne de Bretagne; 2013. Available from: http://www.theses.fr/2013REN1S033


Université de Grenoble

22. Kuyumzhiyan, Karine. Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites : Actions of algebraic groups on affine varieties and normality of orbits closures.

Degree: Docteur es, Mathématiques, 2011, Université de Grenoble

Cette thèse est consacrée aux actions des groupes de transformations algébriques sur les variétés affines algébriques. Dans la première partie, on étudie la normalité des… (more)

Subjects/Keywords: Actions des groupes algébriques; Normalité; Variété torique; Propriété de saturation; Transitivité infinie; Automorphisme spécial; Algebraic group actions; Normality; Toric variety; Saturation property; Infinite transitivity; Special automorphism; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kuyumzhiyan, K. (2011). Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites : Actions of algebraic groups on affine varieties and normality of orbits closures. (Doctoral Dissertation). Université de Grenoble. Retrieved from http://www.theses.fr/2011GRENM015

Chicago Manual of Style (16th Edition):

Kuyumzhiyan, Karine. “Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites : Actions of algebraic groups on affine varieties and normality of orbits closures.” 2011. Doctoral Dissertation, Université de Grenoble. Accessed September 19, 2020. http://www.theses.fr/2011GRENM015.

MLA Handbook (7th Edition):

Kuyumzhiyan, Karine. “Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites : Actions of algebraic groups on affine varieties and normality of orbits closures.” 2011. Web. 19 Sep 2020.

Vancouver:

Kuyumzhiyan K. Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites : Actions of algebraic groups on affine varieties and normality of orbits closures. [Internet] [Doctoral dissertation]. Université de Grenoble; 2011. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2011GRENM015.

Council of Science Editors:

Kuyumzhiyan K. Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites : Actions of algebraic groups on affine varieties and normality of orbits closures. [Doctoral Dissertation]. Université de Grenoble; 2011. Available from: http://www.theses.fr/2011GRENM015

23. Carlson, Christopher Anthony. Foliations, Contact Structures and Finite Group Actions.

Degree: Mathematics, 2012, University of California – Riverside

 I have considered two main questions in my research. First, which foliations on a manifold are compatible with a particular symmetry group. Second, which contact… (more)

Subjects/Keywords: Mathematics; actions; foliations; forms; group; manifolds

…1.3 Group Actions and Compatible Forms . . . . 1.4 Local Results on Tangency and… …Orientation Reversing Group Actions 2.1 Contact Structures and Orientation Reversing Group Actions… …2.2 Foliations and Orientation Reversing Group Actions . . . . . . . . . . . 17 17 20 3… …Riemannian. 8 1.3 Group Actions and Compatible Forms A smooth group action G on M is said to be… …group action. In some cases, smooth group actions have compatible contact structures and in… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Carlson, C. A. (2012). Foliations, Contact Structures and Finite Group Actions. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/98758436

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Carlson, Christopher Anthony. “Foliations, Contact Structures and Finite Group Actions.” 2012. Thesis, University of California – Riverside. Accessed September 19, 2020. http://www.escholarship.org/uc/item/98758436.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Carlson, Christopher Anthony. “Foliations, Contact Structures and Finite Group Actions.” 2012. Web. 19 Sep 2020.

Vancouver:

Carlson CA. Foliations, Contact Structures and Finite Group Actions. [Internet] [Thesis]. University of California – Riverside; 2012. [cited 2020 Sep 19]. Available from: http://www.escholarship.org/uc/item/98758436.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Carlson CA. Foliations, Contact Structures and Finite Group Actions. [Thesis]. University of California – Riverside; 2012. Available from: http://www.escholarship.org/uc/item/98758436

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

24. Hassani, Masoud. Study of cohomogeneity one three dimensional Einstein universe : Etudes des espaces d'Einstein tridimensionnels de cohomogénéité un.

Degree: Docteur es, Mathématiques, 2018, Avignon; University of Zanjan, University Blvd. (Zanjan, IR Iran)

Dans cette thèse des actions conformes de cohomogénéité un sur l'univers d'Einstein tridimensionel sont classifiées. Notre stratégie est d'établir dans un premier temps quel peut… (more)

Subjects/Keywords: Univers d'Einstein; Action de Groupe; Géométrie Loretzienne; Géométrie Conforme; Cohomogeneity one; Einstein Universes; Lorentzian Geometry; Conformal Geometry; Group actions; Cohomogeneity one

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hassani, M. (2018). Study of cohomogeneity one three dimensional Einstein universe : Etudes des espaces d'Einstein tridimensionnels de cohomogénéité un. (Doctoral Dissertation). Avignon; University of Zanjan, University Blvd. (Zanjan, IR Iran). Retrieved from http://www.theses.fr/2018AVIG0421

Chicago Manual of Style (16th Edition):

Hassani, Masoud. “Study of cohomogeneity one three dimensional Einstein universe : Etudes des espaces d'Einstein tridimensionnels de cohomogénéité un.” 2018. Doctoral Dissertation, Avignon; University of Zanjan, University Blvd. (Zanjan, IR Iran). Accessed September 19, 2020. http://www.theses.fr/2018AVIG0421.

MLA Handbook (7th Edition):

Hassani, Masoud. “Study of cohomogeneity one three dimensional Einstein universe : Etudes des espaces d'Einstein tridimensionnels de cohomogénéité un.” 2018. Web. 19 Sep 2020.

Vancouver:

Hassani M. Study of cohomogeneity one three dimensional Einstein universe : Etudes des espaces d'Einstein tridimensionnels de cohomogénéité un. [Internet] [Doctoral dissertation]. Avignon; University of Zanjan, University Blvd. (Zanjan, IR Iran); 2018. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2018AVIG0421.

Council of Science Editors:

Hassani M. Study of cohomogeneity one three dimensional Einstein universe : Etudes des espaces d'Einstein tridimensionnels de cohomogénéité un. [Doctoral Dissertation]. Avignon; University of Zanjan, University Blvd. (Zanjan, IR Iran); 2018. Available from: http://www.theses.fr/2018AVIG0421


University of New South Wales

25. Chung, Kin Hoong. Compact Group Actions and Harmonic Analysis.

Degree: Mathematics, 2000, University of New South Wales

 A large part of the structure of the objects in the theory of Dooley and Wildberger [Funktsional. Anal. I Prilozhen. 27 (1993), no. 1, 25-32]… (more)

Subjects/Keywords: Group actions; Harmonic analysis; Lie groups; Compact groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chung, K. H. (2000). Compact Group Actions and Harmonic Analysis. (Doctoral Dissertation). University of New South Wales. Retrieved from http://handle.unsw.edu.au/1959.4/17639 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:446/SOURCE02?view=true

Chicago Manual of Style (16th Edition):

Chung, Kin Hoong. “Compact Group Actions and Harmonic Analysis.” 2000. Doctoral Dissertation, University of New South Wales. Accessed September 19, 2020. http://handle.unsw.edu.au/1959.4/17639 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:446/SOURCE02?view=true.

MLA Handbook (7th Edition):

Chung, Kin Hoong. “Compact Group Actions and Harmonic Analysis.” 2000. Web. 19 Sep 2020.

Vancouver:

Chung KH. Compact Group Actions and Harmonic Analysis. [Internet] [Doctoral dissertation]. University of New South Wales; 2000. [cited 2020 Sep 19]. Available from: http://handle.unsw.edu.au/1959.4/17639 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:446/SOURCE02?view=true.

Council of Science Editors:

Chung KH. Compact Group Actions and Harmonic Analysis. [Doctoral Dissertation]. University of New South Wales; 2000. Available from: http://handle.unsw.edu.au/1959.4/17639 ; https://unsworks.unsw.edu.au/fapi/datastream/unsworks:446/SOURCE02?view=true


Northeastern University

26. Gamse, Elisheva Adina. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.

Degree: PhD, Department of Mathematics, 2016, Northeastern University

 In Part I we study the moduli space of holomorphic parabolic vector bundles over a curve, using combinatorial techniques to obtain information about the structure… (more)

Subjects/Keywords: moduli space; geometric quantisation; Lie group actions; Symplectic geometry; Symplectic manifolds; Vector bundles; Moduli theory; Rings (Algebra); Lie groups; Quantum theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gamse, E. A. (2016). Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. (Doctoral Dissertation). Northeastern University. Retrieved from http://hdl.handle.net/2047/D20211399

Chicago Manual of Style (16th Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Doctoral Dissertation, Northeastern University. Accessed September 19, 2020. http://hdl.handle.net/2047/D20211399.

MLA Handbook (7th Edition):

Gamse, Elisheva Adina. “Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds.” 2016. Web. 19 Sep 2020.

Vancouver:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Internet] [Doctoral dissertation]. Northeastern University; 2016. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/2047/D20211399.

Council of Science Editors:

Gamse EA. Two explorations in symplectic geometry: I. Moduli spaces of parabolic vector bundles over curves II. Characters of quantisations of Hamiltonian actions of compact Lie groups on symplectic manifolds. [Doctoral Dissertation]. Northeastern University; 2016. Available from: http://hdl.handle.net/2047/D20211399

27. Arnt, Sylvain. Large scale geometry and isometric affine actions on Banach spaces : Géométrie à grande échelle et actions isométriques affines sur des espaces de Banach.

Degree: Docteur es, Mathématiques, 2014, Université d'Orléans

Dans le premier chapitre, nous définissons la notion d’espaces à partitions pondérées qui généralise la structure d’espaces à murs mesurés et qui fournit un cadre… (more)

Subjects/Keywords: Géométrie des groupes; Actions isométriques affines; Actions propres; Espaces de Banach; Espaces Lp; Groupes hyperboliques; Espaces à murs mesurés; Espaces médians; Propriété de Haagerup; Distances propres sur les groupes; Geometric group theory; Isometric affine actions; Proper actions; Banach spaces; Lp spaces; Hyperbolic groups; Spaces with measured walls; Median spaces; Haagerup property; Proper metrics on groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Arnt, S. (2014). Large scale geometry and isometric affine actions on Banach spaces : Géométrie à grande échelle et actions isométriques affines sur des espaces de Banach. (Doctoral Dissertation). Université d'Orléans. Retrieved from http://www.theses.fr/2014ORLE2021

Chicago Manual of Style (16th Edition):

Arnt, Sylvain. “Large scale geometry and isometric affine actions on Banach spaces : Géométrie à grande échelle et actions isométriques affines sur des espaces de Banach.” 2014. Doctoral Dissertation, Université d'Orléans. Accessed September 19, 2020. http://www.theses.fr/2014ORLE2021.

MLA Handbook (7th Edition):

Arnt, Sylvain. “Large scale geometry and isometric affine actions on Banach spaces : Géométrie à grande échelle et actions isométriques affines sur des espaces de Banach.” 2014. Web. 19 Sep 2020.

Vancouver:

Arnt S. Large scale geometry and isometric affine actions on Banach spaces : Géométrie à grande échelle et actions isométriques affines sur des espaces de Banach. [Internet] [Doctoral dissertation]. Université d'Orléans; 2014. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2014ORLE2021.

Council of Science Editors:

Arnt S. Large scale geometry and isometric affine actions on Banach spaces : Géométrie à grande échelle et actions isométriques affines sur des espaces de Banach. [Doctoral Dissertation]. Université d'Orléans; 2014. Available from: http://www.theses.fr/2014ORLE2021


Texas State University – San Marcos

28. Jones, Nathan. Orbit Sizes and a New Classification of the Dihedral Group of Order Eight.

Degree: MS, Mathematics, 2018, Texas State University – San Marcos

No abstract prepared. Advisors/Committee Members: Keller, Thomas (advisor), Yang, Yong (committee member), Dochtermann, Anton (committee member).

Subjects/Keywords: Dihedral Group of Order Eight; Group Actions; Finite Group Theory; Algebra, Abstract; Group theory; Number theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Jones, N. (2018). Orbit Sizes and a New Classification of the Dihedral Group of Order Eight. (Masters Thesis). Texas State University – San Marcos. Retrieved from https://digital.library.txstate.edu/handle/10877/7454

Chicago Manual of Style (16th Edition):

Jones, Nathan. “Orbit Sizes and a New Classification of the Dihedral Group of Order Eight.” 2018. Masters Thesis, Texas State University – San Marcos. Accessed September 19, 2020. https://digital.library.txstate.edu/handle/10877/7454.

MLA Handbook (7th Edition):

Jones, Nathan. “Orbit Sizes and a New Classification of the Dihedral Group of Order Eight.” 2018. Web. 19 Sep 2020.

Vancouver:

Jones N. Orbit Sizes and a New Classification of the Dihedral Group of Order Eight. [Internet] [Masters thesis]. Texas State University – San Marcos; 2018. [cited 2020 Sep 19]. Available from: https://digital.library.txstate.edu/handle/10877/7454.

Council of Science Editors:

Jones N. Orbit Sizes and a New Classification of the Dihedral Group of Order Eight. [Masters Thesis]. Texas State University – San Marcos; 2018. Available from: https://digital.library.txstate.edu/handle/10877/7454

29. Allard, Baptiste. L'action de groupe : étude franco-américaine des actions collectives en défense des intérêts individuels d'autrui : Class actions in French and American law.

Degree: Docteur es, Sciences juridiques - droit privé, 2016, Sorbonne Paris Cité

 Le débat maintenant ancien que mènent les juristes français autour de l'action de groupe est marqué par une contradiction importante : alors que les class… (more)

Subjects/Keywords: Actions de groupe; Recours collectifs; Procédure civile; Droit individuel d'action; Représentation; Actions pour autrui; Fonctions de la responsabilité civile; Réparation individuelle; Réparation collective; Effectivité du droit; Régulation des contrats d'adhésion; Droit de la consommation; Droit américain; Droit comparé; Class actions; Group actions; Civil procedure; Individual action; Representation; Representative action; Functions of tort law; Aggregate damages; Efficiency of law; Contracts of adhesion; Consumer law; US law; Comparative law; Class actions; 340.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Allard, B. (2016). L'action de groupe : étude franco-américaine des actions collectives en défense des intérêts individuels d'autrui : Class actions in French and American law. (Doctoral Dissertation). Sorbonne Paris Cité. Retrieved from http://www.theses.fr/2016USPCB128

Chicago Manual of Style (16th Edition):

Allard, Baptiste. “L'action de groupe : étude franco-américaine des actions collectives en défense des intérêts individuels d'autrui : Class actions in French and American law.” 2016. Doctoral Dissertation, Sorbonne Paris Cité. Accessed September 19, 2020. http://www.theses.fr/2016USPCB128.

MLA Handbook (7th Edition):

Allard, Baptiste. “L'action de groupe : étude franco-américaine des actions collectives en défense des intérêts individuels d'autrui : Class actions in French and American law.” 2016. Web. 19 Sep 2020.

Vancouver:

Allard B. L'action de groupe : étude franco-américaine des actions collectives en défense des intérêts individuels d'autrui : Class actions in French and American law. [Internet] [Doctoral dissertation]. Sorbonne Paris Cité; 2016. [cited 2020 Sep 19]. Available from: http://www.theses.fr/2016USPCB128.

Council of Science Editors:

Allard B. L'action de groupe : étude franco-américaine des actions collectives en défense des intérêts individuels d'autrui : Class actions in French and American law. [Doctoral Dissertation]. Sorbonne Paris Cité; 2016. Available from: http://www.theses.fr/2016USPCB128


Kyoto University / 京都大学

30. 丸橋, 広和. 単連結べき零Lie群のパラメータ剛性をもつ作用 : Parameter rigid actions of simply connected nilpotent Lie groups.

Degree: 博士(理学), 2014, Kyoto University / 京都大学

新制・課程博士

甲第18044号

理博第3922号

Subjects/Keywords: Rigidity of Lie group actions; Nilpotent Lie groups; Parameter rigidity; Leafwise cohomology; Smooth locally free actions

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

丸橋, . (2014). 単連結べき零Lie群のパラメータ剛性をもつ作用 : Parameter rigid actions of simply connected nilpotent Lie groups. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/188455 ; http://dx.doi.org/10.14989/doctor.k18044

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

丸橋, 広和. “単連結べき零Lie群のパラメータ剛性をもつ作用 : Parameter rigid actions of simply connected nilpotent Lie groups.” 2014. Thesis, Kyoto University / 京都大学. Accessed September 19, 2020. http://hdl.handle.net/2433/188455 ; http://dx.doi.org/10.14989/doctor.k18044.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

丸橋, 広和. “単連結べき零Lie群のパラメータ剛性をもつ作用 : Parameter rigid actions of simply connected nilpotent Lie groups.” 2014. Web. 19 Sep 2020.

Vancouver:

丸橋 . 単連結べき零Lie群のパラメータ剛性をもつ作用 : Parameter rigid actions of simply connected nilpotent Lie groups. [Internet] [Thesis]. Kyoto University / 京都大学; 2014. [cited 2020 Sep 19]. Available from: http://hdl.handle.net/2433/188455 ; http://dx.doi.org/10.14989/doctor.k18044.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

丸橋 . 単連結べき零Lie群のパラメータ剛性をもつ作用 : Parameter rigid actions of simply connected nilpotent Lie groups. [Thesis]. Kyoto University / 京都大学; 2014. Available from: http://hdl.handle.net/2433/188455 ; http://dx.doi.org/10.14989/doctor.k18044

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3]

.