Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Gromov topology). Showing records 1 – 4 of 4 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Tennessee – Knoxville

1. Wilkins, Leonard Duane. Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces.

Degree: 2011, University of Tennessee – Knoxville

 Building on the work of Conrad Plaut and Valera Berestovskii regarding uniform spaces and the covering spectrum of Christina Sormani and Guofang Wei developed for… (more)

Subjects/Keywords: Gromov-Hausdorff; convergence; metric; space; discrete; homotopy; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilkins, L. D. (2011). Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces. (Doctoral Dissertation). University of Tennessee – Knoxville. Retrieved from https://trace.tennessee.edu/utk_graddiss/1039

Chicago Manual of Style (16th Edition):

Wilkins, Leonard Duane. “Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces.” 2011. Doctoral Dissertation, University of Tennessee – Knoxville. Accessed July 14, 2020. https://trace.tennessee.edu/utk_graddiss/1039.

MLA Handbook (7th Edition):

Wilkins, Leonard Duane. “Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces.” 2011. Web. 14 Jul 2020.

Vancouver:

Wilkins LD. Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces. [Internet] [Doctoral dissertation]. University of Tennessee – Knoxville; 2011. [cited 2020 Jul 14]. Available from: https://trace.tennessee.edu/utk_graddiss/1039.

Council of Science Editors:

Wilkins LD. Discrete Geometric Homotopy Theory and Critical Values of Metric Spaces. [Doctoral Dissertation]. University of Tennessee – Knoxville; 2011. Available from: https://trace.tennessee.edu/utk_graddiss/1039

2. Belraouti, Mehdi. Convergence asymptotique des niveaux de temps quasi-concaves dans un espace temps à courbure constante : Asymptomatic convergence of level sets of quasi-concave times in a space-time of constant curvature.

Degree: Docteur es, Mathématiques, 2013, Avignon

Dans cette thèse, nous nous intéressons aux espaces temps dit globalement hyperboliques Cauchy compacts. Ce sont des espaces temps qui admettent une fonction, dite fonction… (more)

Subjects/Keywords: Géométrie lorentzienne; Espace-temps à courbure constante; Fonction temps quasi-concave; Topologie de Gromov équivariante; Lorentzian geometry; Constant curvature space-time; Quasi-concave time func- tion; Gromov equivariant topology.; 530.1

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Belraouti, M. (2013). Convergence asymptotique des niveaux de temps quasi-concaves dans un espace temps à courbure constante : Asymptomatic convergence of level sets of quasi-concave times in a space-time of constant curvature. (Doctoral Dissertation). Avignon. Retrieved from http://www.theses.fr/2013AVIG0410

Chicago Manual of Style (16th Edition):

Belraouti, Mehdi. “Convergence asymptotique des niveaux de temps quasi-concaves dans un espace temps à courbure constante : Asymptomatic convergence of level sets of quasi-concave times in a space-time of constant curvature.” 2013. Doctoral Dissertation, Avignon. Accessed July 14, 2020. http://www.theses.fr/2013AVIG0410.

MLA Handbook (7th Edition):

Belraouti, Mehdi. “Convergence asymptotique des niveaux de temps quasi-concaves dans un espace temps à courbure constante : Asymptomatic convergence of level sets of quasi-concave times in a space-time of constant curvature.” 2013. Web. 14 Jul 2020.

Vancouver:

Belraouti M. Convergence asymptotique des niveaux de temps quasi-concaves dans un espace temps à courbure constante : Asymptomatic convergence of level sets of quasi-concave times in a space-time of constant curvature. [Internet] [Doctoral dissertation]. Avignon; 2013. [cited 2020 Jul 14]. Available from: http://www.theses.fr/2013AVIG0410.

Council of Science Editors:

Belraouti M. Convergence asymptotique des niveaux de temps quasi-concaves dans un espace temps à courbure constante : Asymptomatic convergence of level sets of quasi-concave times in a space-time of constant curvature. [Doctoral Dissertation]. Avignon; 2013. Available from: http://www.theses.fr/2013AVIG0410


Université Paris-Sud – Paris XI

3. Bettinelli, Jérémie. Limite d'échelle de cartes aléatoires en genre quelconque : Scaling Limit of Arbitrary Genus Random Maps.

Degree: Docteur es, Mathématiques, 2011, Université Paris-Sud – Paris XI

Au cours de ce travail, nous nous intéressons aux limites d'échelle de deux classes de cartes. Dans un premier temps, nous regardons les quadrangulations biparties… (more)

Subjects/Keywords: Cartes aléatoires; Arbres aléatoires; Limite d'échelle; Processus conditionnés; Convergence régulière; Topologie de Gromov; Dimension de Hausdorff; Arbre continu brownien; Espaces métriques aléatoires; Random maps; Random trees; Scaling limits; Conditioned processes; Regular convergence; Gromov topology; Hausdorff dimension; Brownian CRT; Random metric spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bettinelli, J. (2011). Limite d'échelle de cartes aléatoires en genre quelconque : Scaling Limit of Arbitrary Genus Random Maps. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2011PA112213

Chicago Manual of Style (16th Edition):

Bettinelli, Jérémie. “Limite d'échelle de cartes aléatoires en genre quelconque : Scaling Limit of Arbitrary Genus Random Maps.” 2011. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed July 14, 2020. http://www.theses.fr/2011PA112213.

MLA Handbook (7th Edition):

Bettinelli, Jérémie. “Limite d'échelle de cartes aléatoires en genre quelconque : Scaling Limit of Arbitrary Genus Random Maps.” 2011. Web. 14 Jul 2020.

Vancouver:

Bettinelli J. Limite d'échelle de cartes aléatoires en genre quelconque : Scaling Limit of Arbitrary Genus Random Maps. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2011. [cited 2020 Jul 14]. Available from: http://www.theses.fr/2011PA112213.

Council of Science Editors:

Bettinelli J. Limite d'échelle de cartes aléatoires en genre quelconque : Scaling Limit of Arbitrary Genus Random Maps. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2011. Available from: http://www.theses.fr/2011PA112213

4. Stephenson, Robin. Divers aspects des arbres aléatoires : des arbres de fragmentation aux cartes planaires infinies : Various aspects of random trees : from fragmentation trees to infinite planar maps.

Degree: Docteur es, Sciences, 2014, Paris 9

Nous nous intéressons à trois problèmes issus du monde des arbres aléatoires discrets et continus. Dans un premier lieu, nous faisons une étude générale des… (more)

Subjects/Keywords: Arbres réels; Arbres aléatoires; Arbres de fragmentation; Fragmentations auto-similaires; Dimension de Hausdorff; Topologie de Gromov-Hausdorff-Prokhorov; Limites d’échelle; Arbres de Galton-Watson multitypes; Cartes planaires aléatoires; R-trees; Random trees; Fragmentation trees; Self-similar fragmentations; Hausdorff dimension; Gromov-Hausdorff-Prokhorov topology; Scaling limits; Multi-type Galton-Watson trees; Random planar maps; 519

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stephenson, R. (2014). Divers aspects des arbres aléatoires : des arbres de fragmentation aux cartes planaires infinies : Various aspects of random trees : from fragmentation trees to infinite planar maps. (Doctoral Dissertation). Paris 9. Retrieved from http://www.theses.fr/2014PA090024

Chicago Manual of Style (16th Edition):

Stephenson, Robin. “Divers aspects des arbres aléatoires : des arbres de fragmentation aux cartes planaires infinies : Various aspects of random trees : from fragmentation trees to infinite planar maps.” 2014. Doctoral Dissertation, Paris 9. Accessed July 14, 2020. http://www.theses.fr/2014PA090024.

MLA Handbook (7th Edition):

Stephenson, Robin. “Divers aspects des arbres aléatoires : des arbres de fragmentation aux cartes planaires infinies : Various aspects of random trees : from fragmentation trees to infinite planar maps.” 2014. Web. 14 Jul 2020.

Vancouver:

Stephenson R. Divers aspects des arbres aléatoires : des arbres de fragmentation aux cartes planaires infinies : Various aspects of random trees : from fragmentation trees to infinite planar maps. [Internet] [Doctoral dissertation]. Paris 9; 2014. [cited 2020 Jul 14]. Available from: http://www.theses.fr/2014PA090024.

Council of Science Editors:

Stephenson R. Divers aspects des arbres aléatoires : des arbres de fragmentation aux cartes planaires infinies : Various aspects of random trees : from fragmentation trees to infinite planar maps. [Doctoral Dissertation]. Paris 9; 2014. Available from: http://www.theses.fr/2014PA090024

.