Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Gromov Hausdorff distance). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Indian Institute of Science

1. Maitra, Sayantan. The Space of Metric Measure Spaces.

Degree: MS, Faculty of Science, 2018, Indian Institute of Science

 This thesis is broadly divided in two parts. In the first part we give a survey of various distances between metric spaces, namely the uniform… (more)

Subjects/Keywords: Metric Measure Space; Metric Spaces; Non-positive Alexandrov Curvature; Gauged Measure Spaces; Lipschitz Distance; Hausdorff Distance; Gromov-Hausdorff Distance; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maitra, S. (2018). The Space of Metric Measure Spaces. (Masters Thesis). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3588

Chicago Manual of Style (16th Edition):

Maitra, Sayantan. “The Space of Metric Measure Spaces.” 2018. Masters Thesis, Indian Institute of Science. Accessed September 26, 2020. http://etd.iisc.ac.in/handle/2005/3588.

MLA Handbook (7th Edition):

Maitra, Sayantan. “The Space of Metric Measure Spaces.” 2018. Web. 26 Sep 2020.

Vancouver:

Maitra S. The Space of Metric Measure Spaces. [Internet] [Masters thesis]. Indian Institute of Science; 2018. [cited 2020 Sep 26]. Available from: http://etd.iisc.ac.in/handle/2005/3588.

Council of Science Editors:

Maitra S. The Space of Metric Measure Spaces. [Masters Thesis]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3588


University of Illinois – Urbana-Champaign

2. Rezvani, Sepideh. Approximating rotation algebras and inclusions of C*-algebras.

Degree: PhD, Mathematics, 2017, University of Illinois – Urbana-Champaign

 In the first part of this thesis, we will follow Kirchberg’s categorical perspective to establish new notions of WEP and QWEP relative to a C∗-algebra,… (more)

Subjects/Keywords: C*-algebras; Weak expectation property (WEP); Quotient weak expectation property (QWEP); A-WEP; A-QWEP; Relatively weak injectivity; Order-unit space; Noncommutative tori; Compact quantum metric space; Conditionally negative length function; Heat semigroup; Poisson semigroup; Rotation algebra; Continuous field of compact quantum metric spaces; Gromov–Hausdorff distance; Completely bounded quantum Gromov–Hausdorff distance; Gromov–Hausdorff propinquity

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rezvani, S. (2017). Approximating rotation algebras and inclusions of C*-algebras. (Doctoral Dissertation). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/97307

Chicago Manual of Style (16th Edition):

Rezvani, Sepideh. “Approximating rotation algebras and inclusions of C*-algebras.” 2017. Doctoral Dissertation, University of Illinois – Urbana-Champaign. Accessed September 26, 2020. http://hdl.handle.net/2142/97307.

MLA Handbook (7th Edition):

Rezvani, Sepideh. “Approximating rotation algebras and inclusions of C*-algebras.” 2017. Web. 26 Sep 2020.

Vancouver:

Rezvani S. Approximating rotation algebras and inclusions of C*-algebras. [Internet] [Doctoral dissertation]. University of Illinois – Urbana-Champaign; 2017. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2142/97307.

Council of Science Editors:

Rezvani S. Approximating rotation algebras and inclusions of C*-algebras. [Doctoral Dissertation]. University of Illinois – Urbana-Champaign; 2017. Available from: http://hdl.handle.net/2142/97307

3. Cerocchi, Filippo. Dynamical and Spectral applications of Gromov-Hausdorff Theory : Applications dynamiques et spectrales de la théorie de Gromov-Hausdorff.

Degree: Docteur es, Mathématiques, 2013, Grenoble; Università degli studi La Sapienza (Rome)

Cette thèse est divisée en deux parties. La première est consacrée à la méthode du barycentre, introduite en 1995 par G. Besson, G. Courtois et… (more)

Subjects/Keywords: Distance de Hausdorff-Gromov; Théorème de comparaison; Flot Géodesique; Méthode du barycentre; Spectre d'une variété Riemannienne; Lemme de Margulis; Hausdorff-Gromov distance; Lenght spectrum; Geodesic Flow; Barycenter method; Spectrum of a Riemannian manifold; Margulis Lemma; 510

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cerocchi, F. (2013). Dynamical and Spectral applications of Gromov-Hausdorff Theory : Applications dynamiques et spectrales de la théorie de Gromov-Hausdorff. (Doctoral Dissertation). Grenoble; Università degli studi La Sapienza (Rome). Retrieved from http://www.theses.fr/2013GRENM077

Chicago Manual of Style (16th Edition):

Cerocchi, Filippo. “Dynamical and Spectral applications of Gromov-Hausdorff Theory : Applications dynamiques et spectrales de la théorie de Gromov-Hausdorff.” 2013. Doctoral Dissertation, Grenoble; Università degli studi La Sapienza (Rome). Accessed September 26, 2020. http://www.theses.fr/2013GRENM077.

MLA Handbook (7th Edition):

Cerocchi, Filippo. “Dynamical and Spectral applications of Gromov-Hausdorff Theory : Applications dynamiques et spectrales de la théorie de Gromov-Hausdorff.” 2013. Web. 26 Sep 2020.

Vancouver:

Cerocchi F. Dynamical and Spectral applications of Gromov-Hausdorff Theory : Applications dynamiques et spectrales de la théorie de Gromov-Hausdorff. [Internet] [Doctoral dissertation]. Grenoble; Università degli studi La Sapienza (Rome); 2013. [cited 2020 Sep 26]. Available from: http://www.theses.fr/2013GRENM077.

Council of Science Editors:

Cerocchi F. Dynamical and Spectral applications of Gromov-Hausdorff Theory : Applications dynamiques et spectrales de la théorie de Gromov-Hausdorff. [Doctoral Dissertation]. Grenoble; Università degli studi La Sapienza (Rome); 2013. Available from: http://www.theses.fr/2013GRENM077


Université de Neuchâtel

4. Reviron, Guillemette. Espaces de longueur d’entropie majorée: Rigidité topologique, adhérence des variétés, noyau de la chaleur.

Degree: 2005, Université de Neuchâtel

 Les théorèmes de (pré)compacité ou de " bornitude " s'établissent généralement sur l'ensemble des variétés de dimension, diamètre et courbure bornés, qui n'est pas complet… (more)

Subjects/Keywords: Metric spaces; volume entropy; topoligical rigidity; Gromov-Hausdorff distance; spectral distance; precompactness; convergence; heat kernel; length spectrum; volume of balls; covers

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Reviron, G. (2005). Espaces de longueur d’entropie majorée: Rigidité topologique, adhérence des variétés, noyau de la chaleur. (Thesis). Université de Neuchâtel. Retrieved from http://doc.rero.ch/record/5123

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Reviron, Guillemette. “Espaces de longueur d’entropie majorée: Rigidité topologique, adhérence des variétés, noyau de la chaleur.” 2005. Thesis, Université de Neuchâtel. Accessed September 26, 2020. http://doc.rero.ch/record/5123.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Reviron, Guillemette. “Espaces de longueur d’entropie majorée: Rigidité topologique, adhérence des variétés, noyau de la chaleur.” 2005. Web. 26 Sep 2020.

Vancouver:

Reviron G. Espaces de longueur d’entropie majorée: Rigidité topologique, adhérence des variétés, noyau de la chaleur. [Internet] [Thesis]. Université de Neuchâtel; 2005. [cited 2020 Sep 26]. Available from: http://doc.rero.ch/record/5123.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Reviron G. Espaces de longueur d’entropie majorée: Rigidité topologique, adhérence des variétés, noyau de la chaleur. [Thesis]. Université de Neuchâtel; 2005. Available from: http://doc.rero.ch/record/5123

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Suzuki, Kohei. Convergence of stochastic processes on varying metric spaces : 変化する距離空間上の確率過程の収束.

Degree: 博士(理学), 2016, Kyoto University / 京都大学

新制・課程博士

甲第19468号

理博第4128号

Subjects/Keywords: Weak convergence; Brownian motion; measured Gromov-Hausdorff convergence; Riemannian curvature dimension condition; Lipschitz convergence; Prokhorov distance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Suzuki, K. (2016). Convergence of stochastic processes on varying metric spaces : 変化する距離空間上の確率過程の収束. (Thesis). Kyoto University / 京都大学. Retrieved from http://hdl.handle.net/2433/215281 ; http://dx.doi.org/10.14989/doctor.k19468

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Suzuki, Kohei. “Convergence of stochastic processes on varying metric spaces : 変化する距離空間上の確率過程の収束.” 2016. Thesis, Kyoto University / 京都大学. Accessed September 26, 2020. http://hdl.handle.net/2433/215281 ; http://dx.doi.org/10.14989/doctor.k19468.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Suzuki, Kohei. “Convergence of stochastic processes on varying metric spaces : 変化する距離空間上の確率過程の収束.” 2016. Web. 26 Sep 2020.

Vancouver:

Suzuki K. Convergence of stochastic processes on varying metric spaces : 変化する距離空間上の確率過程の収束. [Internet] [Thesis]. Kyoto University / 京都大学; 2016. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2433/215281 ; http://dx.doi.org/10.14989/doctor.k19468.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Suzuki K. Convergence of stochastic processes on varying metric spaces : 変化する距離空間上の確率過程の収束. [Thesis]. Kyoto University / 京都大学; 2016. Available from: http://hdl.handle.net/2433/215281 ; http://dx.doi.org/10.14989/doctor.k19468

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Kyoto University

6. Suzuki, Kohei. Convergence of stochastic processes on varying metric spaces .

Degree: 2016, Kyoto University

Subjects/Keywords: Weak convergence; Brownian motion; measured Gromov-Hausdorff convergence; Riemannian curvature dimension condition; Lipschitz convergence; Prokhorov distance

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Suzuki, K. (2016). Convergence of stochastic processes on varying metric spaces . (Thesis). Kyoto University. Retrieved from http://hdl.handle.net/2433/215281

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Suzuki, Kohei. “Convergence of stochastic processes on varying metric spaces .” 2016. Thesis, Kyoto University. Accessed September 26, 2020. http://hdl.handle.net/2433/215281.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Suzuki, Kohei. “Convergence of stochastic processes on varying metric spaces .” 2016. Web. 26 Sep 2020.

Vancouver:

Suzuki K. Convergence of stochastic processes on varying metric spaces . [Internet] [Thesis]. Kyoto University; 2016. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2433/215281.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Suzuki K. Convergence of stochastic processes on varying metric spaces . [Thesis]. Kyoto University; 2016. Available from: http://hdl.handle.net/2433/215281

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.