You searched for subject:(Graphene nanoplatelet)
.
Showing records 1 – 11 of
11 total matches.
No search limiters apply to these results.

University of Manchester
1.
Cao, Gaoxiang.
Multi-functional epoxy/graphene nanoplatelet
composites.
Degree: 2016, University of Manchester
URL: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:301217
► Graphene nanoplatelets (GNP) with thickness of 6 ~ 8 nm and lateral dimension of 5 μm (M5) and 25 μm (M25) have been used to…
(more)
▼ Graphene nanoplatelets (GNP) with thickness of 6 ~
8 nm and lateral dimension of 5 μm (M5) and 25 μm (M25) have been
used to prepare epoxy composites. Epoxy composites were fabricated
initially by shear mixing to investigate the effects of filler type
on the structure and properties of composites. The complex
viscosity of GNP-epoxy mixture was found to increase by almost
three orders of magnitude going from the neat epoxy to the 8 wt.%
loading, leading to difficulties in their processing. Scanning
electron microscopy of the composites showed that both fillers
aggregated at high loadings with the M25 buckling more easily due
to its larger diameter, which compromises its aspect ratio
advantage over M5, resulting in only slightly better mechanical
performance. Polarized Raman spectroscopy revealed that both M5 and
M25 were randomly distributed in the epoxy matrix, After adding M5
and M25 fillers, the storage modulus increase with the filler
loadings, however, the glass transition temperature (Tg) drops
slightly after initial incorporation, then rises with further
filler addition attributed to the pin effects of filler
aggregations. In terms of electrical property, M25 has lower
percolation (1 wt.%) than M5 composites due to its bigger aspect
ratio, which enable M25 to form a conductive network more
efficiently. Furthermore, M25 composites also have slightly better
thermal and mechanical properties over that of M5 composites.
However, the difference is not significant considering the aspect
ratio of M25 is five times of that of M5. The reason is that the
aggregation and buckling of M25 compromise its advantage over M5.
Due to the better performance of M25 as filler, M25/epoxy
composites were prepared by shear mixing, solvent compounding and
three-roll mill. Samples made by solvent compounding display the
lowest percolation threshold (0.5 wt.%), related to its relatively
uniform dispersion of M25 in matrix, resulting in higher thermal
conductivity and better mechanical properties. Water uptake in a
water bath at 50 °C took 75 days to be saturated. Higher loaded
samples have lower diffusion coefficient because of the barrier
effects of GNP fillers, but have higher maximum water absorbed,
which is owing to filler aggregation. Properties test of aged and
unaged specimens show thermal conductivity of the aged was enhanced
due to water’s higher thermal conductivity than epoxy resin matrix,
while electrical performance was compromised due to the swelling
effects caused by absorbed water. The mechanical properties of aged
samples also dropped slightly due to plasticization
effects.
Advisors/Committee Members: YOUNG, ROBERT RJ, Young, Robert, Kinloch, Ian.
Subjects/Keywords: Eopxy; Graphene nanoplatelet; composites; Impedance
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Cao, G. (2016). Multi-functional epoxy/graphene nanoplatelet
composites. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:301217
Chicago Manual of Style (16th Edition):
Cao, Gaoxiang. “Multi-functional epoxy/graphene nanoplatelet
composites.” 2016. Doctoral Dissertation, University of Manchester. Accessed April 11, 2021.
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:301217.
MLA Handbook (7th Edition):
Cao, Gaoxiang. “Multi-functional epoxy/graphene nanoplatelet
composites.” 2016. Web. 11 Apr 2021.
Vancouver:
Cao G. Multi-functional epoxy/graphene nanoplatelet
composites. [Internet] [Doctoral dissertation]. University of Manchester; 2016. [cited 2021 Apr 11].
Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:301217.
Council of Science Editors:
Cao G. Multi-functional epoxy/graphene nanoplatelet
composites. [Doctoral Dissertation]. University of Manchester; 2016. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:301217

University of Manchester
2.
Cao, Gaoxiang.
Multi-functional epoxy/graphene nanoplatelet composites.
Degree: PhD, 2016, University of Manchester
URL: https://www.research.manchester.ac.uk/portal/en/theses/multifunctional-epoxygraphene-nanoplatelet-composites(b4991dc7-b156-4628-9fcd-425d41a6b8e8).html
;
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694296
► Graphene nanoplatelets (GNP) with thickness of 6 ~ 8 nm and lateral dimension of 5 μm (M5) and 25 μm (M25) have been used to…
(more)
▼ Graphene nanoplatelets (GNP) with thickness of 6 ~ 8 nm and lateral dimension of 5 μm (M5) and 25 μm (M25) have been used to prepare epoxy composites. Epoxy composites were fabricated initially by shear mixing to investigate the effects of filler type on the structure and properties of composites. The complex viscosity of GNP-epoxy mixture was found to increase by almost three orders of magnitude going from the neat epoxy to the 8 wt.% loading, leading to difficulties in their processing. Scanning electron microscopy of the composites showed that both fillers aggregated at high loadings with the M25 buckling more easily due to its larger diameter, which compromises its aspect ratio advantage over M5, resulting in only slightly better mechanical performance. Polarized Raman spectroscopy revealed that both M5 and M25 were randomly distributed in the epoxy matrix, After adding M5 and M25 fillers, the storage modulus increase with the filler loadings, however, the glass transition temperature (Tg) drops slightly after initial incorporation, then rises with further filler addition attributed to the pin effects of filler aggregations. In terms of electrical property, M25 has lower percolation (1 wt.%) than M5 composites due to its bigger aspect ratio, which enable M25 to form a conductive network more efficiently. Furthermore, M25 composites also have slightly better thermal and mechanical properties over that of M5 composites. However, the difference is not significant considering the aspect ratio of M25 is five times of that of M5. The reason is that the aggregation and buckling of M25 compromise its advantage over M5. Due to the better performance of M25 as filler, M25/epoxy composites were prepared by shear mixing, solvent compounding and three-roll mill. Samples made by solvent compounding display the lowest percolation threshold (0.5 wt.%), related to its relatively uniform dispersion of M25 in matrix, resulting in higher thermal conductivity and better mechanical properties. Water uptake in a water bath at 50 °C took 75 days to be saturated. Higher loaded samples have lower diffusion coefficient because of the barrier effects of GNP fillers, but have higher maximum water absorbed, which is owing to filler aggregation. Properties test of aged and unaged specimens show thermal conductivity of the aged was enhanced due to water’s higher thermal conductivity than epoxy resin matrix, while electrical performance was compromised due to the swelling effects caused by absorbed water. The mechanical properties of aged samples also dropped slightly due to plasticization effects.
Subjects/Keywords: 620.1; Eopxy; Graphene nanoplatelet; composites; Impedance
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Cao, G. (2016). Multi-functional epoxy/graphene nanoplatelet composites. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/multifunctional-epoxygraphene-nanoplatelet-composites(b4991dc7-b156-4628-9fcd-425d41a6b8e8).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694296
Chicago Manual of Style (16th Edition):
Cao, Gaoxiang. “Multi-functional epoxy/graphene nanoplatelet composites.” 2016. Doctoral Dissertation, University of Manchester. Accessed April 11, 2021.
https://www.research.manchester.ac.uk/portal/en/theses/multifunctional-epoxygraphene-nanoplatelet-composites(b4991dc7-b156-4628-9fcd-425d41a6b8e8).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694296.
MLA Handbook (7th Edition):
Cao, Gaoxiang. “Multi-functional epoxy/graphene nanoplatelet composites.” 2016. Web. 11 Apr 2021.
Vancouver:
Cao G. Multi-functional epoxy/graphene nanoplatelet composites. [Internet] [Doctoral dissertation]. University of Manchester; 2016. [cited 2021 Apr 11].
Available from: https://www.research.manchester.ac.uk/portal/en/theses/multifunctional-epoxygraphene-nanoplatelet-composites(b4991dc7-b156-4628-9fcd-425d41a6b8e8).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694296.
Council of Science Editors:
Cao G. Multi-functional epoxy/graphene nanoplatelet composites. [Doctoral Dissertation]. University of Manchester; 2016. Available from: https://www.research.manchester.ac.uk/portal/en/theses/multifunctional-epoxygraphene-nanoplatelet-composites(b4991dc7-b156-4628-9fcd-425d41a6b8e8).html ; http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.694296

Universitat Politècnica de València
3.
He, Jinbao.
Heterojunctions of defective graphenes with 2D materials and metal nanoplatelets: preparation and catalytic applications
.
Degree: 2018, Universitat Politècnica de València
URL: http://hdl.handle.net/10251/111923
► En esta Tesis Doctoral, las heterouniones de grafeno con otros materiales 2D y nanopartículas metálicas, incluyendo (N)grafeno/h-BN, grafeno/MoS2 y grafeno depositado Fe/Co, se sintetizaron en…
(more)
▼ En esta Tesis Doctoral, las heterouniones de grafeno con otros materiales 2D y nanopartículas metálicas, incluyendo (N)grafeno/h-BN, grafeno/MoS2 y grafeno depositado Fe/Co, se sintetizaron en base al uso de polisacáridos naturales como precursors de grafeno. Estos materials se caracterizaron usando diversos métodos analíticos y se ensayaron para determinar el acoplamiento C-N oxidativo de las amidas, la hidrogenación de CO2 o la aplicación catalítica fotoeléctrica y física.
En la primera etapa de la tesis, se estudió la influencia de la temperatura y la presencia de H2 durante la pirólisis en la calidad del grafeno. Se observó que una disminución significativa en la densidad de defectos relacionados con la presencia de oxígeno residual se puede lograr cuando el producto se preparó a la temperatura óptima (1100 °C) bajo un bajo porcentaje de H2 (5%). Esta mejora en la calidad del grafeno defectuoso resultante se reflejó en una disminución de la resistencia eléctrica y una mayor actividad fotoeléctrica.
En el caso de las heteroestructuras de grafeno dopadas con N/h-BN, se ha revelado que se produjeron capas de segregación espontánea (N)grafeno y nitruro de boro durante la pirólisis. Aunque las heteroestructuras resultantes no mostraron una mejora en la conductividad, el material podría comportarse como un condensador que almacena carga en el rango de voltajes positivos.
El grafeno/MoS2 se preparó por pirólisis de ácido algínico que contenía (NH4)2MoS4 adsorbido. Las nanopartículas de MoS2 exhibieron una orientación preferencial en la cara 002, como resultado del efecto de plantilla de las capas de grafeno. Este material exhibió actividad para la reacción de evolución H2, aunque se ha observado alguna variación de la actividad electrocatalítica de un lote a otro.
También se prepararon Fe, Co NP o aleaciones Fe-Co incrustadas en matriz carbonosa por pirólisis de polvos de quitosano que contenían iones Fe2+ y Co2+ a 900 °C en atmósfera de Ar y se usaron para el acoplamiento oxidativo de C-N de amidas y compuestos aromáticos de N-H. Se observó que la adición secuencial de dos alícuotas de hidroperóxido de terc-butilo (TBHP) en un exceso de N,N-dimetilacetamida (DMA) como disolvente proporcionaba el correspondiente producto de acoplamiento en altos rendimientos, y el catalizador más eficiente era
[email protected] con alta reutilización y un amplio alcance.
Finalmente, las perlas de matriz de carbono grafítico que contienen Fe, Co NPs o aleaciones de Fe-Co se sintetizaron secuencialmente mediante pirólisis en una etapa a 900 °C de perlas de quitosano que tenían acetatos de hierro y cobalto adsorbidos. La mejor muestra, Fe-Co aleación/G (Fe/Co alrededor de 0.4), mostró alta actividad para la hidrogenación de CO2 a isobutano con una selectividad superior al 92% y una conversión de CO2 de aproximadamente el 87%.; In this Doctoral Thesis, the heterojunctions of graphenes with other 2D materials and metal nanoparticles, including (N)
graphene/h-BN,
graphene/MoS2 and Fe/Co deposited
graphene, were synthesized based on using natural…
Advisors/Committee Members: García Gómez, Hermenegildo (advisor), Primo Arnau, Ana María (advisor).
Subjects/Keywords: Heterojunction;
graphene;
2D material;
nanoplatelet;
catalysis
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
He, J. (2018). Heterojunctions of defective graphenes with 2D materials and metal nanoplatelets: preparation and catalytic applications
. (Doctoral Dissertation). Universitat Politècnica de València. Retrieved from http://hdl.handle.net/10251/111923
Chicago Manual of Style (16th Edition):
He, Jinbao. “Heterojunctions of defective graphenes with 2D materials and metal nanoplatelets: preparation and catalytic applications
.” 2018. Doctoral Dissertation, Universitat Politècnica de València. Accessed April 11, 2021.
http://hdl.handle.net/10251/111923.
MLA Handbook (7th Edition):
He, Jinbao. “Heterojunctions of defective graphenes with 2D materials and metal nanoplatelets: preparation and catalytic applications
.” 2018. Web. 11 Apr 2021.
Vancouver:
He J. Heterojunctions of defective graphenes with 2D materials and metal nanoplatelets: preparation and catalytic applications
. [Internet] [Doctoral dissertation]. Universitat Politècnica de València; 2018. [cited 2021 Apr 11].
Available from: http://hdl.handle.net/10251/111923.
Council of Science Editors:
He J. Heterojunctions of defective graphenes with 2D materials and metal nanoplatelets: preparation and catalytic applications
. [Doctoral Dissertation]. Universitat Politècnica de València; 2018. Available from: http://hdl.handle.net/10251/111923

Michigan Technological University
4.
Klimek-McDonald, Danielle René.
MECHANICAL PROPERTIES OF GRAPHENE NANOPLATELET/EPOXY COMPOSITES.
Degree: PhD, Department of Chemical Engineering, 2015, Michigan Technological University
URL: https://digitalcommons.mtu.edu/etds/1014
► Due to their high specific stiffness, carbon-filled polymer composites are commonly used in the construction of structural components of subsonic fixed-wing aircrafts, such as…
(more)
▼ Due to their high specific stiffness, carbon-filled polymer composites are commonly used in the construction of structural components of subsonic fixed-wing aircrafts, such as the fuselage and control surfaces. In this work, neat epoxy (EPON 862 with EPIKURE Curing Agent W) was fabricated along with 1- 6 wt% of three types of GNP available from XG Sciences Inc. and 1-4 wt% of another type of GNP available from Asbury Carbons added to epoxy. The curing cycle for this epoxy was 121 °C for 2 hours followed by 177 °C for two hours.
GNP are short stacks of individual layers of graphite that are newly developed and available at a low cost. XG Sciences Inc. xGnP
®-M-15 has a platelets diameter of 15 μm and a thickness of 7 nm. xGnP
®-M-5 has a diameter of 5 μm and a thickness of 7 nm. The specific surface area for both M-grades is 130 m2/g. xGnP
®-C-300 has a diameter of 2 μm and a thickness of 2 nm with a specific surface area of 300 m2/g. Asbury Carbon’s TC307 GNP has a particle size <1 μm diameter and ~8 layers (1.1 nm) thick and a specific surface area of 350 m
2/g.
Development of good dispersion techniques was the most important contribution of this project. Proper dispersion is very important for obtaining a good composite. For each of the four types of GNP used in this study, a unique dispersion method was developed. High shear mixing was used in combination with sonication to exfoliate the GNP and disperse it into the epoxy matrix. An optical microscope was used to monitor the dispersion during mixing progression.
The composites were tested for their mechanical properties using typical macroscopic tensile testing, nanoindentation, and dynamic mechanical analysis. The addition of any of the four types of GNP resulted in an increase in the modulus (stiffness). The modulus can be predicted using the Halpin-Tsai model. The Halpin-Tsai model takes into account the mechanical properties of the polymer and the filler and also the filler geometry. The 2D randomly oriented filler Halpin-Tsai model was useful for predicting the modulus for xGnP
®-M-15 in epoxy and xGnP
®-M-5 in epoxy, this was confirmed visually through microscopy. The 3D randomly oriented filler Halpin-Tsai model predicted the modulus well for the xGnP
®-C-300 and the TC307, microscopy visually confirmed that the filler was oriented in all three planes.
From the mechanical properties, one type of GNP was chosen for use in a unidirectional carbon fiber composite. The continuous carbon fiber composites were tested via macroscopic tensile tests. The GNP chosen did not have an effect on the composite’s axial modulus, but increased the transverse modulus. The carbon fiber’s mechanical properties dominate over the GNP/epoxy properties in the axial direction. As far as current literature available, continuous carbon fiber has never been used as a reinforcement for GNP/epoxy composites.
Advisors/Committee Members: Julia A. King.
Subjects/Keywords: Epoxy; Graphene Nanoplatelet; Tensile; Chemical Engineering
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Klimek-McDonald, D. R. (2015). MECHANICAL PROPERTIES OF GRAPHENE NANOPLATELET/EPOXY COMPOSITES. (Doctoral Dissertation). Michigan Technological University. Retrieved from https://digitalcommons.mtu.edu/etds/1014
Chicago Manual of Style (16th Edition):
Klimek-McDonald, Danielle René. “MECHANICAL PROPERTIES OF GRAPHENE NANOPLATELET/EPOXY COMPOSITES.” 2015. Doctoral Dissertation, Michigan Technological University. Accessed April 11, 2021.
https://digitalcommons.mtu.edu/etds/1014.
MLA Handbook (7th Edition):
Klimek-McDonald, Danielle René. “MECHANICAL PROPERTIES OF GRAPHENE NANOPLATELET/EPOXY COMPOSITES.” 2015. Web. 11 Apr 2021.
Vancouver:
Klimek-McDonald DR. MECHANICAL PROPERTIES OF GRAPHENE NANOPLATELET/EPOXY COMPOSITES. [Internet] [Doctoral dissertation]. Michigan Technological University; 2015. [cited 2021 Apr 11].
Available from: https://digitalcommons.mtu.edu/etds/1014.
Council of Science Editors:
Klimek-McDonald DR. MECHANICAL PROPERTIES OF GRAPHENE NANOPLATELET/EPOXY COMPOSITES. [Doctoral Dissertation]. Michigan Technological University; 2015. Available from: https://digitalcommons.mtu.edu/etds/1014

University of Manchester
5.
Zheng, Yu.
Manufacturing, Multiscale Analysis on Mechanical
Properties and Microstructural Characterisation of Graphene
Nanoplatelet Reinforced PPS and PA6 Composites.
Degree: 2017, University of Manchester
URL: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:312605
► Graphene Nanoplatelet (GNP) is a relatively new type of nano-scale reinforcement that can be used to enhance the performance as well as tailor the properties…
(more)
▼ Graphene Nanoplatelet (GNP) is a relatively new
type of nano-scale reinforcement that can be used to enhance the
performance as well as tailor the properties of both engineering
and high performance thermoplastic composites. With the rising
interest of developing next-gen materials for aerospace, automotive
and space buildings from both industrial and academic communities,
extensive researches have been conducted for manufacture,
characterisation and numerical simulation on various types of
graphene nanoplatelet reinforced polymer nanocomposites. However,
in many cases, the actual improvements on polymer nanocomposites
are often much inferior to the theoretical prediction. This study
aims at an in-depth understanding of relationship between the
microstructures and the overall mechanical properties of GNP
reinforced polyphenylene sulfide (PPS) and polyamide (PA6)
thermoplastic composites. GNPs with various grades were melt mixed
or solution blended with target thermoplastic resins to manufacture
GNP reinforced thermoplastic composites. The GNP/PPS/PA6 composites
were evaluated by multi-scale mechanical experiments. Through the
combination of conventional tensile and flexural tests with
non-destructive nano-indentation tests, the relationship between
local mechanical response and overall material performance are
built and discussed. To further investigate the mechanism of how
dispersion and distribution of GNPs influence the microstructure
and macro-performance of GNP/PPS/PA6 composites, reactive ion
etching (RIE) was applied to aid the observation of nano-structure
of samples under SEM. The agglomerations, multi-phase and
interphase between GNP and surrounding polymer chains were
visualised to study how the changes on microstructure dominate the
properties of GNP polymer composites.
Advisors/Committee Members: YANG, ZHENJUN Z, Ji, Tianjian, Yang, Zhenjun.
Subjects/Keywords: Graphene nanoplatelet; Polyphenylene sulfide; multiscale mechanical test; RIE aided SEM observation
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Zheng, Y. (2017). Manufacturing, Multiscale Analysis on Mechanical
Properties and Microstructural Characterisation of Graphene
Nanoplatelet Reinforced PPS and PA6 Composites. (Doctoral Dissertation). University of Manchester. Retrieved from http://www.manchester.ac.uk/escholar/uk-ac-man-scw:312605
Chicago Manual of Style (16th Edition):
Zheng, Yu. “Manufacturing, Multiscale Analysis on Mechanical
Properties and Microstructural Characterisation of Graphene
Nanoplatelet Reinforced PPS and PA6 Composites.” 2017. Doctoral Dissertation, University of Manchester. Accessed April 11, 2021.
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:312605.
MLA Handbook (7th Edition):
Zheng, Yu. “Manufacturing, Multiscale Analysis on Mechanical
Properties and Microstructural Characterisation of Graphene
Nanoplatelet Reinforced PPS and PA6 Composites.” 2017. Web. 11 Apr 2021.
Vancouver:
Zheng Y. Manufacturing, Multiscale Analysis on Mechanical
Properties and Microstructural Characterisation of Graphene
Nanoplatelet Reinforced PPS and PA6 Composites. [Internet] [Doctoral dissertation]. University of Manchester; 2017. [cited 2021 Apr 11].
Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:312605.
Council of Science Editors:
Zheng Y. Manufacturing, Multiscale Analysis on Mechanical
Properties and Microstructural Characterisation of Graphene
Nanoplatelet Reinforced PPS and PA6 Composites. [Doctoral Dissertation]. University of Manchester; 2017. Available from: http://www.manchester.ac.uk/escholar/uk-ac-man-scw:312605

University of Manchester
6.
Zheng, Yu.
Manufacturing, multiscale analysis on mechanical properties and microstructural characterisation of graphene nanoplatelet reinforced PPS and PA6 composites.
Degree: PhD, 2018, University of Manchester
URL: https://www.research.manchester.ac.uk/portal/en/theses/manufacturing-multiscale-analysis-on-mechanical-properties-and-microstructural-characterisation-of-graphene-nanoplatelet-reinforced-pps-and-pa6-composites(418900d0-1f53-4437-b59a-e6a3d0c565dd).html
;
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.822984
► Graphene Nanoplatelet (GNP) is a relatively new type of nano-scale reinforcement that can be used to enhance the performance as well as tailor the properties…
(more)
▼ Graphene Nanoplatelet (GNP) is a relatively new type of nano-scale reinforcement that can be used to enhance the performance as well as tailor the properties of both engineering and high performance thermoplastic composites. With the rising interest of developing next-gen materials for aerospace, automotive and space buildings from both industrial and academic communities, extensive researches have been conducted for manufacture, characterisation and numerical simulation on various types of graphene nanoplatelet reinforced polymer nanocomposites. However, in many cases, the actual improvements on polymer nanocomposites are often much inferior to the theoretical prediction. This study aims at an in-depth understanding of relationship between the microstructures and the overall mechanical properties of GNP reinforced polyphenylene sulfide (PPS) and polyamide (PA6) thermoplastic composites. GNPs with various grades were melt mixed or solution blended with target thermoplastic resins to manufacture GNP reinforced thermoplastic composites. The GNP/PPS/PA6 composites were evaluated by multi-scale mechanical experiments. Through the combination of conventional tensile and flexural tests with non-destructive nano-indentation tests, the relationship between local mechanical response and overall material performance are built and discussed. To further investigate the mechanism of how dispersion and distribution of GNPs influence the microstructure and macro-performance of GNP/PPS/PA6 composites, reactive ion etching (RIE) was applied to aid the observation of nano-structure of samples under SEM. The agglomerations, multi-phase and interphase between GNP and surrounding polymer chains were visualised to study how the changes on microstructure dominate the properties of GNP polymer composites.
Subjects/Keywords: multiscale mechanical test; RIE aided SEM observation; Graphene nanoplatelet; Polyphenylene sulfide
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Zheng, Y. (2018). Manufacturing, multiscale analysis on mechanical properties and microstructural characterisation of graphene nanoplatelet reinforced PPS and PA6 composites. (Doctoral Dissertation). University of Manchester. Retrieved from https://www.research.manchester.ac.uk/portal/en/theses/manufacturing-multiscale-analysis-on-mechanical-properties-and-microstructural-characterisation-of-graphene-nanoplatelet-reinforced-pps-and-pa6-composites(418900d0-1f53-4437-b59a-e6a3d0c565dd).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.822984
Chicago Manual of Style (16th Edition):
Zheng, Yu. “Manufacturing, multiscale analysis on mechanical properties and microstructural characterisation of graphene nanoplatelet reinforced PPS and PA6 composites.” 2018. Doctoral Dissertation, University of Manchester. Accessed April 11, 2021.
https://www.research.manchester.ac.uk/portal/en/theses/manufacturing-multiscale-analysis-on-mechanical-properties-and-microstructural-characterisation-of-graphene-nanoplatelet-reinforced-pps-and-pa6-composites(418900d0-1f53-4437-b59a-e6a3d0c565dd).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.822984.
MLA Handbook (7th Edition):
Zheng, Yu. “Manufacturing, multiscale analysis on mechanical properties and microstructural characterisation of graphene nanoplatelet reinforced PPS and PA6 composites.” 2018. Web. 11 Apr 2021.
Vancouver:
Zheng Y. Manufacturing, multiscale analysis on mechanical properties and microstructural characterisation of graphene nanoplatelet reinforced PPS and PA6 composites. [Internet] [Doctoral dissertation]. University of Manchester; 2018. [cited 2021 Apr 11].
Available from: https://www.research.manchester.ac.uk/portal/en/theses/manufacturing-multiscale-analysis-on-mechanical-properties-and-microstructural-characterisation-of-graphene-nanoplatelet-reinforced-pps-and-pa6-composites(418900d0-1f53-4437-b59a-e6a3d0c565dd).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.822984.
Council of Science Editors:
Zheng Y. Manufacturing, multiscale analysis on mechanical properties and microstructural characterisation of graphene nanoplatelet reinforced PPS and PA6 composites. [Doctoral Dissertation]. University of Manchester; 2018. Available from: https://www.research.manchester.ac.uk/portal/en/theses/manufacturing-multiscale-analysis-on-mechanical-properties-and-microstructural-characterisation-of-graphene-nanoplatelet-reinforced-pps-and-pa6-composites(418900d0-1f53-4437-b59a-e6a3d0c565dd).html ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.822984

Queens University
7.
Giglio, Cameron.
Graphene Nanoplatelet Production Through Non-Ionic Surfactant-Assisted Exfoliation of Graphite
.
Degree: Chemical Engineering, Queens University
URL: http://hdl.handle.net/1974/22974
► Liquid phase exfoliation of graphite is performed using ultrasonication and shear exfoliation to produce graphene nanoplatelets (GNPs). Ultrasonication is performed using a tip sonicator under…
(more)
▼ Liquid phase exfoliation of graphite is performed using ultrasonication and shear exfoliation to produce graphene nanoplatelets (GNPs). Ultrasonication is performed using a tip sonicator under power loads ranging from 35-100% amplitude (corresponding to power of 9-36 W) and concentrations of Pluronic® F127 surfactant in water ranging from 1-15 wt%, under batch and sequential addition of surfactant modalities. Shear exfoliation is achieved using a lab scale shear mixer operated with rotor speeds ranging from 1500 rpm to 8000 rpm and Pluronic® F127 concentrations ranging from 1-10 wt%. Ultrasonication exfoliation demonstrated GNP concentrations as high as 3.01 mg·mL-1 at 100% amplitude and 15 wt% surfactant concentration. The average particle sizes of the nanoplatelets, were approximately 200-550 nm for all exfoliation methods as estimated through dynamic light scattering (DLS). Transmission electron microscopy (TEM) characterization revealed particle sizes on the order of hundreds of nanometers in lateral dimension. Ultrasonication resulted in few-layer graphene, with thickness ranging from 4-77 nm as measured by Atomic Force Microscopy (AFM) and aspect ratios of 36-96. Shear mixing generated multi-layer graphene, with thickness ranging from 6-11 nm and aspect ratios of 25-72.
Both processes were modeled using dimensional analysis, which revealed that high yields can be achieved beyond specific thresholds of power density input, rotation speed, and surfactant concentration. Based on the results, shear mixing presents itself as a promising method that can be readily scalable above a rotor speed threshold.
Subjects/Keywords: Graphene
;
Liquid Phase Exfoliation
;
Ultrasonication
;
Shear Mixing
;
Surfactant
;
Pluronic F127
;
Graphene Nanoplatelet
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Giglio, C. (n.d.). Graphene Nanoplatelet Production Through Non-Ionic Surfactant-Assisted Exfoliation of Graphite
. (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/22974
Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Giglio, Cameron. “Graphene Nanoplatelet Production Through Non-Ionic Surfactant-Assisted Exfoliation of Graphite
.” Thesis, Queens University. Accessed April 11, 2021.
http://hdl.handle.net/1974/22974.
Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Giglio, Cameron. “Graphene Nanoplatelet Production Through Non-Ionic Surfactant-Assisted Exfoliation of Graphite
.” Web. 11 Apr 2021.
Note: this citation may be lacking information needed for this citation format:
No year of publication.
Vancouver:
Giglio C. Graphene Nanoplatelet Production Through Non-Ionic Surfactant-Assisted Exfoliation of Graphite
. [Internet] [Thesis]. Queens University; [cited 2021 Apr 11].
Available from: http://hdl.handle.net/1974/22974.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.
Council of Science Editors:
Giglio C. Graphene Nanoplatelet Production Through Non-Ionic Surfactant-Assisted Exfoliation of Graphite
. [Thesis]. Queens University; Available from: http://hdl.handle.net/1974/22974
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.

University of North Texas
8.
Borkar, Tushar Murlidhar.
Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites.
Degree: 2014, University of North Texas
URL: https://digital.library.unt.edu/ark:/67531/metadc500026/
► Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical…
(more)
▼ Carbon nanotubes (CNTs) and
graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The present work is an attempt towards investigating the effect of CNT and GNP reinforcements on the mechanical properties of nickel matrix composites. The CNT/Ni (dry milled) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of SPS processed monolithic nickel ~ 160 MPa) and an elongation to failure ~ 30%. In contrast, CNT/Ni (molecular level mixed) exhibited substantially higher tensile yield strength (~ 690 MPa) but limited ductility with an elongation to failure ~ 8%. The Ni-1vol%GNP (dry milled) nanocomposite exhibited the best balance of properties in terms of strength and ductility. The enhancement in the tensile strength (i.e. 370 MPa) and substantial ductility (~40%) of Ni-1vol%GNP nanocomposites was achieved due to the combined effects of grain refinement, homogeneous dispersion of GNPs in the nickel matrix, and well-bonded Ni-GNP interface, which effectively transfers stress across metal-GNP interface during tensile deformation. A second emphasis of this work was on the detailed 3D microstructural characterization of a new class of Ni-Ti-C based metal matrix composites, developed using the laser engineered net shaping (LENSTM) process. These composites consist of an in situ formed and homogeneously distributed titanium carbide (TiC) as well as graphite phase reinforcing the nickel matrix. 3D microstructure helps in determining true morphology and spatial distribution of TiC and graphite phase as well as the phase evolution sequence. These Ni-TiC-C composites exhibit excellent tribological properties (low COF), while maintaining a relatively high hardness.
Advisors/Committee Members: Banerjee, Rajarshi, Scharf, Thomas, Choi, Wonbong, Du, Jincheng, Wang, Zhiqiang.
Subjects/Keywords: Spark plasma sintering; SPS; laser engineering net shaping; LENSTM; nickel; carbon nanotube; CNT; grapheme nanoplatelet; GNP; titanium carbide; TiC; phase evolution; Nickel.; Carbon nanotubes.; Graphene.; Metallic composites.
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





9.
Mello, Waldomiro Luiz Rios de.
Avaliação dos métodos de imersão, spray e dinâmico utilizados na fabricação de filmes nanoestruturados de nanofolhas de grafeno pela técnica de automontagem.
Degree: 2014, Universidade Federal de São Carlos; Programa de Pós-Graduação em Ciência dos Materiais – PPGCM-So; UFSCar; BR
URL: https://repositorio.ufscar.br/handle/ufscar/1186
► In this work we have compared the way graphene oxide nanoplatelets are nanostructured in bilayers of poly(diallyldimethylammonium chloride) (PDDA) and reduced graphene oxide stabilized in…
(more)
▼ In this work we have compared the way graphene oxide nanoplatelets are nanostructured in bilayers of poly(diallyldimethylammonium chloride) (PDDA) and reduced graphene oxide stabilized in poly(sodium 4-styrenesulfonate) (GPSS), called as (PDDA-GPSS)n, with n representing the number of deposited bilayers. LbL (layer-by-layer) films were fabricated by the self-assembly technique throughout the dipping, spray and dynamic methodologies, available at Laboratory FINEP1, UFSCar, campus Sorocaba. When compared with other bottom-up strategies employed in the build-up of nanostructured ultrathin films, the LbL technique is simple, cheap and easy to handle, beside the incorporation of distinct materials in the film structure, not limited to the form and size of substrates. The times used for the polyelectrolytes in the dipping and dynamic methods were based on the kinetic growth of the (PDDA-GPSS)8 films. In the spray methodology the time used was based
initially in the literature and further confirmed by experimental data considering pressure and spray time. All nanostructures formed were characterized by UV-vis spectroscopy, atomic force microscopy, scanning electron microscopy, profilometry and impedance spectroscopy. In all cases it was observed a linear growth of the LbL structures, pointing that the same amount of material was adsorbed at each deposition step. Films obtained from the dynamic methodology indicated higher amount of material adsorbed in the nanostructures, and by an adequate control of the parameters used in the self-assembly methods by physical adsorption one can make a fine tuning regarding to the spontaneous aggregation of the nanoplatelets at solid interfaces.
Neste trabalho comparamos a forma com a qual as nanofolhas de grafeno são nanoestruturadas em bicamadas de poli(cloreto de dialildimetilamônio) (PDDA) e grafeno estabilizado em poli(estireno sulfonato de sódio) (GPSS), designados por (PDDA-GPSS)n
sendo n o número de bicamadas depositadas. Os filmes foram fabricados com a técnica de automontagem por adsorção física (LbL, do inglês Layer-by-Layer), utilizando os métodos de imersão, spray e dinâmico, disponíveis no Laboratório Finep1 da UFSCar, campus Sorocaba. Comparada a outras estratégias bottom-up empregadas na construção de filmes ultrafinos nanoestruturados, a técnica LbL é simples, barata e de fácil aplicação, além de permitir a incorporação de diferentes materiais, e não estar limitada quanto à forma e o tamanho dos substratos. Os tempos para a aplicação dos polieletrólitos por imersão e pelo método dinâmico foram estabelecidos com base nas cinéticas de crescimento de filmes (PDDA-GPSS)8. Para o método de spray os tempos foram estabelecidos inicialmente com base na literatura, e depois confirmados em ensaios de crescimento, tendo como variáveis a pressão de ar e o tempo de spray. As nanoestruturas foram caracterizadas por espectroscopia na região do ultravioleta e do
visível, microscopia de força atômica, microscopia eletrônica de varredura, perfilometria e espectroscopia de impedância. Em…
Advisors/Committee Members: Riul Júnior, Antonio, Ferreira, Marystela, Cruz, Nilson Cristino da.
Subjects/Keywords: filmes finos; materiais nanoestruturados; filmes LbL; spray; imersão; LbL dinâmico; microcanal; nanofolhas de grafeno.; LbL Films; spray; dipping; dynamic LbL; graphene nanoplatelet; OUTROS
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Mello, W. L. R. d. (2014). Avaliação dos métodos de imersão, spray e dinâmico utilizados na fabricação de filmes nanoestruturados de nanofolhas de grafeno pela técnica de automontagem. (Masters Thesis). Universidade Federal de São Carlos; Programa de Pós-Graduação em Ciência dos Materiais – PPGCM-So; UFSCar; BR. Retrieved from https://repositorio.ufscar.br/handle/ufscar/1186
Chicago Manual of Style (16th Edition):
Mello, Waldomiro Luiz Rios de. “Avaliação dos métodos de imersão, spray e dinâmico utilizados na fabricação de filmes nanoestruturados de nanofolhas de grafeno pela técnica de automontagem.” 2014. Masters Thesis, Universidade Federal de São Carlos; Programa de Pós-Graduação em Ciência dos Materiais – PPGCM-So; UFSCar; BR. Accessed April 11, 2021.
https://repositorio.ufscar.br/handle/ufscar/1186.
MLA Handbook (7th Edition):
Mello, Waldomiro Luiz Rios de. “Avaliação dos métodos de imersão, spray e dinâmico utilizados na fabricação de filmes nanoestruturados de nanofolhas de grafeno pela técnica de automontagem.” 2014. Web. 11 Apr 2021.
Vancouver:
Mello WLRd. Avaliação dos métodos de imersão, spray e dinâmico utilizados na fabricação de filmes nanoestruturados de nanofolhas de grafeno pela técnica de automontagem. [Internet] [Masters thesis]. Universidade Federal de São Carlos; Programa de Pós-Graduação em Ciência dos Materiais – PPGCM-So; UFSCar; BR; 2014. [cited 2021 Apr 11].
Available from: https://repositorio.ufscar.br/handle/ufscar/1186.
Council of Science Editors:
Mello WLRd. Avaliação dos métodos de imersão, spray e dinâmico utilizados na fabricação de filmes nanoestruturados de nanofolhas de grafeno pela técnica de automontagem. [Masters Thesis]. Universidade Federal de São Carlos; Programa de Pós-Graduação em Ciência dos Materiais – PPGCM-So; UFSCar; BR; 2014. Available from: https://repositorio.ufscar.br/handle/ufscar/1186
10.
Deng, Zejun.
Exploring the concepts of electrochemical blocking for single entity detection : Explorer les concepts de blocage électrochimique pour la détection d'entité unique.
Degree: Docteur es, Biologie et Chimie, 2020, Institut polytechnique de Paris
URL: http://www.theses.fr/2020IPPAX059
► Cette thèse est consacrée à l'exploration des concepts de blocage électrochimique pour la détection d'une seule entité. Le blocage électrochimique est un type de mesure…
(more)
▼ Cette thèse est consacrée à l'exploration des concepts de blocage électrochimique pour la détection d'une seule entité. Le blocage électrochimique est un type de mesure électrochimique mono-entité particulièrement bien adapté à la détection d'entités isolantes, notamment des entités artificielles comme des particules de polymère ou des bioparticules comme des protéines et des bactéries. La taille de ces entités s'étend de quelques nm à plusieurs microns et leur structure électronique couvre tout le spectre, de l'isolant à l'état électronique donateur acceptant unique en passant par le comportement semi-conducteur et métallique. Actuellement, la détermination précise de la taille d'une particule par blocage électrochimique reste un défi analytique, en raison de la répartition inégale du courant sur les ultra-microélectrodes disques UME (effet dit de bord). Le but de cette thèse est de développer cette méthodologie élégante et simple en un outil analytique polyvalent et quantitatif.Tout d'abord, nous décrivons l'utilisation de Hg UME hémisphérique pour détecter des particules isolantes individuelles afin de supprimer les effets de bord sur les UME de disque. L'utilisation de Hg UME hémisphérique permet des mesures simultanées de la distribution granulométrique et de la concentration des particules en suspension. À l'aide de simulations numériques, nous en déduisons la relation quantitative entre la magnitude du pas courant et la taille du cordon. La fréquence de collision mesurée pour une taille de bille donnée est ensuite convertie en concentration (en mol/L) par quantification des contributions relatives de migration et de diffusion pour chaque taille de bille. Dans nos conditions expérimentales (faible concentration d'électrolyte de support), la migration domine le flux de billes. La taille moyenne des billes de polystyrène de 0.5 et 1 μm de rayon obtenues par électrochimie et microscopie électronique à balayage (MEB) ne diffère que de -8% et -9%, respectivement. La concentration totale de billes de polystyrène de 0.5 et 1 µm de rayon obtenue par électrochimie se trouve en étroite concordance (< 10% d'erreur) avec leurs concentrations nominales (25 et 100 fM).Deuxièmement, nous étendons la stratégie du blocage électrochimique à la détection de particules électriquement conductrices. Cette stratégie, la dépression électro-catalytique, est basée sur la différence intrinsèque de cinétique de transfert électronique entre certains matériaux. Nous utilisons cette stratégie pour détecter des particules nanoplaquettes de graphène (GNP), un materiaux peu actif en electro-catalyse. En fonction du potentiel nous montrons que la collision de GNP plus ou moins bloquer cinétiquement l’oxydation de l’hydrazine sur une UME de Pt et ainsi produire un signal similaire au signal obtenu avec des particules isolantes comme des billes de polystyrène.Enfin, nous couplons l'électrochimie et la microscopie en champ clair pour élucider comment la translation et la rotation des GNPs affectent la réponse en courant. Une fois que le GNP touche…
Advisors/Committee Members: Maroun, Fouad (thesis director), Renault, Christophe (thesis director).
Subjects/Keywords: Électrochimie mono-Entité; Blocage électrochimique; Dépression électrocatalytique; Nanoélectrochimie; Amplification électrocatalytique; Mesure opto-Électrochimique; Nanoplaquette de graphène; Ultra-microélectrode; Single entity electrochemistry; Electrochemical blocking; Electrocatalytic depression; Nanoelectrochemistry; Electrocatalytic amplification; Opto-Electrochemical measurement; Graphene nanoplatelet; Ultra-microelectrode; 541.37
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Deng, Z. (2020). Exploring the concepts of electrochemical blocking for single entity detection : Explorer les concepts de blocage électrochimique pour la détection d'entité unique. (Doctoral Dissertation). Institut polytechnique de Paris. Retrieved from http://www.theses.fr/2020IPPAX059
Chicago Manual of Style (16th Edition):
Deng, Zejun. “Exploring the concepts of electrochemical blocking for single entity detection : Explorer les concepts de blocage électrochimique pour la détection d'entité unique.” 2020. Doctoral Dissertation, Institut polytechnique de Paris. Accessed April 11, 2021.
http://www.theses.fr/2020IPPAX059.
MLA Handbook (7th Edition):
Deng, Zejun. “Exploring the concepts of electrochemical blocking for single entity detection : Explorer les concepts de blocage électrochimique pour la détection d'entité unique.” 2020. Web. 11 Apr 2021.
Vancouver:
Deng Z. Exploring the concepts of electrochemical blocking for single entity detection : Explorer les concepts de blocage électrochimique pour la détection d'entité unique. [Internet] [Doctoral dissertation]. Institut polytechnique de Paris; 2020. [cited 2021 Apr 11].
Available from: http://www.theses.fr/2020IPPAX059.
Council of Science Editors:
Deng Z. Exploring the concepts of electrochemical blocking for single entity detection : Explorer les concepts de blocage électrochimique pour la détection d'entité unique. [Doctoral Dissertation]. Institut polytechnique de Paris; 2020. Available from: http://www.theses.fr/2020IPPAX059
11.
Wotring, Erik.
Dispersion of graphene nanoplatelets in water with surfactant and reinforcement of mortar with graphene nanoplatelets.
Degree: MS, 0106, 2015, University of Illinois – Urbana-Champaign
URL: http://hdl.handle.net/2142/72809
► This research investigated the dispersion behavior of graphene nanoplatelets (GNPs) in water with water reducing admixture (WRA), a type of surfactant. The dosage of GNPs…
(more)
▼ This research investigated the dispersion behavior of
graphene nanoplatelets (GNPs) in water with water reducing admixture (WRA), a type of surfactant. The dosage of GNPs was fixed at 0.2wt% of water, and the dosage of the WRA functioned as the controlled variable. Sedimentation experiments qualitatively characterized the stability of the dispersion. The team characterized the time evolution of particle size with dynamic light scattering (DLS). Ultraviolet-visible spectroscopy (UV-vis) measured the time evolution of the opacity of the suspension. Scanning electron microscopy (SEM) gave a qualitative set of micrographs of the particles taken out of the suspension. The team characterized the surface forces with point of zero charge (PZC) experiments. This research has the potential to improve the future application of GNPs to composite materials. The author also carried out mechanical testing. Notched beams were prepared and tested in three-point bending. The data were then analyzed in keeping with the two-parameter fracture model. The mechanical results were inconclusive, but they suggested a path forward to continued research.
Advisors/Committee Members: Mondal, Paramita (advisor).
Subjects/Keywords: graphene; nanoplatelet; water reducing admixture; superplasticizer; mortar; two parameter fracture model; dynamix light scattering (DLS); ultraviolet-visible spectroscopy (UV-vis); scanning electron microscopy (SEM); sedimentation; point of zero charge (PZC)
…separates these
GNPs from the graphite, or graphene, oxide particles that other researchers have… …decorated
graphene with copolymers and dispersed graphene in several solvents. Shen quantified the…
Record Details
Similar Records
Cite
Share »
Record Details
Similar Records
Cite
« Share





❌
APA ·
Chicago ·
MLA ·
Vancouver ·
CSE |
Export
to Zotero / EndNote / Reference
Manager
APA (6th Edition):
Wotring, E. (2015). Dispersion of graphene nanoplatelets in water with surfactant and reinforcement of mortar with graphene nanoplatelets. (Thesis). University of Illinois – Urbana-Champaign. Retrieved from http://hdl.handle.net/2142/72809
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Wotring, Erik. “Dispersion of graphene nanoplatelets in water with surfactant and reinforcement of mortar with graphene nanoplatelets.” 2015. Thesis, University of Illinois – Urbana-Champaign. Accessed April 11, 2021.
http://hdl.handle.net/2142/72809.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Wotring, Erik. “Dispersion of graphene nanoplatelets in water with surfactant and reinforcement of mortar with graphene nanoplatelets.” 2015. Web. 11 Apr 2021.
Vancouver:
Wotring E. Dispersion of graphene nanoplatelets in water with surfactant and reinforcement of mortar with graphene nanoplatelets. [Internet] [Thesis]. University of Illinois – Urbana-Champaign; 2015. [cited 2021 Apr 11].
Available from: http://hdl.handle.net/2142/72809.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Wotring E. Dispersion of graphene nanoplatelets in water with surfactant and reinforcement of mortar with graphene nanoplatelets. [Thesis]. University of Illinois – Urbana-Champaign; 2015. Available from: http://hdl.handle.net/2142/72809
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
.