Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Gorenstein rings). Showing records 1 – 7 of 7 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Missouri – Columbia

1. Hulsizer, Heidi, 1982-. Minimal resolutions for a class of Gorenstein determinantal ideals.

Degree: 2010, University of Missouri – Columbia

 [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Let X = {x[subscript ij]} [subscript mxn] be a matrix with entries in a noetherian… (more)

Subjects/Keywords: Gorenstein rings; Geometry, Algebraic; Commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hulsizer, Heidi, 1. (2010). Minimal resolutions for a class of Gorenstein determinantal ideals. (Thesis). University of Missouri – Columbia. Retrieved from https://doi.org/10.32469/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Thesis, University of Missouri – Columbia. Accessed July 15, 2020. https://doi.org/10.32469/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Web. 15 Jul 2020.

Vancouver:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Internet] [Thesis]. University of Missouri – Columbia; 2010. [cited 2020 Jul 15]. Available from: https://doi.org/10.32469/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Thesis]. University of Missouri – Columbia; 2010. Available from: https://doi.org/10.32469/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of South Carolina

2. Park, Ada Michelle. On Gorenstein Rings and G-Dimension.

Degree: MA, Mathematics, 2010, University of South Carolina

Gorenstein rings are presented and characterized, and the concept of Gorenstein dimension, which parallels projective dimension for modules and rings, is introduced. Advisors/Committee Members: Adela Vraciu.

Subjects/Keywords: Mathematics; Physical Sciences and Mathematics; Algebra; Dimension; Gorenstein; Rings

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Park, A. M. (2010). On Gorenstein Rings and G-Dimension. (Masters Thesis). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/386

Chicago Manual of Style (16th Edition):

Park, Ada Michelle. “On Gorenstein Rings and G-Dimension.” 2010. Masters Thesis, University of South Carolina. Accessed July 15, 2020. https://scholarcommons.sc.edu/etd/386.

MLA Handbook (7th Edition):

Park, Ada Michelle. “On Gorenstein Rings and G-Dimension.” 2010. Web. 15 Jul 2020.

Vancouver:

Park AM. On Gorenstein Rings and G-Dimension. [Internet] [Masters thesis]. University of South Carolina; 2010. [cited 2020 Jul 15]. Available from: https://scholarcommons.sc.edu/etd/386.

Council of Science Editors:

Park AM. On Gorenstein Rings and G-Dimension. [Masters Thesis]. University of South Carolina; 2010. Available from: https://scholarcommons.sc.edu/etd/386


University of Missouri – Columbia

3. El Khoury, Sabine, 1978-. A class of Gorenstein Artin algebras of embedding dimension four.

Degree: PhD, 2007, University of Missouri – Columbia

 [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Let R be a polynomial ring in n variables and I be a homogeneous ideal… (more)

Subjects/Keywords: Gorenstein rings; Artin algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

El Khoury, Sabine, 1. (2007). A class of Gorenstein Artin algebras of embedding dimension four. (Doctoral Dissertation). University of Missouri – Columbia. Retrieved from https://doi.org/10.32469/10355/5930

Chicago Manual of Style (16th Edition):

El Khoury, Sabine, 1978-. “A class of Gorenstein Artin algebras of embedding dimension four.” 2007. Doctoral Dissertation, University of Missouri – Columbia. Accessed July 15, 2020. https://doi.org/10.32469/10355/5930.

MLA Handbook (7th Edition):

El Khoury, Sabine, 1978-. “A class of Gorenstein Artin algebras of embedding dimension four.” 2007. Web. 15 Jul 2020.

Vancouver:

El Khoury, Sabine 1. A class of Gorenstein Artin algebras of embedding dimension four. [Internet] [Doctoral dissertation]. University of Missouri – Columbia; 2007. [cited 2020 Jul 15]. Available from: https://doi.org/10.32469/10355/5930.

Council of Science Editors:

El Khoury, Sabine 1. A class of Gorenstein Artin algebras of embedding dimension four. [Doctoral Dissertation]. University of Missouri – Columbia; 2007. Available from: https://doi.org/10.32469/10355/5930


University of Missouri – Columbia

4. El Khoury, Sabine, 1978-. A class of Gorenstein Artin algebras of embedding dimension four.

Degree: PhD, 2007, University of Missouri – Columbia

 [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Let R be a polynomial ring in n variables and I be a homogeneous… (more)

Subjects/Keywords: Gorenstein rings; Artin algebras

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

El Khoury, Sabine, 1. (2007). A class of Gorenstein Artin algebras of embedding dimension four. (Doctoral Dissertation). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/5930

Chicago Manual of Style (16th Edition):

El Khoury, Sabine, 1978-. “A class of Gorenstein Artin algebras of embedding dimension four.” 2007. Doctoral Dissertation, University of Missouri – Columbia. Accessed July 15, 2020. http://hdl.handle.net/10355/5930.

MLA Handbook (7th Edition):

El Khoury, Sabine, 1978-. “A class of Gorenstein Artin algebras of embedding dimension four.” 2007. Web. 15 Jul 2020.

Vancouver:

El Khoury, Sabine 1. A class of Gorenstein Artin algebras of embedding dimension four. [Internet] [Doctoral dissertation]. University of Missouri – Columbia; 2007. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10355/5930.

Council of Science Editors:

El Khoury, Sabine 1. A class of Gorenstein Artin algebras of embedding dimension four. [Doctoral Dissertation]. University of Missouri – Columbia; 2007. Available from: http://hdl.handle.net/10355/5930


University of South Carolina

5. Hudson, Jaree. Special Fiber Rings of Certain Height Four Gorenstein Ideals.

Degree: PhD, Mathematics, 2018, University of South Carolina

  Let S be a set of four variables, k a field of characteristic not equal to two such that k contains all square roots,… (more)

Subjects/Keywords: Mathematics; Physical Sciences and Mathematics; Special Fiber Rings; Certain Height; Four Gorenstein Ideals

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hudson, J. (2018). Special Fiber Rings of Certain Height Four Gorenstein Ideals. (Doctoral Dissertation). University of South Carolina. Retrieved from https://scholarcommons.sc.edu/etd/4782

Chicago Manual of Style (16th Edition):

Hudson, Jaree. “Special Fiber Rings of Certain Height Four Gorenstein Ideals.” 2018. Doctoral Dissertation, University of South Carolina. Accessed July 15, 2020. https://scholarcommons.sc.edu/etd/4782.

MLA Handbook (7th Edition):

Hudson, Jaree. “Special Fiber Rings of Certain Height Four Gorenstein Ideals.” 2018. Web. 15 Jul 2020.

Vancouver:

Hudson J. Special Fiber Rings of Certain Height Four Gorenstein Ideals. [Internet] [Doctoral dissertation]. University of South Carolina; 2018. [cited 2020 Jul 15]. Available from: https://scholarcommons.sc.edu/etd/4782.

Council of Science Editors:

Hudson J. Special Fiber Rings of Certain Height Four Gorenstein Ideals. [Doctoral Dissertation]. University of South Carolina; 2018. Available from: https://scholarcommons.sc.edu/etd/4782


University of Missouri – Columbia

6. Hulsizer, Heidi, 1982-. Minimal resolutions for a class of Gorenstein determinantal ideals.

Degree: 2010, University of Missouri – Columbia

 [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Let X = {x[subscript ij]} [subscript mxn] be a matrix with entries in a… (more)

Subjects/Keywords: Gorenstein rings; Geometry, Algebraic; Commutative algebra

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hulsizer, Heidi, 1. (2010). Minimal resolutions for a class of Gorenstein determinantal ideals. (Thesis). University of Missouri – Columbia. Retrieved from http://hdl.handle.net/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Thesis, University of Missouri – Columbia. Accessed July 15, 2020. http://hdl.handle.net/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Hulsizer, Heidi, 1982-. “Minimal resolutions for a class of Gorenstein determinantal ideals.” 2010. Web. 15 Jul 2020.

Vancouver:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Internet] [Thesis]. University of Missouri – Columbia; 2010. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10355/9022.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Hulsizer, Heidi 1. Minimal resolutions for a class of Gorenstein determinantal ideals. [Thesis]. University of Missouri – Columbia; 2010. Available from: http://hdl.handle.net/10355/9022

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

7. Psaroudakis, Chrysostomos. Representation dimension, Cohen-Macaulay modules and triangulated categories.

Degree: 2013, University of Ioannina; Πανεπιστήμιο Ιωαννίνων

In this thesis we investigate homological invariants arising in the representation theory of Artin algebras. The main focus of our study is on the representation… (more)

Subjects/Keywords: Συγκολλήσεις αβελιανών κατηγοριών; Ολική διάσταση; Περατοκρατική διάσταση; Διάσταση αναπαράστασης; Συγκολλήσεις τριγωνισμένων κατηγοριών; Παραγόμενες κατηγορίες; Διάσταση Rouquier; Δακτύλιοι Morita; Άλγεβρες Gorenstein; Πρότυπα Cohen-Macaulay; Συστρεπτικά ζευγάρια; Ταυτοδύναμα ιδεώδη; Επιμορφισμοί δακτυλίων.; Recollements of abelian categories; Global dimension; Finitistic dimension; Representation dimension; Recollements of triangulated categories; Derived categories; Rouquier dimension; Morita rings; Functorially finite subcategories; Gorenstein algebras; Cohen-Macaulay modules; Torsion pairs; Idempotent ideals; Ring epimorpisms.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Psaroudakis, C. (2013). Representation dimension, Cohen-Macaulay modules and triangulated categories. (Thesis). University of Ioannina; Πανεπιστήμιο Ιωαννίνων. Retrieved from http://hdl.handle.net/10442/hedi/30049

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Psaroudakis, Chrysostomos. “Representation dimension, Cohen-Macaulay modules and triangulated categories.” 2013. Thesis, University of Ioannina; Πανεπιστήμιο Ιωαννίνων. Accessed July 15, 2020. http://hdl.handle.net/10442/hedi/30049.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Psaroudakis, Chrysostomos. “Representation dimension, Cohen-Macaulay modules and triangulated categories.” 2013. Web. 15 Jul 2020.

Vancouver:

Psaroudakis C. Representation dimension, Cohen-Macaulay modules and triangulated categories. [Internet] [Thesis]. University of Ioannina; Πανεπιστήμιο Ιωαννίνων; 2013. [cited 2020 Jul 15]. Available from: http://hdl.handle.net/10442/hedi/30049.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Psaroudakis C. Representation dimension, Cohen-Macaulay modules and triangulated categories. [Thesis]. University of Ioannina; Πανεπιστήμιο Ιωαννίνων; 2013. Available from: http://hdl.handle.net/10442/hedi/30049

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.