Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Geometry Riemannian )`

.
Showing records 1 – 30 of
153 total matches.

Search Limiters

Dates

- 2016 – 2020 (59)
- 2011 – 2015 (56)
- 2006 – 2010 (26)

Department

- Mathematics (15)
- Mathématiques (12)

Degrees

- PhD (38)
- Docteur es (32)

Languages

- English (73)
- French (20)
- Portuguese (11)

Country

- US (57)
- France (32)
- Brazil (13)
- Switzerland (11)

▼ Search Limiters

University of Pennsylvania

1.
Radeschi, Marco.
Low Dimensional Singular *Riemannian* Foliations in Spheres.

Degree: 2012, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/563

► Singular *Riemannian* Foliations are particular types of foliations on *Riemannian* manifolds, in which leaves locally stay at a constant distance from each other. Singular *Riemannian*…
(more)

Subjects/Keywords: Foliations; Riemannian geometry; Riemannian manifolds; Spheres; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Radeschi, M. (2012). Low Dimensional Singular Riemannian Foliations in Spheres. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/563

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Radeschi, Marco. “Low Dimensional Singular Riemannian Foliations in Spheres.” 2012. Thesis, University of Pennsylvania. Accessed September 26, 2020. https://repository.upenn.edu/edissertations/563.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Radeschi, Marco. “Low Dimensional Singular Riemannian Foliations in Spheres.” 2012. Web. 26 Sep 2020.

Vancouver:

Radeschi M. Low Dimensional Singular Riemannian Foliations in Spheres. [Internet] [Thesis]. University of Pennsylvania; 2012. [cited 2020 Sep 26]. Available from: https://repository.upenn.edu/edissertations/563.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Radeschi M. Low Dimensional Singular Riemannian Foliations in Spheres. [Thesis]. University of Pennsylvania; 2012. Available from: https://repository.upenn.edu/edissertations/563

Not specified: Masters Thesis or Doctoral Dissertation

Rutgers University

2. Dibble, James, 1982-. Totally geodesic maps into manifolds with no focal points.

Degree: PhD, Mathematics, 2014, Rutgers University

URL: https://rucore.libraries.rutgers.edu/rutgers-lib/45236/

►

The space of totally geodesic maps in each homotopy class [F] from a compact *Riemannian* manifold M with non-negative Ricci curvature into a complete *Riemannian*…
(more)

Subjects/Keywords: Geodesics (Mathematics); Geometry, Riemannian

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dibble, James, 1. (2014). Totally geodesic maps into manifolds with no focal points. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/45236/

Chicago Manual of Style (16^{th} Edition):

Dibble, James, 1982-. “Totally geodesic maps into manifolds with no focal points.” 2014. Doctoral Dissertation, Rutgers University. Accessed September 26, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/45236/.

MLA Handbook (7^{th} Edition):

Dibble, James, 1982-. “Totally geodesic maps into manifolds with no focal points.” 2014. Web. 26 Sep 2020.

Vancouver:

Dibble, James 1. Totally geodesic maps into manifolds with no focal points. [Internet] [Doctoral dissertation]. Rutgers University; 2014. [cited 2020 Sep 26]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45236/.

Council of Science Editors:

Dibble, James 1. Totally geodesic maps into manifolds with no focal points. [Doctoral Dissertation]. Rutgers University; 2014. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45236/

Duke University

3.
Gunderson, Ryan.
* Riemannian* 3-Manifolds with a Flatness Condition
.

Degree: 2019, Duke University

URL: http://hdl.handle.net/10161/18828

► The fundamental point-wise invariant of a *Riemannian* manifold (M, g) is the Riemann curvature tensor. Many special types of *Riemannian* manifolds can be characterized…
(more)

Subjects/Keywords: Mathematics; Differential Deometry; Riemannian Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Gunderson, R. (2019). Riemannian 3-Manifolds with a Flatness Condition . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/18828

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Gunderson, Ryan. “Riemannian 3-Manifolds with a Flatness Condition .” 2019. Thesis, Duke University. Accessed September 26, 2020. http://hdl.handle.net/10161/18828.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Gunderson, Ryan. “Riemannian 3-Manifolds with a Flatness Condition .” 2019. Web. 26 Sep 2020.

Vancouver:

Gunderson R. Riemannian 3-Manifolds with a Flatness Condition . [Internet] [Thesis]. Duke University; 2019. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10161/18828.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gunderson R. Riemannian 3-Manifolds with a Flatness Condition . [Thesis]. Duke University; 2019. Available from: http://hdl.handle.net/10161/18828

Not specified: Masters Thesis or Doctoral Dissertation

Indian Institute of Science

4.
Maity, Soma.
On the Stability of Certain *Riemannian* Functionals.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

URL: http://etd.iisc.ac.in/handle/2005/3230

► Given a compact smooth manifold Mn without boundary and n ≥ 3, the Lp-norm of the curvature tensor, defines a *Riemannian* functional on the space…
(more)

Subjects/Keywords: Riemannian Geometry; Ricci Curvature; Curvature (Mathematics); Riemannian Manifolds; Riemannian Functionals; Riemannain Metrics; Riemannian Metric; Space Forms; Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Maity, S. (2018). On the Stability of Certain Riemannian Functionals. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3230

Chicago Manual of Style (16^{th} Edition):

Maity, Soma. “On the Stability of Certain Riemannian Functionals.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed September 26, 2020. http://etd.iisc.ac.in/handle/2005/3230.

MLA Handbook (7^{th} Edition):

Maity, Soma. “On the Stability of Certain Riemannian Functionals.” 2018. Web. 26 Sep 2020.

Vancouver:

Maity S. On the Stability of Certain Riemannian Functionals. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Sep 26]. Available from: http://etd.iisc.ac.in/handle/2005/3230.

Council of Science Editors:

Maity S. On the Stability of Certain Riemannian Functionals. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3230

University of Oklahoma

5.
Li, Ye.
Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic * Geometry*.

Degree: PhD, 2012, University of Oklahoma

URL: http://hdl.handle.net/11244/319402

► Kohn-Nirenberg's paper [6]. Furthermore, we also discuss some Lp version of Caffarelli-Kohn-Nirenberg type inequalities on punched manifolds and point out a possible value of the…
(more)

Subjects/Keywords: Geometry, Riemannian; Riemannian manifolds; Riccati equation; Inequalities (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, Y. (2012). Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/319402

Chicago Manual of Style (16^{th} Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Doctoral Dissertation, University of Oklahoma. Accessed September 26, 2020. http://hdl.handle.net/11244/319402.

MLA Handbook (7^{th} Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Web. 26 Sep 2020.

Vancouver:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Internet] [Doctoral dissertation]. University of Oklahoma; 2012. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/11244/319402.

Council of Science Editors:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Doctoral Dissertation]. University of Oklahoma; 2012. Available from: http://hdl.handle.net/11244/319402

University of Oklahoma

6.
Li, Ye.
Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic * Geometry*.

Degree: PhD, 2012, University of Oklahoma

URL: http://hdl.handle.net/11244/318451

► Kohn-Nirenberg's paper [6]. Furthermore, we also discuss some Lp version of Caffarelli-Kohn-Nirenberg type inequalities on punched manifolds and point out a possible value of the…
(more)

Subjects/Keywords: Geometry, Riemannian; Riemannian manifolds; Riccati equation; Inequalities (Mathematics)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Li, Y. (2012). Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/318451

Chicago Manual of Style (16^{th} Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Doctoral Dissertation, University of Oklahoma. Accessed September 26, 2020. http://hdl.handle.net/11244/318451.

MLA Handbook (7^{th} Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Web. 26 Sep 2020.

Vancouver:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Internet] [Doctoral dissertation]. University of Oklahoma; 2012. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/11244/318451.

Council of Science Editors:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Doctoral Dissertation]. University of Oklahoma; 2012. Available from: http://hdl.handle.net/11244/318451

Massey University

7.
Senarath, Padma.
Fundamentals of *Riemannian* *geometry* and its evolution.

Degree: MS, Mathematics, 2000, Massey University

URL: http://hdl.handle.net/10179/12631

► In this thesis we study the theory of *Riemannian* manifolds: these are smooth manifolds equipped with *Riemannian* metrics, which allow one to measure geometric quantities…
(more)

Subjects/Keywords: Geometry, Riemannian; Riemannian manifolds

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Senarath, P. (2000). Fundamentals of Riemannian geometry and its evolution. (Masters Thesis). Massey University. Retrieved from http://hdl.handle.net/10179/12631

Chicago Manual of Style (16^{th} Edition):

Senarath, Padma. “Fundamentals of Riemannian geometry and its evolution.” 2000. Masters Thesis, Massey University. Accessed September 26, 2020. http://hdl.handle.net/10179/12631.

MLA Handbook (7^{th} Edition):

Senarath, Padma. “Fundamentals of Riemannian geometry and its evolution.” 2000. Web. 26 Sep 2020.

Vancouver:

Senarath P. Fundamentals of Riemannian geometry and its evolution. [Internet] [Masters thesis]. Massey University; 2000. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10179/12631.

Council of Science Editors:

Senarath P. Fundamentals of Riemannian geometry and its evolution. [Masters Thesis]. Massey University; 2000. Available from: http://hdl.handle.net/10179/12631

University of Georgia

8.
Needham, Thomas Richard.
Grassmannian *geometry* of framed curve spaces.

Degree: 2016, University of Georgia

URL: http://hdl.handle.net/10724/36282

► We develop a general framework for solving a variety of variational and computer vision problems involving framed space curves. Our approach is to study the…
(more)

Subjects/Keywords: Infinite-dimensional geometry; symplectic geometry; Riemannian geometry; elastic shape matching

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Needham, T. R. (2016). Grassmannian geometry of framed curve spaces. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/36282

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Needham, Thomas Richard. “Grassmannian geometry of framed curve spaces.” 2016. Thesis, University of Georgia. Accessed September 26, 2020. http://hdl.handle.net/10724/36282.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Needham, Thomas Richard. “Grassmannian geometry of framed curve spaces.” 2016. Web. 26 Sep 2020.

Vancouver:

Needham TR. Grassmannian geometry of framed curve spaces. [Internet] [Thesis]. University of Georgia; 2016. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10724/36282.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Needham TR. Grassmannian geometry of framed curve spaces. [Thesis]. University of Georgia; 2016. Available from: http://hdl.handle.net/10724/36282

Not specified: Masters Thesis or Doctoral Dissertation

University of California – Riverside

9. Benavides, Jesse. New Examples of Collapse With Lower Curvature Bound.

Degree: Mathematics, 2017, University of California – Riverside

URL: http://www.escholarship.org/uc/item/82c259wp

► In this work, we describe a method to construct new examples of collapse with a lower curvature bound inspired by Cheeger and Gromov. Unlike with…
(more)

Subjects/Keywords: Mathematics; Cheeger deformation; collapse; Riemannian Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Benavides, J. (2017). New Examples of Collapse With Lower Curvature Bound. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/82c259wp

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Benavides, Jesse. “New Examples of Collapse With Lower Curvature Bound.” 2017. Thesis, University of California – Riverside. Accessed September 26, 2020. http://www.escholarship.org/uc/item/82c259wp.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Benavides, Jesse. “New Examples of Collapse With Lower Curvature Bound.” 2017. Web. 26 Sep 2020.

Vancouver:

Benavides J. New Examples of Collapse With Lower Curvature Bound. [Internet] [Thesis]. University of California – Riverside; 2017. [cited 2020 Sep 26]. Available from: http://www.escholarship.org/uc/item/82c259wp.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Benavides J. New Examples of Collapse With Lower Curvature Bound. [Thesis]. University of California – Riverside; 2017. Available from: http://www.escholarship.org/uc/item/82c259wp

Not specified: Masters Thesis or Doctoral Dissertation

University of Alberta

10. Wilkes, Jason. Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces.

Degree: MS, Department of Mathematical and Statistical Sciences, 2011, University of Alberta

URL: https://era.library.ualberta.ca/files/12579t30w

► In the last three decades, the Ricci flow has proved to be an extremely useful tool in mathematics and physics. We explore numerically the long…
(more)

Subjects/Keywords: Ricci flow; Numerical Simulation; Riemannian Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wilkes, J. (2011). Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/12579t30w

Chicago Manual of Style (16^{th} Edition):

Wilkes, Jason. “Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces.” 2011. Masters Thesis, University of Alberta. Accessed September 26, 2020. https://era.library.ualberta.ca/files/12579t30w.

MLA Handbook (7^{th} Edition):

Wilkes, Jason. “Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces.” 2011. Web. 26 Sep 2020.

Vancouver:

Wilkes J. Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces. [Internet] [Masters thesis]. University of Alberta; 2011. [cited 2020 Sep 26]. Available from: https://era.library.ualberta.ca/files/12579t30w.

Council of Science Editors:

Wilkes J. Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces. [Masters Thesis]. University of Alberta; 2011. Available from: https://era.library.ualberta.ca/files/12579t30w

University of Toronto

11.
Liokumovich, Yevgeniy.
Sweepouts of *Riemannian* Surfaces.

Degree: PhD, 2015, University of Toronto

URL: http://hdl.handle.net/1807/71020

► We consider a problem of subdividing and sweeping out *Riemannian* 2-surfaces by short curves and cycles. We prove that for every *Riemannian* 2-disc or 2-sphere…
(more)

Subjects/Keywords: geodesic; Riemannian geometry; sweepout; width; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Liokumovich, Y. (2015). Sweepouts of Riemannian Surfaces. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/71020

Chicago Manual of Style (16^{th} Edition):

Liokumovich, Yevgeniy. “Sweepouts of Riemannian Surfaces.” 2015. Doctoral Dissertation, University of Toronto. Accessed September 26, 2020. http://hdl.handle.net/1807/71020.

MLA Handbook (7^{th} Edition):

Liokumovich, Yevgeniy. “Sweepouts of Riemannian Surfaces.” 2015. Web. 26 Sep 2020.

Vancouver:

Liokumovich Y. Sweepouts of Riemannian Surfaces. [Internet] [Doctoral dissertation]. University of Toronto; 2015. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1807/71020.

Council of Science Editors:

Liokumovich Y. Sweepouts of Riemannian Surfaces. [Doctoral Dissertation]. University of Toronto; 2015. Available from: http://hdl.handle.net/1807/71020

Latrobe University

12.
Hinic Galic, Ana.
Lie algebraic methods in the *Riemannian* *geometry* of nilpotent lie groups.

Degree: PhD, 2012, Latrobe University

URL: http://hdl.handle.net/1959.9/512945

►

Thesis (Ph.D.) - La Trobe University, 2012

Submission note: "A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy… (more)

Subjects/Keywords: Lie algebras.; Geometry, Riemannian.; Nilpotent Lie groups.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hinic Galic, A. (2012). Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. (Doctoral Dissertation). Latrobe University. Retrieved from http://hdl.handle.net/1959.9/512945

Chicago Manual of Style (16^{th} Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Doctoral Dissertation, Latrobe University. Accessed September 26, 2020. http://hdl.handle.net/1959.9/512945.

MLA Handbook (7^{th} Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Web. 26 Sep 2020.

Vancouver:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Internet] [Doctoral dissertation]. Latrobe University; 2012. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1959.9/512945.

Council of Science Editors:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Doctoral Dissertation]. Latrobe University; 2012. Available from: http://hdl.handle.net/1959.9/512945

13.
TAN KOK MENG.
Aspects of *Riemannian* and Spin * Geometry*.

Degree: 2010, National University of Singapore

URL: http://scholarbank.nus.edu.sg/handle/10635/18409

Subjects/Keywords: Riemannian geometry; spin geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

MENG, T. K. (2010). Aspects of Riemannian and Spin Geometry. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/18409

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

MENG, TAN KOK. “Aspects of Riemannian and Spin Geometry.” 2010. Thesis, National University of Singapore. Accessed September 26, 2020. http://scholarbank.nus.edu.sg/handle/10635/18409.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

MENG, TAN KOK. “Aspects of Riemannian and Spin Geometry.” 2010. Web. 26 Sep 2020.

Vancouver:

MENG TK. Aspects of Riemannian and Spin Geometry. [Internet] [Thesis]. National University of Singapore; 2010. [cited 2020 Sep 26]. Available from: http://scholarbank.nus.edu.sg/handle/10635/18409.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

MENG TK. Aspects of Riemannian and Spin Geometry. [Thesis]. National University of Singapore; 2010. Available from: http://scholarbank.nus.edu.sg/handle/10635/18409

Not specified: Masters Thesis or Doctoral Dissertation

Hong Kong University of Science and Technology

14. Wu, Fung Leung MATH. Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature.

Degree: 2019, Hong Kong University of Science and Technology

URL: http://repository.ust.hk/ir/Record/1783.1-100755 ; https://doi.org/10.14711/thesis-991012762868803412 ; http://repository.ust.hk/ir/bitstream/1783.1-100755/1/th_redirect.html

► Combinatorial curvature is defined for polyhedral graphs analogue to Gaussian curvature for *Riemannian* 2-manifolds. Some aspects of polyhedral graphs from the perspective of combinatorial curvature…
(more)

Subjects/Keywords: Graph theory ; Mathematical models ; Curvature ; Polyhedral functions ; Combinatorial geometry ; Geometry, Riemannian

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wu, F. L. M. (2019). Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-100755 ; https://doi.org/10.14711/thesis-991012762868803412 ; http://repository.ust.hk/ir/bitstream/1783.1-100755/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wu, Fung Leung MATH. “Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature.” 2019. Thesis, Hong Kong University of Science and Technology. Accessed September 26, 2020. http://repository.ust.hk/ir/Record/1783.1-100755 ; https://doi.org/10.14711/thesis-991012762868803412 ; http://repository.ust.hk/ir/bitstream/1783.1-100755/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wu, Fung Leung MATH. “Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature.” 2019. Web. 26 Sep 2020.

Vancouver:

Wu FLM. Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2019. [cited 2020 Sep 26]. Available from: http://repository.ust.hk/ir/Record/1783.1-100755 ; https://doi.org/10.14711/thesis-991012762868803412 ; http://repository.ust.hk/ir/bitstream/1783.1-100755/1/th_redirect.html.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wu FLM. Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature. [Thesis]. Hong Kong University of Science and Technology; 2019. Available from: http://repository.ust.hk/ir/Record/1783.1-100755 ; https://doi.org/10.14711/thesis-991012762868803412 ; http://repository.ust.hk/ir/bitstream/1783.1-100755/1/th_redirect.html

Not specified: Masters Thesis or Doctoral Dissertation

University of Toronto

15. Parsch, Fabian. Geodesic Nets With Few Boundary Points.

Degree: PhD, 2019, University of Toronto

URL: http://hdl.handle.net/1807/97568

► Geodesic nets on *Riemannian* manifolds form a natural class of stationary objects generalizing geodesics. Yet almost nothing is known about their classification or general properties…
(more)

Subjects/Keywords: curvature; differential geometry; geodesic nets; riemannian geometry; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Parsch, F. (2019). Geodesic Nets With Few Boundary Points. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/97568

Chicago Manual of Style (16^{th} Edition):

Parsch, Fabian. “Geodesic Nets With Few Boundary Points.” 2019. Doctoral Dissertation, University of Toronto. Accessed September 26, 2020. http://hdl.handle.net/1807/97568.

MLA Handbook (7^{th} Edition):

Parsch, Fabian. “Geodesic Nets With Few Boundary Points.” 2019. Web. 26 Sep 2020.

Vancouver:

Parsch F. Geodesic Nets With Few Boundary Points. [Internet] [Doctoral dissertation]. University of Toronto; 2019. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1807/97568.

Council of Science Editors:

Parsch F. Geodesic Nets With Few Boundary Points. [Doctoral Dissertation]. University of Toronto; 2019. Available from: http://hdl.handle.net/1807/97568

Duke University

16. Ball, Gavin. Seven-Dimensional Geometries With Special Torsion .

Degree: 2019, Duke University

URL: http://hdl.handle.net/10161/18734

► I use the methods of exterior differential systems and the moving frame to study two geometric structures in seven dimensions related to G_{2}-*geometry*, and…
(more)

Subjects/Keywords: Mathematics; Differential geometry; Exterior differential systems; Riemannian geometry; Special holonomy; Torsion

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ball, G. (2019). Seven-Dimensional Geometries With Special Torsion . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/18734

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ball, Gavin. “Seven-Dimensional Geometries With Special Torsion .” 2019. Thesis, Duke University. Accessed September 26, 2020. http://hdl.handle.net/10161/18734.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ball, Gavin. “Seven-Dimensional Geometries With Special Torsion .” 2019. Web. 26 Sep 2020.

Vancouver:

Ball G. Seven-Dimensional Geometries With Special Torsion . [Internet] [Thesis]. Duke University; 2019. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10161/18734.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ball G. Seven-Dimensional Geometries With Special Torsion . [Thesis]. Duke University; 2019. Available from: http://hdl.handle.net/10161/18734

Not specified: Masters Thesis or Doctoral Dissertation

University of Adelaide

17.
Lord, Steven.
* Riemannian* non-commutative

Degree: 2002, University of Adelaide

URL: http://hdl.handle.net/2440/22110

Subjects/Keywords: Noncommutative differential geometry.; Geometry, Riemannian.; Riemannian manifolds.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Lord, S. (2002). Riemannian non-commutative geometry / Steven Lord. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/22110

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Lord, Steven. “Riemannian non-commutative geometry / Steven Lord.” 2002. Thesis, University of Adelaide. Accessed September 26, 2020. http://hdl.handle.net/2440/22110.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Lord, Steven. “Riemannian non-commutative geometry / Steven Lord.” 2002. Web. 26 Sep 2020.

Vancouver:

Lord S. Riemannian non-commutative geometry / Steven Lord. [Internet] [Thesis]. University of Adelaide; 2002. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2440/22110.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lord S. Riemannian non-commutative geometry / Steven Lord. [Thesis]. University of Adelaide; 2002. Available from: http://hdl.handle.net/2440/22110

Not specified: Masters Thesis or Doctoral Dissertation

Michigan State University

18. Dimitric, Ivko. Quadric representation and submanifolds of finite type.

Degree: PhD, Department of Mathematics, 1989, Michigan State University

URL: http://etd.lib.msu.edu/islandora/object/etd:20554

Subjects/Keywords: Riemannian manifolds; Submanifolds; Geometry, Riemannian; Geometry, Differential

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dimitric, I. (1989). Quadric representation and submanifolds of finite type. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:20554

Chicago Manual of Style (16^{th} Edition):

Dimitric, Ivko. “Quadric representation and submanifolds of finite type.” 1989. Doctoral Dissertation, Michigan State University. Accessed September 26, 2020. http://etd.lib.msu.edu/islandora/object/etd:20554.

MLA Handbook (7^{th} Edition):

Dimitric, Ivko. “Quadric representation and submanifolds of finite type.” 1989. Web. 26 Sep 2020.

Vancouver:

Dimitric I. Quadric representation and submanifolds of finite type. [Internet] [Doctoral dissertation]. Michigan State University; 1989. [cited 2020 Sep 26]. Available from: http://etd.lib.msu.edu/islandora/object/etd:20554.

Council of Science Editors:

Dimitric I. Quadric representation and submanifolds of finite type. [Doctoral Dissertation]. Michigan State University; 1989. Available from: http://etd.lib.msu.edu/islandora/object/etd:20554

Université Paris-Sud – Paris XI

19.
Pecastaing, Vincent.
Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-*Riemannian* structures.

Degree: Docteur es, Mathématiques, 2014, Université Paris-Sud – Paris XI

URL: http://www.theses.fr/2014PA112417

►

Cette thèse a pour objet principal l'étude des structures pseudo-riemanniennes et de leurs groupes de transformations conformes, locales et globales. On cherche à obtenir des… (more)

Subjects/Keywords: Géométrie pseudo-riemannienne; Géométrie conforme; Structures de Cartan; Pseudo-Riemannian geometry; Conformal geometry; Cartan structures

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Pecastaing, V. (2014). Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2014PA112417

Chicago Manual of Style (16^{th} Edition):

Pecastaing, Vincent. “Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures.” 2014. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed September 26, 2020. http://www.theses.fr/2014PA112417.

MLA Handbook (7^{th} Edition):

Pecastaing, Vincent. “Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures.” 2014. Web. 26 Sep 2020.

Vancouver:

Pecastaing V. Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2014. [cited 2020 Sep 26]. Available from: http://www.theses.fr/2014PA112417.

Council of Science Editors:

Pecastaing V. Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2014. Available from: http://www.theses.fr/2014PA112417

20.
Coelho rodrigues, Pedro Luiz.
Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via *Riemannian* *geometry* : validation on EEG data.

Degree: Docteur es, Signal, image, paroles, télécoms, 2019, Université Grenoble Alpes (ComUE)

URL: http://www.theses.fr/2019GREAT095

► L’utilisation de séries temporelles multi-variées est une procédure standard pour décrire et analyser des mesures enregistrées par plusieurs capteurs au cours d’une expérience. Dans ce…
(more)

Subjects/Keywords: Géometrie Riemannienne; Géometrie de l'Information; Séries temporelles; Riemannian Geometry; Information Geometry; Time series; 004; 620

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Coelho rodrigues, P. L. (2019). Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2019GREAT095

Chicago Manual of Style (16^{th} Edition):

Coelho rodrigues, Pedro Luiz. “Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data.” 2019. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed September 26, 2020. http://www.theses.fr/2019GREAT095.

MLA Handbook (7^{th} Edition):

Coelho rodrigues, Pedro Luiz. “Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data.” 2019. Web. 26 Sep 2020.

Vancouver:

Coelho rodrigues PL. Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2019. [cited 2020 Sep 26]. Available from: http://www.theses.fr/2019GREAT095.

Council of Science Editors:

Coelho rodrigues PL. Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2019. Available from: http://www.theses.fr/2019GREAT095

University of Adelaide

21.
Francis-Staite, Kelli L.
Einstein and conformally Einstein bi-invariant semi-*Riemannian* metrics.

Degree: 2015, University of Adelaide

URL: http://hdl.handle.net/2440/97809

► This thesis considers the geometric properties of bi-invariant metrics on Lie groups. On simple Lie groups, we show that there is always an Einstein bi-invariant…
(more)

Subjects/Keywords: Einstein metrics; Einstein manifolds; Conformal Geometry; Back Tensor; semi-Riemannian geometry; Lie groups

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Francis-Staite, K. L. (2015). Einstein and conformally Einstein bi-invariant semi-Riemannian metrics. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/97809

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Francis-Staite, Kelli L. “Einstein and conformally Einstein bi-invariant semi-Riemannian metrics.” 2015. Thesis, University of Adelaide. Accessed September 26, 2020. http://hdl.handle.net/2440/97809.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Francis-Staite, Kelli L. “Einstein and conformally Einstein bi-invariant semi-Riemannian metrics.” 2015. Web. 26 Sep 2020.

Vancouver:

Francis-Staite KL. Einstein and conformally Einstein bi-invariant semi-Riemannian metrics. [Internet] [Thesis]. University of Adelaide; 2015. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2440/97809.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Francis-Staite KL. Einstein and conformally Einstein bi-invariant semi-Riemannian metrics. [Thesis]. University of Adelaide; 2015. Available from: http://hdl.handle.net/2440/97809

Not specified: Masters Thesis or Doctoral Dissertation

University of Toronto

22.
Zhu, Zhifei.
Geometric Inequalities on *Riemannian* Manifolds.

Degree: PhD, 2019, University of Toronto

URL: http://hdl.handle.net/1807/97754

► In this thesis, we will show three results which partially answer several questions in the field of quantitative *geometry*. We first show that there exists…
(more)

Subjects/Keywords: geodesic; homological filling function; minimal surface; quantitative geometry; Ricci curvature; Riemannian geometry; 0405

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhu, Z. (2019). Geometric Inequalities on Riemannian Manifolds. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/97754

Chicago Manual of Style (16^{th} Edition):

Zhu, Zhifei. “Geometric Inequalities on Riemannian Manifolds.” 2019. Doctoral Dissertation, University of Toronto. Accessed September 26, 2020. http://hdl.handle.net/1807/97754.

MLA Handbook (7^{th} Edition):

Zhu, Zhifei. “Geometric Inequalities on Riemannian Manifolds.” 2019. Web. 26 Sep 2020.

Vancouver:

Zhu Z. Geometric Inequalities on Riemannian Manifolds. [Internet] [Doctoral dissertation]. University of Toronto; 2019. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1807/97754.

Council of Science Editors:

Zhu Z. Geometric Inequalities on Riemannian Manifolds. [Doctoral Dissertation]. University of Toronto; 2019. Available from: http://hdl.handle.net/1807/97754

Texas A&M University

23.
Coll, Vincent Edward.
Topological obstructions to a totally geodesic, *Riemannian* foliation.

Degree: MS, mathematics, 2012, Texas A&M University

URL: http://hdl.handle.net/1969.1/ETD-TAMU-1983-THESIS-C697

Subjects/Keywords: mathematics.; Major mathematics.; Geometry, Riemannian.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Coll, V. E. (2012). Topological obstructions to a totally geodesic, Riemannian foliation. (Masters Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/ETD-TAMU-1983-THESIS-C697

Chicago Manual of Style (16^{th} Edition):

Coll, Vincent Edward. “Topological obstructions to a totally geodesic, Riemannian foliation.” 2012. Masters Thesis, Texas A&M University. Accessed September 26, 2020. http://hdl.handle.net/1969.1/ETD-TAMU-1983-THESIS-C697.

MLA Handbook (7^{th} Edition):

Coll, Vincent Edward. “Topological obstructions to a totally geodesic, Riemannian foliation.” 2012. Web. 26 Sep 2020.

Vancouver:

Coll VE. Topological obstructions to a totally geodesic, Riemannian foliation. [Internet] [Masters thesis]. Texas A&M University; 2012. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-1983-THESIS-C697.

Council of Science Editors:

Coll VE. Topological obstructions to a totally geodesic, Riemannian foliation. [Masters Thesis]. Texas A&M University; 2012. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-1983-THESIS-C697

Penn State University

24.
Ho, Wing Kai.
On Geodesics of Compact *Riemannian* Surfaces
.

Degree: 2009, Penn State University

URL: https://submit-etda.libraries.psu.edu/catalog/10159

► This dissertation is divided into two parts. In part one we deal with the 1/k length spectrum of a compact *Riemannian* manifold. The 1/k spectrum…
(more)

Subjects/Keywords: dynamical systems; Riemannian geometry; geodesics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ho, W. K. (2009). On Geodesics of Compact Riemannian Surfaces . (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/10159

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Ho, Wing Kai. “On Geodesics of Compact Riemannian Surfaces .” 2009. Thesis, Penn State University. Accessed September 26, 2020. https://submit-etda.libraries.psu.edu/catalog/10159.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Ho, Wing Kai. “On Geodesics of Compact Riemannian Surfaces .” 2009. Web. 26 Sep 2020.

Vancouver:

Ho WK. On Geodesics of Compact Riemannian Surfaces . [Internet] [Thesis]. Penn State University; 2009. [cited 2020 Sep 26]. Available from: https://submit-etda.libraries.psu.edu/catalog/10159.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ho WK. On Geodesics of Compact Riemannian Surfaces . [Thesis]. Penn State University; 2009. Available from: https://submit-etda.libraries.psu.edu/catalog/10159

Not specified: Masters Thesis or Doctoral Dissertation

University of Pennsylvania

25. Wen, Haomin. Scattering and Lens Rigidity.

Degree: 2014, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/1498

► Scattering rigidity of a *Riemannian* manifold allows one to tell the metric of a manifold with boundary by looking at the directions of geodesics at…
(more)

Subjects/Keywords: boundary rigidity; inverse problem; lens rigidity; Riemannian geometry; scattering rigidity; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Wen, H. (2014). Scattering and Lens Rigidity. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/1498

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Wen, Haomin. “Scattering and Lens Rigidity.” 2014. Thesis, University of Pennsylvania. Accessed September 26, 2020. https://repository.upenn.edu/edissertations/1498.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Wen, Haomin. “Scattering and Lens Rigidity.” 2014. Web. 26 Sep 2020.

Vancouver:

Wen H. Scattering and Lens Rigidity. [Internet] [Thesis]. University of Pennsylvania; 2014. [cited 2020 Sep 26]. Available from: https://repository.upenn.edu/edissertations/1498.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wen H. Scattering and Lens Rigidity. [Thesis]. University of Pennsylvania; 2014. Available from: https://repository.upenn.edu/edissertations/1498

Not specified: Masters Thesis or Doctoral Dissertation

University of Pennsylvania

26.
Brooks, Thomas Gunnison.
*Riemannian**Geometry* Of The Curvature Tensor.

Degree: 2018, University of Pennsylvania

URL: https://repository.upenn.edu/edissertations/2872

► The curvature tensor is the most important isometry invariant of a *Riemannian* metric. We study several related conditions on the curvature tensor to obtain topological…
(more)

Subjects/Keywords: curvature homogeneity; manifolds; nullity of curvature; Ricci eigenvalues; Riemannian geometry; Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Brooks, T. G. (2018). Riemannian Geometry Of The Curvature Tensor. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/2872

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Brooks, Thomas Gunnison. “Riemannian Geometry Of The Curvature Tensor.” 2018. Thesis, University of Pennsylvania. Accessed September 26, 2020. https://repository.upenn.edu/edissertations/2872.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Brooks, Thomas Gunnison. “Riemannian Geometry Of The Curvature Tensor.” 2018. Web. 26 Sep 2020.

Vancouver:

Brooks TG. Riemannian Geometry Of The Curvature Tensor. [Internet] [Thesis]. University of Pennsylvania; 2018. [cited 2020 Sep 26]. Available from: https://repository.upenn.edu/edissertations/2872.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brooks TG. Riemannian Geometry Of The Curvature Tensor. [Thesis]. University of Pennsylvania; 2018. Available from: https://repository.upenn.edu/edissertations/2872

Not specified: Masters Thesis or Doctoral Dissertation

Virginia Tech

27. Ailsworth, James William Jr. Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces.

Degree: MS, Mechanical Engineering, 2016, Virginia Tech

URL: http://hdl.handle.net/10919/71371

► Brain-computer interfaces are an emerging technology that could provide channels for communication and control to severely disabled people suffering from locked-in syndrome. It has been…
(more)

Subjects/Keywords: Brain-Computer Interface; Motor Imagery; Common Spatial Patterns; Riemannian Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Ailsworth, J. W. J. (2016). Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/71371

Chicago Manual of Style (16^{th} Edition):

Ailsworth, James William Jr. “Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces.” 2016. Masters Thesis, Virginia Tech. Accessed September 26, 2020. http://hdl.handle.net/10919/71371.

MLA Handbook (7^{th} Edition):

Ailsworth, James William Jr. “Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces.” 2016. Web. 26 Sep 2020.

Vancouver:

Ailsworth JWJ. Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces. [Internet] [Masters thesis]. Virginia Tech; 2016. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10919/71371.

Council of Science Editors:

Ailsworth JWJ. Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces. [Masters Thesis]. Virginia Tech; 2016. Available from: http://hdl.handle.net/10919/71371

Virginia Tech

28.
StClair, Jessica Lindsey.
* Geometry* of Spaces of Planar Quadrilaterals.

Degree: PhD, Mathematics, 2011, Virginia Tech

URL: http://hdl.handle.net/10919/26887

► The purpose of this dissertation is to investigate the *geometry* of spaces of planar quadrilaterals. The topology of moduli spaces of planar quadrilaterals (the set…
(more)

Subjects/Keywords: Holonomy; Robotics; Riemannian Metric; Moduli Space; Pre-Moduli Space; Differential Geometry

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

StClair, J. L. (2011). Geometry of Spaces of Planar Quadrilaterals. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26887

Chicago Manual of Style (16^{th} Edition):

StClair, Jessica Lindsey. “Geometry of Spaces of Planar Quadrilaterals.” 2011. Doctoral Dissertation, Virginia Tech. Accessed September 26, 2020. http://hdl.handle.net/10919/26887.

MLA Handbook (7^{th} Edition):

StClair, Jessica Lindsey. “Geometry of Spaces of Planar Quadrilaterals.” 2011. Web. 26 Sep 2020.

Vancouver:

StClair JL. Geometry of Spaces of Planar Quadrilaterals. [Internet] [Doctoral dissertation]. Virginia Tech; 2011. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10919/26887.

Council of Science Editors:

StClair JL. Geometry of Spaces of Planar Quadrilaterals. [Doctoral Dissertation]. Virginia Tech; 2011. Available from: http://hdl.handle.net/10919/26887

California State University – San Bernardino

29. Botros, Amir A. GEODESICS IN LORENTZIAN MANIFOLDS.

Degree: MAin Mathematics, Mathematics, 2016, California State University – San Bernardino

URL: https://scholarworks.lib.csusb.edu/etd/275

► We present an extension of Geodesics in Lorentzian Manifolds (Semi-*Riemannian* Manifolds or pseudo-*Riemannian* Manifolds ). A geodesic on a *Riemannian* manifold is, locally, a…
(more)

Subjects/Keywords: geodesic completeness; Lorentzian manifolds; pseudo-Riemannian manifolds; Geometry and Topology

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Botros, A. A. (2016). GEODESICS IN LORENTZIAN MANIFOLDS. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/275

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Botros, Amir A. “GEODESICS IN LORENTZIAN MANIFOLDS.” 2016. Thesis, California State University – San Bernardino. Accessed September 26, 2020. https://scholarworks.lib.csusb.edu/etd/275.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Botros, Amir A. “GEODESICS IN LORENTZIAN MANIFOLDS.” 2016. Web. 26 Sep 2020.

Vancouver:

Botros AA. GEODESICS IN LORENTZIAN MANIFOLDS. [Internet] [Thesis]. California State University – San Bernardino; 2016. [cited 2020 Sep 26]. Available from: https://scholarworks.lib.csusb.edu/etd/275.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Botros AA. GEODESICS IN LORENTZIAN MANIFOLDS. [Thesis]. California State University – San Bernardino; 2016. Available from: https://scholarworks.lib.csusb.edu/etd/275

Not specified: Masters Thesis or Doctoral Dissertation

University of Miami

30. Alshal, Hassan. Green Functions, Sommerfeld Images, and Wormholes.

Degree: MS, Physics (Arts and Sciences), 2019, University of Miami

URL: https://scholarlyrepository.miami.edu/oa_theses/745

► Electrostatic Green functions for grounded equipotential circular and elliptical rings, and grounded hyperspheres in n-dimension electrostatics, are constructed using Sommerfeld’s method. These electrostatic systems…
(more)

Subjects/Keywords: Electrostatics; Image Method; Green Functions; Sommerfeld; Riemannian Geometry; Wormhole

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Alshal, H. (2019). Green Functions, Sommerfeld Images, and Wormholes. (Thesis). University of Miami. Retrieved from https://scholarlyrepository.miami.edu/oa_theses/745

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Alshal, Hassan. “Green Functions, Sommerfeld Images, and Wormholes.” 2019. Thesis, University of Miami. Accessed September 26, 2020. https://scholarlyrepository.miami.edu/oa_theses/745.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Alshal, Hassan. “Green Functions, Sommerfeld Images, and Wormholes.” 2019. Web. 26 Sep 2020.

Vancouver:

Alshal H. Green Functions, Sommerfeld Images, and Wormholes. [Internet] [Thesis]. University of Miami; 2019. [cited 2020 Sep 26]. Available from: https://scholarlyrepository.miami.edu/oa_theses/745.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Alshal H. Green Functions, Sommerfeld Images, and Wormholes. [Thesis]. University of Miami; 2019. Available from: https://scholarlyrepository.miami.edu/oa_theses/745

Not specified: Masters Thesis or Doctoral Dissertation