Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Geometry Riemannian ). Showing records 1 – 30 of 153 total matches.

[1] [2] [3] [4] [5] [6]

Search Limiters

Last 2 Years | English Only

Department

Degrees

Levels

Languages

Country

▼ Search Limiters


University of Pennsylvania

1. Radeschi, Marco. Low Dimensional Singular Riemannian Foliations in Spheres.

Degree: 2012, University of Pennsylvania

 Singular Riemannian Foliations are particular types of foliations on Riemannian manifolds, in which leaves locally stay at a constant distance from each other. Singular Riemannian(more)

Subjects/Keywords: Foliations; Riemannian geometry; Riemannian manifolds; Spheres; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Radeschi, M. (2012). Low Dimensional Singular Riemannian Foliations in Spheres. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/563

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Radeschi, Marco. “Low Dimensional Singular Riemannian Foliations in Spheres.” 2012. Thesis, University of Pennsylvania. Accessed September 26, 2020. https://repository.upenn.edu/edissertations/563.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Radeschi, Marco. “Low Dimensional Singular Riemannian Foliations in Spheres.” 2012. Web. 26 Sep 2020.

Vancouver:

Radeschi M. Low Dimensional Singular Riemannian Foliations in Spheres. [Internet] [Thesis]. University of Pennsylvania; 2012. [cited 2020 Sep 26]. Available from: https://repository.upenn.edu/edissertations/563.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Radeschi M. Low Dimensional Singular Riemannian Foliations in Spheres. [Thesis]. University of Pennsylvania; 2012. Available from: https://repository.upenn.edu/edissertations/563

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Rutgers University

2. Dibble, James, 1982-. Totally geodesic maps into manifolds with no focal points.

Degree: PhD, Mathematics, 2014, Rutgers University

The space of totally geodesic maps in each homotopy class [F] from a compact Riemannian manifold M with non-negative Ricci curvature into a complete Riemannian(more)

Subjects/Keywords: Geodesics (Mathematics); Geometry, Riemannian

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dibble, James, 1. (2014). Totally geodesic maps into manifolds with no focal points. (Doctoral Dissertation). Rutgers University. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/45236/

Chicago Manual of Style (16th Edition):

Dibble, James, 1982-. “Totally geodesic maps into manifolds with no focal points.” 2014. Doctoral Dissertation, Rutgers University. Accessed September 26, 2020. https://rucore.libraries.rutgers.edu/rutgers-lib/45236/.

MLA Handbook (7th Edition):

Dibble, James, 1982-. “Totally geodesic maps into manifolds with no focal points.” 2014. Web. 26 Sep 2020.

Vancouver:

Dibble, James 1. Totally geodesic maps into manifolds with no focal points. [Internet] [Doctoral dissertation]. Rutgers University; 2014. [cited 2020 Sep 26]. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45236/.

Council of Science Editors:

Dibble, James 1. Totally geodesic maps into manifolds with no focal points. [Doctoral Dissertation]. Rutgers University; 2014. Available from: https://rucore.libraries.rutgers.edu/rutgers-lib/45236/


Duke University

3. Gunderson, Ryan. Riemannian 3-Manifolds with a Flatness Condition .

Degree: 2019, Duke University

  The fundamental point-wise invariant of a Riemannian manifold (M, g) is the Riemann curvature tensor. Many special types of Riemannian manifolds can be characterized… (more)

Subjects/Keywords: Mathematics; Differential Deometry; Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gunderson, R. (2019). Riemannian 3-Manifolds with a Flatness Condition . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/18828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gunderson, Ryan. “Riemannian 3-Manifolds with a Flatness Condition .” 2019. Thesis, Duke University. Accessed September 26, 2020. http://hdl.handle.net/10161/18828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gunderson, Ryan. “Riemannian 3-Manifolds with a Flatness Condition .” 2019. Web. 26 Sep 2020.

Vancouver:

Gunderson R. Riemannian 3-Manifolds with a Flatness Condition . [Internet] [Thesis]. Duke University; 2019. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10161/18828.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gunderson R. Riemannian 3-Manifolds with a Flatness Condition . [Thesis]. Duke University; 2019. Available from: http://hdl.handle.net/10161/18828

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Indian Institute of Science

4. Maity, Soma. On the Stability of Certain Riemannian Functionals.

Degree: PhD, Faculty of Science, 2018, Indian Institute of Science

 Given a compact smooth manifold Mn without boundary and n ≥ 3, the Lp-norm of the curvature tensor, defines a Riemannian functional on the space… (more)

Subjects/Keywords: Riemannian Geometry; Ricci Curvature; Curvature (Mathematics); Riemannian Manifolds; Riemannian Functionals; Riemannain Metrics; Riemannian Metric; Space Forms; Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Maity, S. (2018). On the Stability of Certain Riemannian Functionals. (Doctoral Dissertation). Indian Institute of Science. Retrieved from http://etd.iisc.ac.in/handle/2005/3230

Chicago Manual of Style (16th Edition):

Maity, Soma. “On the Stability of Certain Riemannian Functionals.” 2018. Doctoral Dissertation, Indian Institute of Science. Accessed September 26, 2020. http://etd.iisc.ac.in/handle/2005/3230.

MLA Handbook (7th Edition):

Maity, Soma. “On the Stability of Certain Riemannian Functionals.” 2018. Web. 26 Sep 2020.

Vancouver:

Maity S. On the Stability of Certain Riemannian Functionals. [Internet] [Doctoral dissertation]. Indian Institute of Science; 2018. [cited 2020 Sep 26]. Available from: http://etd.iisc.ac.in/handle/2005/3230.

Council of Science Editors:

Maity S. On the Stability of Certain Riemannian Functionals. [Doctoral Dissertation]. Indian Institute of Science; 2018. Available from: http://etd.iisc.ac.in/handle/2005/3230


University of Oklahoma

5. Li, Ye. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.

Degree: PhD, 2012, University of Oklahoma

 Kohn-Nirenberg's paper [6]. Furthermore, we also discuss some Lp version of Caffarelli-Kohn-Nirenberg type inequalities on punched manifolds and point out a possible value of the… (more)

Subjects/Keywords: Geometry, Riemannian; Riemannian manifolds; Riccati equation; Inequalities (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, Y. (2012). Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/319402

Chicago Manual of Style (16th Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Doctoral Dissertation, University of Oklahoma. Accessed September 26, 2020. http://hdl.handle.net/11244/319402.

MLA Handbook (7th Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Web. 26 Sep 2020.

Vancouver:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Internet] [Doctoral dissertation]. University of Oklahoma; 2012. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/11244/319402.

Council of Science Editors:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Doctoral Dissertation]. University of Oklahoma; 2012. Available from: http://hdl.handle.net/11244/319402


University of Oklahoma

6. Li, Ye. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.

Degree: PhD, 2012, University of Oklahoma

 Kohn-Nirenberg's paper [6]. Furthermore, we also discuss some Lp version of Caffarelli-Kohn-Nirenberg type inequalities on punched manifolds and point out a possible value of the… (more)

Subjects/Keywords: Geometry, Riemannian; Riemannian manifolds; Riccati equation; Inequalities (Mathematics)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Li, Y. (2012). Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. (Doctoral Dissertation). University of Oklahoma. Retrieved from http://hdl.handle.net/11244/318451

Chicago Manual of Style (16th Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Doctoral Dissertation, University of Oklahoma. Accessed September 26, 2020. http://hdl.handle.net/11244/318451.

MLA Handbook (7th Edition):

Li, Ye. “Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry.” 2012. Web. 26 Sep 2020.

Vancouver:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Internet] [Doctoral dissertation]. University of Oklahoma; 2012. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/11244/318451.

Council of Science Editors:

Li Y. Comparison Theorems, Geomatric Inequalities, And Applications to p-harmonic Geometry. [Doctoral Dissertation]. University of Oklahoma; 2012. Available from: http://hdl.handle.net/11244/318451


Massey University

7. Senarath, Padma. Fundamentals of Riemannian geometry and its evolution.

Degree: MS, Mathematics, 2000, Massey University

 In this thesis we study the theory of Riemannian manifolds: these are smooth manifolds equipped with Riemannian metrics, which allow one to measure geometric quantities… (more)

Subjects/Keywords: Geometry, Riemannian; Riemannian manifolds

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Senarath, P. (2000). Fundamentals of Riemannian geometry and its evolution. (Masters Thesis). Massey University. Retrieved from http://hdl.handle.net/10179/12631

Chicago Manual of Style (16th Edition):

Senarath, Padma. “Fundamentals of Riemannian geometry and its evolution.” 2000. Masters Thesis, Massey University. Accessed September 26, 2020. http://hdl.handle.net/10179/12631.

MLA Handbook (7th Edition):

Senarath, Padma. “Fundamentals of Riemannian geometry and its evolution.” 2000. Web. 26 Sep 2020.

Vancouver:

Senarath P. Fundamentals of Riemannian geometry and its evolution. [Internet] [Masters thesis]. Massey University; 2000. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10179/12631.

Council of Science Editors:

Senarath P. Fundamentals of Riemannian geometry and its evolution. [Masters Thesis]. Massey University; 2000. Available from: http://hdl.handle.net/10179/12631


University of Georgia

8. Needham, Thomas Richard. Grassmannian geometry of framed curve spaces.

Degree: 2016, University of Georgia

 We develop a general framework for solving a variety of variational and computer vision problems involving framed space curves. Our approach is to study the… (more)

Subjects/Keywords: Infinite-dimensional geometry; symplectic geometry; Riemannian geometry; elastic shape matching

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Needham, T. R. (2016). Grassmannian geometry of framed curve spaces. (Thesis). University of Georgia. Retrieved from http://hdl.handle.net/10724/36282

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Needham, Thomas Richard. “Grassmannian geometry of framed curve spaces.” 2016. Thesis, University of Georgia. Accessed September 26, 2020. http://hdl.handle.net/10724/36282.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Needham, Thomas Richard. “Grassmannian geometry of framed curve spaces.” 2016. Web. 26 Sep 2020.

Vancouver:

Needham TR. Grassmannian geometry of framed curve spaces. [Internet] [Thesis]. University of Georgia; 2016. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10724/36282.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Needham TR. Grassmannian geometry of framed curve spaces. [Thesis]. University of Georgia; 2016. Available from: http://hdl.handle.net/10724/36282

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of California – Riverside

9. Benavides, Jesse. New Examples of Collapse With Lower Curvature Bound.

Degree: Mathematics, 2017, University of California – Riverside

 In this work, we describe a method to construct new examples of collapse with a lower curvature bound inspired by Cheeger and Gromov. Unlike with… (more)

Subjects/Keywords: Mathematics; Cheeger deformation; collapse; Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Benavides, J. (2017). New Examples of Collapse With Lower Curvature Bound. (Thesis). University of California – Riverside. Retrieved from http://www.escholarship.org/uc/item/82c259wp

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Benavides, Jesse. “New Examples of Collapse With Lower Curvature Bound.” 2017. Thesis, University of California – Riverside. Accessed September 26, 2020. http://www.escholarship.org/uc/item/82c259wp.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Benavides, Jesse. “New Examples of Collapse With Lower Curvature Bound.” 2017. Web. 26 Sep 2020.

Vancouver:

Benavides J. New Examples of Collapse With Lower Curvature Bound. [Internet] [Thesis]. University of California – Riverside; 2017. [cited 2020 Sep 26]. Available from: http://www.escholarship.org/uc/item/82c259wp.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Benavides J. New Examples of Collapse With Lower Curvature Bound. [Thesis]. University of California – Riverside; 2017. Available from: http://www.escholarship.org/uc/item/82c259wp

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Alberta

10. Wilkes, Jason. Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces.

Degree: MS, Department of Mathematical and Statistical Sciences, 2011, University of Alberta

 In the last three decades, the Ricci flow has proved to be an extremely useful tool in mathematics and physics. We explore numerically the long… (more)

Subjects/Keywords: Ricci flow; Numerical Simulation; Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wilkes, J. (2011). Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces. (Masters Thesis). University of Alberta. Retrieved from https://era.library.ualberta.ca/files/12579t30w

Chicago Manual of Style (16th Edition):

Wilkes, Jason. “Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces.” 2011. Masters Thesis, University of Alberta. Accessed September 26, 2020. https://era.library.ualberta.ca/files/12579t30w.

MLA Handbook (7th Edition):

Wilkes, Jason. “Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces.” 2011. Web. 26 Sep 2020.

Vancouver:

Wilkes J. Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces. [Internet] [Masters thesis]. University of Alberta; 2011. [cited 2020 Sep 26]. Available from: https://era.library.ualberta.ca/files/12579t30w.

Council of Science Editors:

Wilkes J. Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces. [Masters Thesis]. University of Alberta; 2011. Available from: https://era.library.ualberta.ca/files/12579t30w


University of Toronto

11. Liokumovich, Yevgeniy. Sweepouts of Riemannian Surfaces.

Degree: PhD, 2015, University of Toronto

 We consider a problem of subdividing and sweeping out Riemannian 2-surfaces by short curves and cycles. We prove that for every Riemannian 2-disc or 2-sphere… (more)

Subjects/Keywords: geodesic; Riemannian geometry; sweepout; width; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Liokumovich, Y. (2015). Sweepouts of Riemannian Surfaces. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/71020

Chicago Manual of Style (16th Edition):

Liokumovich, Yevgeniy. “Sweepouts of Riemannian Surfaces.” 2015. Doctoral Dissertation, University of Toronto. Accessed September 26, 2020. http://hdl.handle.net/1807/71020.

MLA Handbook (7th Edition):

Liokumovich, Yevgeniy. “Sweepouts of Riemannian Surfaces.” 2015. Web. 26 Sep 2020.

Vancouver:

Liokumovich Y. Sweepouts of Riemannian Surfaces. [Internet] [Doctoral dissertation]. University of Toronto; 2015. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1807/71020.

Council of Science Editors:

Liokumovich Y. Sweepouts of Riemannian Surfaces. [Doctoral Dissertation]. University of Toronto; 2015. Available from: http://hdl.handle.net/1807/71020


Latrobe University

12. Hinic Galic, Ana. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.

Degree: PhD, 2012, Latrobe University

Thesis (Ph.D.) - La Trobe University, 2012

Submission note: "A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy… (more)

Subjects/Keywords: Lie algebras.; Geometry, Riemannian.; Nilpotent Lie groups.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hinic Galic, A. (2012). Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. (Doctoral Dissertation). Latrobe University. Retrieved from http://hdl.handle.net/1959.9/512945

Chicago Manual of Style (16th Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Doctoral Dissertation, Latrobe University. Accessed September 26, 2020. http://hdl.handle.net/1959.9/512945.

MLA Handbook (7th Edition):

Hinic Galic, Ana. “Lie algebraic methods in the Riemannian geometry of nilpotent lie groups.” 2012. Web. 26 Sep 2020.

Vancouver:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Internet] [Doctoral dissertation]. Latrobe University; 2012. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1959.9/512945.

Council of Science Editors:

Hinic Galic A. Lie algebraic methods in the Riemannian geometry of nilpotent lie groups. [Doctoral Dissertation]. Latrobe University; 2012. Available from: http://hdl.handle.net/1959.9/512945

13. TAN KOK MENG. Aspects of Riemannian and Spin Geometry.

Degree: 2010, National University of Singapore

Subjects/Keywords: Riemannian geometry; spin geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

MENG, T. K. (2010). Aspects of Riemannian and Spin Geometry. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/18409

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

MENG, TAN KOK. “Aspects of Riemannian and Spin Geometry.” 2010. Thesis, National University of Singapore. Accessed September 26, 2020. http://scholarbank.nus.edu.sg/handle/10635/18409.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

MENG, TAN KOK. “Aspects of Riemannian and Spin Geometry.” 2010. Web. 26 Sep 2020.

Vancouver:

MENG TK. Aspects of Riemannian and Spin Geometry. [Internet] [Thesis]. National University of Singapore; 2010. [cited 2020 Sep 26]. Available from: http://scholarbank.nus.edu.sg/handle/10635/18409.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

MENG TK. Aspects of Riemannian and Spin Geometry. [Thesis]. National University of Singapore; 2010. Available from: http://scholarbank.nus.edu.sg/handle/10635/18409

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Hong Kong University of Science and Technology

14. Wu, Fung Leung MATH. Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature.

Degree: 2019, Hong Kong University of Science and Technology

 Combinatorial curvature is defined for polyhedral graphs analogue to Gaussian curvature for Riemannian 2-manifolds. Some aspects of polyhedral graphs from the perspective of combinatorial curvature… (more)

Subjects/Keywords: Graph theory ; Mathematical models ; Curvature ; Polyhedral functions ; Combinatorial geometry ; Geometry, Riemannian

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wu, F. L. M. (2019). Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature. (Thesis). Hong Kong University of Science and Technology. Retrieved from http://repository.ust.hk/ir/Record/1783.1-100755 ; https://doi.org/10.14711/thesis-991012762868803412 ; http://repository.ust.hk/ir/bitstream/1783.1-100755/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wu, Fung Leung MATH. “Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature.” 2019. Thesis, Hong Kong University of Science and Technology. Accessed September 26, 2020. http://repository.ust.hk/ir/Record/1783.1-100755 ; https://doi.org/10.14711/thesis-991012762868803412 ; http://repository.ust.hk/ir/bitstream/1783.1-100755/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wu, Fung Leung MATH. “Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature.” 2019. Web. 26 Sep 2020.

Vancouver:

Wu FLM. Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature. [Internet] [Thesis]. Hong Kong University of Science and Technology; 2019. [cited 2020 Sep 26]. Available from: http://repository.ust.hk/ir/Record/1783.1-100755 ; https://doi.org/10.14711/thesis-991012762868803412 ; http://repository.ust.hk/ir/bitstream/1783.1-100755/1/th_redirect.html.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wu FLM. Some geometric aspects of polyhedral graphs from perspective of combinatorial curvature. [Thesis]. Hong Kong University of Science and Technology; 2019. Available from: http://repository.ust.hk/ir/Record/1783.1-100755 ; https://doi.org/10.14711/thesis-991012762868803412 ; http://repository.ust.hk/ir/bitstream/1783.1-100755/1/th_redirect.html

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

15. Parsch, Fabian. Geodesic Nets With Few Boundary Points.

Degree: PhD, 2019, University of Toronto

 Geodesic nets on Riemannian manifolds form a natural class of stationary objects generalizing geodesics. Yet almost nothing is known about their classification or general properties… (more)

Subjects/Keywords: curvature; differential geometry; geodesic nets; riemannian geometry; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Parsch, F. (2019). Geodesic Nets With Few Boundary Points. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/97568

Chicago Manual of Style (16th Edition):

Parsch, Fabian. “Geodesic Nets With Few Boundary Points.” 2019. Doctoral Dissertation, University of Toronto. Accessed September 26, 2020. http://hdl.handle.net/1807/97568.

MLA Handbook (7th Edition):

Parsch, Fabian. “Geodesic Nets With Few Boundary Points.” 2019. Web. 26 Sep 2020.

Vancouver:

Parsch F. Geodesic Nets With Few Boundary Points. [Internet] [Doctoral dissertation]. University of Toronto; 2019. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1807/97568.

Council of Science Editors:

Parsch F. Geodesic Nets With Few Boundary Points. [Doctoral Dissertation]. University of Toronto; 2019. Available from: http://hdl.handle.net/1807/97568


Duke University

16. Ball, Gavin. Seven-Dimensional Geometries With Special Torsion .

Degree: 2019, Duke University

  I use the methods of exterior differential systems and the moving frame to study two geometric structures in seven dimensions related to G2-geometry, and… (more)

Subjects/Keywords: Mathematics; Differential geometry; Exterior differential systems; Riemannian geometry; Special holonomy; Torsion

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ball, G. (2019). Seven-Dimensional Geometries With Special Torsion . (Thesis). Duke University. Retrieved from http://hdl.handle.net/10161/18734

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ball, Gavin. “Seven-Dimensional Geometries With Special Torsion .” 2019. Thesis, Duke University. Accessed September 26, 2020. http://hdl.handle.net/10161/18734.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ball, Gavin. “Seven-Dimensional Geometries With Special Torsion .” 2019. Web. 26 Sep 2020.

Vancouver:

Ball G. Seven-Dimensional Geometries With Special Torsion . [Internet] [Thesis]. Duke University; 2019. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10161/18734.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ball G. Seven-Dimensional Geometries With Special Torsion . [Thesis]. Duke University; 2019. Available from: http://hdl.handle.net/10161/18734

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Adelaide

17. Lord, Steven. Riemannian non-commutative geometry / Steven Lord.

Degree: 2002, University of Adelaide

Subjects/Keywords: Noncommutative differential geometry.; Geometry, Riemannian.; Riemannian manifolds.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lord, S. (2002). Riemannian non-commutative geometry / Steven Lord. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/22110

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lord, Steven. “Riemannian non-commutative geometry / Steven Lord.” 2002. Thesis, University of Adelaide. Accessed September 26, 2020. http://hdl.handle.net/2440/22110.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lord, Steven. “Riemannian non-commutative geometry / Steven Lord.” 2002. Web. 26 Sep 2020.

Vancouver:

Lord S. Riemannian non-commutative geometry / Steven Lord. [Internet] [Thesis]. University of Adelaide; 2002. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2440/22110.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lord S. Riemannian non-commutative geometry / Steven Lord. [Thesis]. University of Adelaide; 2002. Available from: http://hdl.handle.net/2440/22110

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

18. Dimitric, Ivko. Quadric representation and submanifolds of finite type.

Degree: PhD, Department of Mathematics, 1989, Michigan State University

Subjects/Keywords: Riemannian manifolds; Submanifolds; Geometry, Riemannian; Geometry, Differential

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dimitric, I. (1989). Quadric representation and submanifolds of finite type. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:20554

Chicago Manual of Style (16th Edition):

Dimitric, Ivko. “Quadric representation and submanifolds of finite type.” 1989. Doctoral Dissertation, Michigan State University. Accessed September 26, 2020. http://etd.lib.msu.edu/islandora/object/etd:20554.

MLA Handbook (7th Edition):

Dimitric, Ivko. “Quadric representation and submanifolds of finite type.” 1989. Web. 26 Sep 2020.

Vancouver:

Dimitric I. Quadric representation and submanifolds of finite type. [Internet] [Doctoral dissertation]. Michigan State University; 1989. [cited 2020 Sep 26]. Available from: http://etd.lib.msu.edu/islandora/object/etd:20554.

Council of Science Editors:

Dimitric I. Quadric representation and submanifolds of finite type. [Doctoral Dissertation]. Michigan State University; 1989. Available from: http://etd.lib.msu.edu/islandora/object/etd:20554


Université Paris-Sud – Paris XI

19. Pecastaing, Vincent. Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures.

Degree: Docteur es, Mathématiques, 2014, Université Paris-Sud – Paris XI

Cette thèse a pour objet principal l'étude des structures pseudo-riemanniennes et de leurs groupes de transformations conformes, locales et globales. On cherche à obtenir des… (more)

Subjects/Keywords: Géométrie pseudo-riemannienne; Géométrie conforme; Structures de Cartan; Pseudo-Riemannian geometry; Conformal geometry; Cartan structures

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pecastaing, V. (2014). Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures. (Doctoral Dissertation). Université Paris-Sud – Paris XI. Retrieved from http://www.theses.fr/2014PA112417

Chicago Manual of Style (16th Edition):

Pecastaing, Vincent. “Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures.” 2014. Doctoral Dissertation, Université Paris-Sud – Paris XI. Accessed September 26, 2020. http://www.theses.fr/2014PA112417.

MLA Handbook (7th Edition):

Pecastaing, Vincent. “Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures.” 2014. Web. 26 Sep 2020.

Vancouver:

Pecastaing V. Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures. [Internet] [Doctoral dissertation]. Université Paris-Sud – Paris XI; 2014. [cited 2020 Sep 26]. Available from: http://www.theses.fr/2014PA112417.

Council of Science Editors:

Pecastaing V. Le groupe conforme des structures pseudo-riemanniennes : The conformal group of pseudo-Riemannian structures. [Doctoral Dissertation]. Université Paris-Sud – Paris XI; 2014. Available from: http://www.theses.fr/2014PA112417

20. Coelho rodrigues, Pedro Luiz. Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data.

Degree: Docteur es, Signal, image, paroles, télécoms, 2019, Université Grenoble Alpes (ComUE)

 L’utilisation de séries temporelles multi-variées est une procédure standard pour décrire et analyser des mesures enregistrées par plusieurs capteurs au cours d’une expérience. Dans ce… (more)

Subjects/Keywords: Géometrie Riemannienne; Géometrie de l'Information; Séries temporelles; Riemannian Geometry; Information Geometry; Time series; 004; 620

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Coelho rodrigues, P. L. (2019). Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data. (Doctoral Dissertation). Université Grenoble Alpes (ComUE). Retrieved from http://www.theses.fr/2019GREAT095

Chicago Manual of Style (16th Edition):

Coelho rodrigues, Pedro Luiz. “Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data.” 2019. Doctoral Dissertation, Université Grenoble Alpes (ComUE). Accessed September 26, 2020. http://www.theses.fr/2019GREAT095.

MLA Handbook (7th Edition):

Coelho rodrigues, Pedro Luiz. “Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data.” 2019. Web. 26 Sep 2020.

Vancouver:

Coelho rodrigues PL. Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data. [Internet] [Doctoral dissertation]. Université Grenoble Alpes (ComUE); 2019. [cited 2020 Sep 26]. Available from: http://www.theses.fr/2019GREAT095.

Council of Science Editors:

Coelho rodrigues PL. Exploration des invariances de séries temporelles multivariées via la géométrie Riemannienne : validation sur des données EEG : Exploring invariances of multivariate time series via Riemannian geometry : validation on EEG data. [Doctoral Dissertation]. Université Grenoble Alpes (ComUE); 2019. Available from: http://www.theses.fr/2019GREAT095


University of Adelaide

21. Francis-Staite, Kelli L. Einstein and conformally Einstein bi-invariant semi-Riemannian metrics.

Degree: 2015, University of Adelaide

 This thesis considers the geometric properties of bi-invariant metrics on Lie groups. On simple Lie groups, we show that there is always an Einstein bi-invariant… (more)

Subjects/Keywords: Einstein metrics; Einstein manifolds; Conformal Geometry; Back Tensor; semi-Riemannian geometry; Lie groups

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Francis-Staite, K. L. (2015). Einstein and conformally Einstein bi-invariant semi-Riemannian metrics. (Thesis). University of Adelaide. Retrieved from http://hdl.handle.net/2440/97809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Francis-Staite, Kelli L. “Einstein and conformally Einstein bi-invariant semi-Riemannian metrics.” 2015. Thesis, University of Adelaide. Accessed September 26, 2020. http://hdl.handle.net/2440/97809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Francis-Staite, Kelli L. “Einstein and conformally Einstein bi-invariant semi-Riemannian metrics.” 2015. Web. 26 Sep 2020.

Vancouver:

Francis-Staite KL. Einstein and conformally Einstein bi-invariant semi-Riemannian metrics. [Internet] [Thesis]. University of Adelaide; 2015. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/2440/97809.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Francis-Staite KL. Einstein and conformally Einstein bi-invariant semi-Riemannian metrics. [Thesis]. University of Adelaide; 2015. Available from: http://hdl.handle.net/2440/97809

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Toronto

22. Zhu, Zhifei. Geometric Inequalities on Riemannian Manifolds.

Degree: PhD, 2019, University of Toronto

 In this thesis, we will show three results which partially answer several questions in the field of quantitative geometry. We first show that there exists… (more)

Subjects/Keywords: geodesic; homological filling function; minimal surface; quantitative geometry; Ricci curvature; Riemannian geometry; 0405

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhu, Z. (2019). Geometric Inequalities on Riemannian Manifolds. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/97754

Chicago Manual of Style (16th Edition):

Zhu, Zhifei. “Geometric Inequalities on Riemannian Manifolds.” 2019. Doctoral Dissertation, University of Toronto. Accessed September 26, 2020. http://hdl.handle.net/1807/97754.

MLA Handbook (7th Edition):

Zhu, Zhifei. “Geometric Inequalities on Riemannian Manifolds.” 2019. Web. 26 Sep 2020.

Vancouver:

Zhu Z. Geometric Inequalities on Riemannian Manifolds. [Internet] [Doctoral dissertation]. University of Toronto; 2019. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1807/97754.

Council of Science Editors:

Zhu Z. Geometric Inequalities on Riemannian Manifolds. [Doctoral Dissertation]. University of Toronto; 2019. Available from: http://hdl.handle.net/1807/97754


Texas A&M University

23. Coll, Vincent Edward. Topological obstructions to a totally geodesic, Riemannian foliation.

Degree: MS, mathematics, 2012, Texas A&M University

Subjects/Keywords: mathematics.; Major mathematics.; Geometry, Riemannian.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Coll, V. E. (2012). Topological obstructions to a totally geodesic, Riemannian foliation. (Masters Thesis). Texas A&M University. Retrieved from http://hdl.handle.net/1969.1/ETD-TAMU-1983-THESIS-C697

Chicago Manual of Style (16th Edition):

Coll, Vincent Edward. “Topological obstructions to a totally geodesic, Riemannian foliation.” 2012. Masters Thesis, Texas A&M University. Accessed September 26, 2020. http://hdl.handle.net/1969.1/ETD-TAMU-1983-THESIS-C697.

MLA Handbook (7th Edition):

Coll, Vincent Edward. “Topological obstructions to a totally geodesic, Riemannian foliation.” 2012. Web. 26 Sep 2020.

Vancouver:

Coll VE. Topological obstructions to a totally geodesic, Riemannian foliation. [Internet] [Masters thesis]. Texas A&M University; 2012. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-1983-THESIS-C697.

Council of Science Editors:

Coll VE. Topological obstructions to a totally geodesic, Riemannian foliation. [Masters Thesis]. Texas A&M University; 2012. Available from: http://hdl.handle.net/1969.1/ETD-TAMU-1983-THESIS-C697


Penn State University

24. Ho, Wing Kai. On Geodesics of Compact Riemannian Surfaces .

Degree: 2009, Penn State University

 This dissertation is divided into two parts. In part one we deal with the 1/k length spectrum of a compact Riemannian manifold. The 1/k spectrum… (more)

Subjects/Keywords: dynamical systems; Riemannian geometry; geodesics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ho, W. K. (2009). On Geodesics of Compact Riemannian Surfaces . (Thesis). Penn State University. Retrieved from https://submit-etda.libraries.psu.edu/catalog/10159

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Ho, Wing Kai. “On Geodesics of Compact Riemannian Surfaces .” 2009. Thesis, Penn State University. Accessed September 26, 2020. https://submit-etda.libraries.psu.edu/catalog/10159.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Ho, Wing Kai. “On Geodesics of Compact Riemannian Surfaces .” 2009. Web. 26 Sep 2020.

Vancouver:

Ho WK. On Geodesics of Compact Riemannian Surfaces . [Internet] [Thesis]. Penn State University; 2009. [cited 2020 Sep 26]. Available from: https://submit-etda.libraries.psu.edu/catalog/10159.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Ho WK. On Geodesics of Compact Riemannian Surfaces . [Thesis]. Penn State University; 2009. Available from: https://submit-etda.libraries.psu.edu/catalog/10159

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Pennsylvania

25. Wen, Haomin. Scattering and Lens Rigidity.

Degree: 2014, University of Pennsylvania

 Scattering rigidity of a Riemannian manifold allows one to tell the metric of a manifold with boundary by looking at the directions of geodesics at… (more)

Subjects/Keywords: boundary rigidity; inverse problem; lens rigidity; Riemannian geometry; scattering rigidity; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wen, H. (2014). Scattering and Lens Rigidity. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/1498

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wen, Haomin. “Scattering and Lens Rigidity.” 2014. Thesis, University of Pennsylvania. Accessed September 26, 2020. https://repository.upenn.edu/edissertations/1498.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wen, Haomin. “Scattering and Lens Rigidity.” 2014. Web. 26 Sep 2020.

Vancouver:

Wen H. Scattering and Lens Rigidity. [Internet] [Thesis]. University of Pennsylvania; 2014. [cited 2020 Sep 26]. Available from: https://repository.upenn.edu/edissertations/1498.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wen H. Scattering and Lens Rigidity. [Thesis]. University of Pennsylvania; 2014. Available from: https://repository.upenn.edu/edissertations/1498

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Pennsylvania

26. Brooks, Thomas Gunnison. Riemannian Geometry Of The Curvature Tensor.

Degree: 2018, University of Pennsylvania

 The curvature tensor is the most important isometry invariant of a Riemannian metric. We study several related conditions on the curvature tensor to obtain topological… (more)

Subjects/Keywords: curvature homogeneity; manifolds; nullity of curvature; Ricci eigenvalues; Riemannian geometry; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Brooks, T. G. (2018). Riemannian Geometry Of The Curvature Tensor. (Thesis). University of Pennsylvania. Retrieved from https://repository.upenn.edu/edissertations/2872

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Brooks, Thomas Gunnison. “Riemannian Geometry Of The Curvature Tensor.” 2018. Thesis, University of Pennsylvania. Accessed September 26, 2020. https://repository.upenn.edu/edissertations/2872.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Brooks, Thomas Gunnison. “Riemannian Geometry Of The Curvature Tensor.” 2018. Web. 26 Sep 2020.

Vancouver:

Brooks TG. Riemannian Geometry Of The Curvature Tensor. [Internet] [Thesis]. University of Pennsylvania; 2018. [cited 2020 Sep 26]. Available from: https://repository.upenn.edu/edissertations/2872.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Brooks TG. Riemannian Geometry Of The Curvature Tensor. [Thesis]. University of Pennsylvania; 2018. Available from: https://repository.upenn.edu/edissertations/2872

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

27. Ailsworth, James William Jr. Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces.

Degree: MS, Mechanical Engineering, 2016, Virginia Tech

 Brain-computer interfaces are an emerging technology that could provide channels for communication and control to severely disabled people suffering from locked-in syndrome. It has been… (more)

Subjects/Keywords: Brain-Computer Interface; Motor Imagery; Common Spatial Patterns; Riemannian Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ailsworth, J. W. J. (2016). Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces. (Masters Thesis). Virginia Tech. Retrieved from http://hdl.handle.net/10919/71371

Chicago Manual of Style (16th Edition):

Ailsworth, James William Jr. “Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces.” 2016. Masters Thesis, Virginia Tech. Accessed September 26, 2020. http://hdl.handle.net/10919/71371.

MLA Handbook (7th Edition):

Ailsworth, James William Jr. “Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces.” 2016. Web. 26 Sep 2020.

Vancouver:

Ailsworth JWJ. Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces. [Internet] [Masters thesis]. Virginia Tech; 2016. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10919/71371.

Council of Science Editors:

Ailsworth JWJ. Comparison and Development of Algorithms for Motor Imagery Classification in EEG- based Brain-Computer Interfaces. [Masters Thesis]. Virginia Tech; 2016. Available from: http://hdl.handle.net/10919/71371


Virginia Tech

28. StClair, Jessica Lindsey. Geometry of Spaces of Planar Quadrilaterals.

Degree: PhD, Mathematics, 2011, Virginia Tech

 The purpose of this dissertation is to investigate the geometry of spaces of planar quadrilaterals. The topology of moduli spaces of planar quadrilaterals (the set… (more)

Subjects/Keywords: Holonomy; Robotics; Riemannian Metric; Moduli Space; Pre-Moduli Space; Differential Geometry

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

StClair, J. L. (2011). Geometry of Spaces of Planar Quadrilaterals. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/26887

Chicago Manual of Style (16th Edition):

StClair, Jessica Lindsey. “Geometry of Spaces of Planar Quadrilaterals.” 2011. Doctoral Dissertation, Virginia Tech. Accessed September 26, 2020. http://hdl.handle.net/10919/26887.

MLA Handbook (7th Edition):

StClair, Jessica Lindsey. “Geometry of Spaces of Planar Quadrilaterals.” 2011. Web. 26 Sep 2020.

Vancouver:

StClair JL. Geometry of Spaces of Planar Quadrilaterals. [Internet] [Doctoral dissertation]. Virginia Tech; 2011. [cited 2020 Sep 26]. Available from: http://hdl.handle.net/10919/26887.

Council of Science Editors:

StClair JL. Geometry of Spaces of Planar Quadrilaterals. [Doctoral Dissertation]. Virginia Tech; 2011. Available from: http://hdl.handle.net/10919/26887


California State University – San Bernardino

29. Botros, Amir A. GEODESICS IN LORENTZIAN MANIFOLDS.

Degree: MAin Mathematics, Mathematics, 2016, California State University – San Bernardino

  We present an extension of Geodesics in Lorentzian Manifolds (Semi-Riemannian Manifolds or pseudo-Riemannian Manifolds ). A geodesic on a Riemannian manifold is, locally, a… (more)

Subjects/Keywords: geodesic completeness; Lorentzian manifolds; pseudo-Riemannian manifolds; Geometry and Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Botros, A. A. (2016). GEODESICS IN LORENTZIAN MANIFOLDS. (Thesis). California State University – San Bernardino. Retrieved from https://scholarworks.lib.csusb.edu/etd/275

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Botros, Amir A. “GEODESICS IN LORENTZIAN MANIFOLDS.” 2016. Thesis, California State University – San Bernardino. Accessed September 26, 2020. https://scholarworks.lib.csusb.edu/etd/275.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Botros, Amir A. “GEODESICS IN LORENTZIAN MANIFOLDS.” 2016. Web. 26 Sep 2020.

Vancouver:

Botros AA. GEODESICS IN LORENTZIAN MANIFOLDS. [Internet] [Thesis]. California State University – San Bernardino; 2016. [cited 2020 Sep 26]. Available from: https://scholarworks.lib.csusb.edu/etd/275.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Botros AA. GEODESICS IN LORENTZIAN MANIFOLDS. [Thesis]. California State University – San Bernardino; 2016. Available from: https://scholarworks.lib.csusb.edu/etd/275

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Miami

30. Alshal, Hassan. Green Functions, Sommerfeld Images, and Wormholes.

Degree: MS, Physics (Arts and Sciences), 2019, University of Miami

  Electrostatic Green functions for grounded equipotential circular and elliptical rings, and grounded hyperspheres in n-dimension electrostatics, are constructed using Sommerfeld’s method. These electrostatic systems… (more)

Subjects/Keywords: Electrostatics; Image Method; Green Functions; Sommerfeld; Riemannian Geometry; Wormhole

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alshal, H. (2019). Green Functions, Sommerfeld Images, and Wormholes. (Thesis). University of Miami. Retrieved from https://scholarlyrepository.miami.edu/oa_theses/745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Alshal, Hassan. “Green Functions, Sommerfeld Images, and Wormholes.” 2019. Thesis, University of Miami. Accessed September 26, 2020. https://scholarlyrepository.miami.edu/oa_theses/745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Alshal, Hassan. “Green Functions, Sommerfeld Images, and Wormholes.” 2019. Web. 26 Sep 2020.

Vancouver:

Alshal H. Green Functions, Sommerfeld Images, and Wormholes. [Internet] [Thesis]. University of Miami; 2019. [cited 2020 Sep 26]. Available from: https://scholarlyrepository.miami.edu/oa_theses/745.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Alshal H. Green Functions, Sommerfeld Images, and Wormholes. [Thesis]. University of Miami; 2019. Available from: https://scholarlyrepository.miami.edu/oa_theses/745

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

[1] [2] [3] [4] [5] [6]

.