Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Geometric control theory). Showing records 1 – 24 of 24 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Queens University

1. Isaiah, Pantelis. Feedback Stabilisation of Locally Controllable Systems .

Degree: Mathematics and Statistics, 2012, Queens University

 Controllability and stabilisability are two fundamental properties of control systems and it is intuitively appealing to conjecture that the former should imply the latter; especially… (more)

Subjects/Keywords: Feedback Stabilisation ; Geometric Control Theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Isaiah, P. (2012). Feedback Stabilisation of Locally Controllable Systems . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/7506

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Isaiah, Pantelis. “Feedback Stabilisation of Locally Controllable Systems .” 2012. Thesis, Queens University. Accessed March 05, 2021. http://hdl.handle.net/1974/7506.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Isaiah, Pantelis. “Feedback Stabilisation of Locally Controllable Systems .” 2012. Web. 05 Mar 2021.

Vancouver:

Isaiah P. Feedback Stabilisation of Locally Controllable Systems . [Internet] [Thesis]. Queens University; 2012. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1974/7506.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Isaiah P. Feedback Stabilisation of Locally Controllable Systems . [Thesis]. Queens University; 2012. Available from: http://hdl.handle.net/1974/7506

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Louisiana State University

2. Cardetti, Fabiana. On properties of linear control systems on Lie groups.

Degree: PhD, Applied Mathematics, 2002, Louisiana State University

 In this work we study controllability properties of linear control systems on Lie groups as introduced by Ayala and Tirao in [AT99]. A linear control(more)

Subjects/Keywords: geometric control theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Cardetti, F. (2002). On properties of linear control systems on Lie groups. (Doctoral Dissertation). Louisiana State University. Retrieved from etd-0711102-152933 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1074

Chicago Manual of Style (16th Edition):

Cardetti, Fabiana. “On properties of linear control systems on Lie groups.” 2002. Doctoral Dissertation, Louisiana State University. Accessed March 05, 2021. etd-0711102-152933 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1074.

MLA Handbook (7th Edition):

Cardetti, Fabiana. “On properties of linear control systems on Lie groups.” 2002. Web. 05 Mar 2021.

Vancouver:

Cardetti F. On properties of linear control systems on Lie groups. [Internet] [Doctoral dissertation]. Louisiana State University; 2002. [cited 2021 Mar 05]. Available from: etd-0711102-152933 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1074.

Council of Science Editors:

Cardetti F. On properties of linear control systems on Lie groups. [Doctoral Dissertation]. Louisiana State University; 2002. Available from: etd-0711102-152933 ; https://digitalcommons.lsu.edu/gradschool_dissertations/1074


San Jose State University

3. Zoehfeld, Geoffrey A. Geometric Control Theory: Nonlinear Dynamics and Applications.

Degree: MS, Mathematics and Statistics, 2016, San Jose State University

  We survey the basic theory, results, and applications of geometric control theory. A control system is a dynamical system with parameters called controls or… (more)

Subjects/Keywords: Chow-Rashevsky; control theory; geometric control; Lie bracket; nonlinear dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zoehfeld, G. A. (2016). Geometric Control Theory: Nonlinear Dynamics and Applications. (Masters Thesis). San Jose State University. Retrieved from https://doi.org/10.31979/etd.5v8e-tht5 ; https://scholarworks.sjsu.edu/etd_theses/4745

Chicago Manual of Style (16th Edition):

Zoehfeld, Geoffrey A. “Geometric Control Theory: Nonlinear Dynamics and Applications.” 2016. Masters Thesis, San Jose State University. Accessed March 05, 2021. https://doi.org/10.31979/etd.5v8e-tht5 ; https://scholarworks.sjsu.edu/etd_theses/4745.

MLA Handbook (7th Edition):

Zoehfeld, Geoffrey A. “Geometric Control Theory: Nonlinear Dynamics and Applications.” 2016. Web. 05 Mar 2021.

Vancouver:

Zoehfeld GA. Geometric Control Theory: Nonlinear Dynamics and Applications. [Internet] [Masters thesis]. San Jose State University; 2016. [cited 2021 Mar 05]. Available from: https://doi.org/10.31979/etd.5v8e-tht5 ; https://scholarworks.sjsu.edu/etd_theses/4745.

Council of Science Editors:

Zoehfeld GA. Geometric Control Theory: Nonlinear Dynamics and Applications. [Masters Thesis]. San Jose State University; 2016. Available from: https://doi.org/10.31979/etd.5v8e-tht5 ; https://scholarworks.sjsu.edu/etd_theses/4745


University of Toronto

4. Sniderman, Adam Charles. Synthesizing Structure: Patterned Control of Distributed Systems.

Degree: PhD, 2017, University of Toronto

 Nature provides fabulous proofs-of-concept for distributed systems, such as flocks of starlings that perform stunning aerial displays without the direction of a single leader. Autonomous… (more)

Subjects/Keywords: Control theory; Decentralized control; Distributed control; Geometric control; Linear systems; Multiagent systems; 0790

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sniderman, A. C. (2017). Synthesizing Structure: Patterned Control of Distributed Systems. (Doctoral Dissertation). University of Toronto. Retrieved from http://hdl.handle.net/1807/80652

Chicago Manual of Style (16th Edition):

Sniderman, Adam Charles. “Synthesizing Structure: Patterned Control of Distributed Systems.” 2017. Doctoral Dissertation, University of Toronto. Accessed March 05, 2021. http://hdl.handle.net/1807/80652.

MLA Handbook (7th Edition):

Sniderman, Adam Charles. “Synthesizing Structure: Patterned Control of Distributed Systems.” 2017. Web. 05 Mar 2021.

Vancouver:

Sniderman AC. Synthesizing Structure: Patterned Control of Distributed Systems. [Internet] [Doctoral dissertation]. University of Toronto; 2017. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1807/80652.

Council of Science Editors:

Sniderman AC. Synthesizing Structure: Patterned Control of Distributed Systems. [Doctoral Dissertation]. University of Toronto; 2017. Available from: http://hdl.handle.net/1807/80652


Queens University

5. Amiss, David Scott Cameron. Obstructions to Motion Planning by the Continuation Method .

Degree: Chemical Engineering, 2013, Queens University

 The subject of this thesis is the motion planning algorithm known as the continuation method. To solve motion planning problems, the continuation method proceeds by… (more)

Subjects/Keywords: geometric control theory ; motion planning ; continuation method ; path-lifting equations ; singular controls ; nonlinear control theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Amiss, D. S. C. (2013). Obstructions to Motion Planning by the Continuation Method . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/7703

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Amiss, David Scott Cameron. “Obstructions to Motion Planning by the Continuation Method .” 2013. Thesis, Queens University. Accessed March 05, 2021. http://hdl.handle.net/1974/7703.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Amiss, David Scott Cameron. “Obstructions to Motion Planning by the Continuation Method .” 2013. Web. 05 Mar 2021.

Vancouver:

Amiss DSC. Obstructions to Motion Planning by the Continuation Method . [Internet] [Thesis]. Queens University; 2013. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1974/7703.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Amiss DSC. Obstructions to Motion Planning by the Continuation Method . [Thesis]. Queens University; 2013. Available from: http://hdl.handle.net/1974/7703

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Notre Dame

6. Jason Todd Nightingale. Geometric Analysis and Control of Underactuated Mechanical Systems</h1>.

Degree: Mathematics, 2012, University of Notre Dame

Geometric analysis and control of underactuated mechanical systems is a multidisciplinary field of study that overlaps diverse research areas in engineering and applied mathematics.… (more)

Subjects/Keywords: geometric mechanics; nonlinear control theory; underactued systems; mechanical systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nightingale, J. T. (2012). Geometric Analysis and Control of Underactuated Mechanical Systems</h1>. (Thesis). University of Notre Dame. Retrieved from https://curate.nd.edu/show/wp988g8755q

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Nightingale, Jason Todd. “Geometric Analysis and Control of Underactuated Mechanical Systems</h1>.” 2012. Thesis, University of Notre Dame. Accessed March 05, 2021. https://curate.nd.edu/show/wp988g8755q.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Nightingale, Jason Todd. “Geometric Analysis and Control of Underactuated Mechanical Systems</h1>.” 2012. Web. 05 Mar 2021.

Vancouver:

Nightingale JT. Geometric Analysis and Control of Underactuated Mechanical Systems</h1>. [Internet] [Thesis]. University of Notre Dame; 2012. [cited 2021 Mar 05]. Available from: https://curate.nd.edu/show/wp988g8755q.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Nightingale JT. Geometric Analysis and Control of Underactuated Mechanical Systems</h1>. [Thesis]. University of Notre Dame; 2012. Available from: https://curate.nd.edu/show/wp988g8755q

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Queens University

7. Gharesifard, Bahman. A Geometric Approach to Energy Shaping .

Degree: Mathematics and Statistics, 2009, Queens University

 In this thesis is initiated a more systematic geometric exploration of energy shaping. Most of the previous results have been dealt wih particular cases and… (more)

Subjects/Keywords: Nonlinear control theory ; Geometric control ; Geometric mechanics ; Energy shaping

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gharesifard, B. (2009). A Geometric Approach to Energy Shaping . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/5114

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Gharesifard, Bahman. “A Geometric Approach to Energy Shaping .” 2009. Thesis, Queens University. Accessed March 05, 2021. http://hdl.handle.net/1974/5114.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Gharesifard, Bahman. “A Geometric Approach to Energy Shaping .” 2009. Web. 05 Mar 2021.

Vancouver:

Gharesifard B. A Geometric Approach to Energy Shaping . [Internet] [Thesis]. Queens University; 2009. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1974/5114.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Gharesifard B. A Geometric Approach to Energy Shaping . [Thesis]. Queens University; 2009. Available from: http://hdl.handle.net/1974/5114

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

8. Freitas, Celso Bernardo da Nobrega de. Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico.

Degree: Mestrado, Matemática Aplicada, 2011, University of São Paulo

Neste trabalho aprimorou-se um método para aproximar soluções de uma classe de equações diferenciais algébricas (DAEs), conhecida como sistemas semi-implícitos quadrados. O método, chamado aqui… (more)

Subjects/Keywords: DAEs; DAEs; geometric control theory; integração numérica.; numerical integration.; semi-implicit square systems; sistemas semi-implícitos quadrados; teoria de controle geométrico

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Freitas, C. B. d. N. d. (2011). Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45132/tde-21052012-170019/ ;

Chicago Manual of Style (16th Edition):

Freitas, Celso Bernardo da Nobrega de. “Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico.” 2011. Masters Thesis, University of São Paulo. Accessed March 05, 2021. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-21052012-170019/ ;.

MLA Handbook (7th Edition):

Freitas, Celso Bernardo da Nobrega de. “Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico.” 2011. Web. 05 Mar 2021.

Vancouver:

Freitas CBdNd. Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico. [Internet] [Masters thesis]. University of São Paulo; 2011. [cited 2021 Mar 05]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-21052012-170019/ ;.

Council of Science Editors:

Freitas CBdNd. Integração numérica de sistemas não lineares semi-implícitos via teoria de controle geométrico. [Masters Thesis]. University of São Paulo; 2011. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-21052012-170019/ ;

9. Pinna, Lorenzo. On the controllability of the quantum dynamics of closed and open systems : Sur la contrôlabilité de la dynamique quantique des systèmes fermés et ouverts.

Degree: Docteur es, Mathématiques aux interfaces, 2018, Université Paris-Saclay (ComUE); Università degli studi La Sapienza (Rome)

On etudie la contrôlabilité des systèmes quantiques dans deux contextes différents: le cadre standard fermé, dans lequel un système quantique est considéré comme isolé et… (more)

Subjects/Keywords: Systemes Quantiques Ouverts; Équation de Lindblad; Méthods Adiabatiques; Côntrole Géométrique; Open quantum system; Lindblad equation; Adiabatic theory; Geometric control; 530.12

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pinna, L. (2018). On the controllability of the quantum dynamics of closed and open systems : Sur la contrôlabilité de la dynamique quantique des systèmes fermés et ouverts. (Doctoral Dissertation). Université Paris-Saclay (ComUE); Università degli studi La Sapienza (Rome). Retrieved from http://www.theses.fr/2018SACLX017

Chicago Manual of Style (16th Edition):

Pinna, Lorenzo. “On the controllability of the quantum dynamics of closed and open systems : Sur la contrôlabilité de la dynamique quantique des systèmes fermés et ouverts.” 2018. Doctoral Dissertation, Université Paris-Saclay (ComUE); Università degli studi La Sapienza (Rome). Accessed March 05, 2021. http://www.theses.fr/2018SACLX017.

MLA Handbook (7th Edition):

Pinna, Lorenzo. “On the controllability of the quantum dynamics of closed and open systems : Sur la contrôlabilité de la dynamique quantique des systèmes fermés et ouverts.” 2018. Web. 05 Mar 2021.

Vancouver:

Pinna L. On the controllability of the quantum dynamics of closed and open systems : Sur la contrôlabilité de la dynamique quantique des systèmes fermés et ouverts. [Internet] [Doctoral dissertation]. Université Paris-Saclay (ComUE); Università degli studi La Sapienza (Rome); 2018. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2018SACLX017.

Council of Science Editors:

Pinna L. On the controllability of the quantum dynamics of closed and open systems : Sur la contrôlabilité de la dynamique quantique des systèmes fermés et ouverts. [Doctoral Dissertation]. Université Paris-Saclay (ComUE); Università degli studi La Sapienza (Rome); 2018. Available from: http://www.theses.fr/2018SACLX017


Queens University

10. Kyle, Scott. Control of nonholonomic mechanical systems using virtual surfaces .

Degree: Mathematics and Statistics, Queens University

 In this report we study the modelling of simple mechanical systems evolving on trivial principal bundles, specifically \emph{locomotion} systems with nonholonomic constraints. We show how… (more)

Subjects/Keywords: Geometric control ; Control theory ; Control design ; Mechanical systems ; Nonholonomic systems ; Dynamics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Kyle, S. (n.d.). Control of nonholonomic mechanical systems using virtual surfaces . (Thesis). Queens University. Retrieved from http://hdl.handle.net/1974/26319

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Kyle, Scott. “Control of nonholonomic mechanical systems using virtual surfaces .” Thesis, Queens University. Accessed March 05, 2021. http://hdl.handle.net/1974/26319.

Note: this citation may be lacking information needed for this citation format:
No year of publication.
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Kyle, Scott. “Control of nonholonomic mechanical systems using virtual surfaces .” Web. 05 Mar 2021.

Note: this citation may be lacking information needed for this citation format:
No year of publication.

Vancouver:

Kyle S. Control of nonholonomic mechanical systems using virtual surfaces . [Internet] [Thesis]. Queens University; [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1974/26319.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.

Council of Science Editors:

Kyle S. Control of nonholonomic mechanical systems using virtual surfaces . [Thesis]. Queens University; Available from: http://hdl.handle.net/1974/26319

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
No year of publication.


Brno University of Technology

11. Shehadeh, Mhd Ali. Geometrické řízení hadům podobných robotů: Geometrically controlled snake-like robot model.

Degree: 2020, Brno University of Technology

 This master’s thesis describes equations of motion for dynamic model of nonholonomic constrained system, namely the trident robotic snakes. The model is studied in the… (more)

Subjects/Keywords: Geometric control theory; non-holonomic mechanics; motion planning; Lie algebra; Lagrangian equations of motion; Pfaffian constraints; trident snake robot; dynamic model.; Geometric control theory; non-holonomic mechanics; motion planning; Lie algebra; Lagrangian equations of motion; Pfaffian constraints; trident snake robot; dynamic model.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Shehadeh, M. A. (2020). Geometrické řízení hadům podobných robotů: Geometrically controlled snake-like robot model. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/192344

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Shehadeh, Mhd Ali. “Geometrické řízení hadům podobných robotů: Geometrically controlled snake-like robot model.” 2020. Thesis, Brno University of Technology. Accessed March 05, 2021. http://hdl.handle.net/11012/192344.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Shehadeh, Mhd Ali. “Geometrické řízení hadům podobných robotů: Geometrically controlled snake-like robot model.” 2020. Web. 05 Mar 2021.

Vancouver:

Shehadeh MA. Geometrické řízení hadům podobných robotů: Geometrically controlled snake-like robot model. [Internet] [Thesis]. Brno University of Technology; 2020. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11012/192344.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Shehadeh MA. Geometrické řízení hadům podobných robotů: Geometrically controlled snake-like robot model. [Thesis]. Brno University of Technology; 2020. Available from: http://hdl.handle.net/11012/192344

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

12. Byrtus, Roman. Simulace pohybu neholonomních mechanismů: Simulation of nonholonomic mechanisms’ motion.

Degree: 2019, Brno University of Technology

 This thesis deals with the simulations of nonholonomic mechanisms, specifically robotic snakes. Basic results and notions from the field of geometric control theory are recalled… (more)

Subjects/Keywords: Geometrická teorie řízení; neholonomní mechanika; motion planning; robotický had; Lieova algebra; V-REP; ROBOTIS; Geometric control theory; nonholonomic mechanics; motion planning; robotic snake; Lie algebra; V-REP; ROBOTIS

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Byrtus, R. (2019). Simulace pohybu neholonomních mechanismů: Simulation of nonholonomic mechanisms’ motion. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/175330

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Byrtus, Roman. “Simulace pohybu neholonomních mechanismů: Simulation of nonholonomic mechanisms’ motion.” 2019. Thesis, Brno University of Technology. Accessed March 05, 2021. http://hdl.handle.net/11012/175330.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Byrtus, Roman. “Simulace pohybu neholonomních mechanismů: Simulation of nonholonomic mechanisms’ motion.” 2019. Web. 05 Mar 2021.

Vancouver:

Byrtus R. Simulace pohybu neholonomních mechanismů: Simulation of nonholonomic mechanisms’ motion. [Internet] [Thesis]. Brno University of Technology; 2019. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11012/175330.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Byrtus R. Simulace pohybu neholonomních mechanismů: Simulation of nonholonomic mechanisms’ motion. [Thesis]. Brno University of Technology; 2019. Available from: http://hdl.handle.net/11012/175330

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Brno University of Technology

13. Byrtus, Roman. Geometrické modely řízení robotického hada: Geometric models of a snake robot control.

Degree: 2017, Brno University of Technology

 This thesis deals with the geometric theory of control of a robotic snake. The thesis includes required definitions of differential geometry and control theory, which… (more)

Subjects/Keywords: Geometrická teorie řízení; robotický had; neholonomní mechanika; Lieova závorka; motion planning; serpenoidní input; V-REP.; Geometric control theory; robotic snake; nonholonomic mechanics; Lie bracket; motion planning; serpenoid input; V-REP.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Byrtus, R. (2017). Geometrické modely řízení robotického hada: Geometric models of a snake robot control. (Thesis). Brno University of Technology. Retrieved from http://hdl.handle.net/11012/66759

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Byrtus, Roman. “Geometrické modely řízení robotického hada: Geometric models of a snake robot control.” 2017. Thesis, Brno University of Technology. Accessed March 05, 2021. http://hdl.handle.net/11012/66759.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Byrtus, Roman. “Geometrické modely řízení robotického hada: Geometric models of a snake robot control.” 2017. Web. 05 Mar 2021.

Vancouver:

Byrtus R. Geometrické modely řízení robotického hada: Geometric models of a snake robot control. [Internet] [Thesis]. Brno University of Technology; 2017. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/11012/66759.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Byrtus R. Geometrické modely řízení robotického hada: Geometric models of a snake robot control. [Thesis]. Brno University of Technology; 2017. Available from: http://hdl.handle.net/11012/66759

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

14. Orieux, Michaël. Quelques propriétés et applications du contrôle en temps minimal : Some properties and applications of minimum time control.

Degree: Docteur es, Sciences, 2018, Paris Sciences et Lettres (ComUE)

Cette thèse contribue à l'étude en temps minimal des systèmes de contrôle affines. Les systèmes dépendant du contrôle de manière affine sont naturellement présents en… (more)

Subjects/Keywords: Contrôle optimal; Contrôle géométrique; Systèmes dynamiques; Systèmes intégrables; Systèmes hamiltoniens; Singularités; Théorie de galois différentielle; Stratification; Optimal control; Geometric control; Dynamical systems; Integrable systems; Hamiltonian systems; Singularity theory; Galois differential theory; Stratification; 515

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Orieux, M. (2018). Quelques propriétés et applications du contrôle en temps minimal : Some properties and applications of minimum time control. (Doctoral Dissertation). Paris Sciences et Lettres (ComUE). Retrieved from http://www.theses.fr/2018PSLED079

Chicago Manual of Style (16th Edition):

Orieux, Michaël. “Quelques propriétés et applications du contrôle en temps minimal : Some properties and applications of minimum time control.” 2018. Doctoral Dissertation, Paris Sciences et Lettres (ComUE). Accessed March 05, 2021. http://www.theses.fr/2018PSLED079.

MLA Handbook (7th Edition):

Orieux, Michaël. “Quelques propriétés et applications du contrôle en temps minimal : Some properties and applications of minimum time control.” 2018. Web. 05 Mar 2021.

Vancouver:

Orieux M. Quelques propriétés et applications du contrôle en temps minimal : Some properties and applications of minimum time control. [Internet] [Doctoral dissertation]. Paris Sciences et Lettres (ComUE); 2018. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2018PSLED079.

Council of Science Editors:

Orieux M. Quelques propriétés et applications du contrôle en temps minimal : Some properties and applications of minimum time control. [Doctoral Dissertation]. Paris Sciences et Lettres (ComUE); 2018. Available from: http://www.theses.fr/2018PSLED079

15. Oda, Eduardo. Fenômeno Fuller em problemas de controle ótimo: trajetórias em tempo mínino de veículos autônomos subaquáticos.

Degree: Mestrado, Matemática Aplicada, 2008, University of São Paulo

As equações do modelo bidimensional de veículos autônomos subaquáticos fornecem um exemplo de sistema de controle não linear com o qual podemos ilustrar propriedades da… (more)

Subjects/Keywords: bang-bang; bang-bang.; chattering; chattering; controle ótimo; controle singular; Fenômeno Fuller; Fuller Phenomenon; geometric control theory; Hamiltonian systems; optimal control; Pontryagin Maximum Principle; Princípio do Máximo de Pontryagin; singular control; sistemas hamiltonianos; teoria geométrica de controle

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oda, E. (2008). Fenômeno Fuller em problemas de controle ótimo: trajetórias em tempo mínino de veículos autônomos subaquáticos. (Masters Thesis). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/45/45132/tde-05052009-111117/ ;

Chicago Manual of Style (16th Edition):

Oda, Eduardo. “Fenômeno Fuller em problemas de controle ótimo: trajetórias em tempo mínino de veículos autônomos subaquáticos.” 2008. Masters Thesis, University of São Paulo. Accessed March 05, 2021. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-05052009-111117/ ;.

MLA Handbook (7th Edition):

Oda, Eduardo. “Fenômeno Fuller em problemas de controle ótimo: trajetórias em tempo mínino de veículos autônomos subaquáticos.” 2008. Web. 05 Mar 2021.

Vancouver:

Oda E. Fenômeno Fuller em problemas de controle ótimo: trajetórias em tempo mínino de veículos autônomos subaquáticos. [Internet] [Masters thesis]. University of São Paulo; 2008. [cited 2021 Mar 05]. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-05052009-111117/ ;.

Council of Science Editors:

Oda E. Fenômeno Fuller em problemas de controle ótimo: trajetórias em tempo mínino de veículos autônomos subaquáticos. [Masters Thesis]. University of São Paulo; 2008. Available from: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-05052009-111117/ ;


Ohio University

16. Medina, Enrique A. Linear Impulsive Control Systems: A Geometric Approach.

Degree: PhD, Electrical Engineering & Computer Science (Engineering and Technology), 2007, Ohio University

 Linear impulsive systems are a class of hybrid systems in which the state propagates according to linear continuous-time dynamics except for a countable set of… (more)

Subjects/Keywords: Linear Impulsive Control Systems; Impulsive Systems; Controlled and Conditioned Invariant Subspaces; Geometric Control; Linear System Theory; Control Systems

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Medina, E. A. (2007). Linear Impulsive Control Systems: A Geometric Approach. (Doctoral Dissertation). Ohio University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1187704023

Chicago Manual of Style (16th Edition):

Medina, Enrique A. “Linear Impulsive Control Systems: A Geometric Approach.” 2007. Doctoral Dissertation, Ohio University. Accessed March 05, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1187704023.

MLA Handbook (7th Edition):

Medina, Enrique A. “Linear Impulsive Control Systems: A Geometric Approach.” 2007. Web. 05 Mar 2021.

Vancouver:

Medina EA. Linear Impulsive Control Systems: A Geometric Approach. [Internet] [Doctoral dissertation]. Ohio University; 2007. [cited 2021 Mar 05]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1187704023.

Council of Science Editors:

Medina EA. Linear Impulsive Control Systems: A Geometric Approach. [Doctoral Dissertation]. Ohio University; 2007. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1187704023

17. Lazrag, Ayadi. Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems.

Degree: Docteur es, Mathématiques, 2014, Nice

Cette thèse est divisée en trois parties. Dans la première partie, nous commençons par décrire des résultats très connus en théorie du contrôle géométrique tels… (more)

Subjects/Keywords: Théorie du contrôle géométrique; Application Entrée-Sortie; Contrôlabilité locale au second ordre; Système de contrôle bilinéaire; Groupe symplectique; Lemme de Franks; Flots géodésiques; Geometric control theory; End-Point Mapping; Local controllability at second order; Bilinear control system; Symplectic group; Franks' lemma; Geodesic flows

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lazrag, A. (2014). Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems. (Doctoral Dissertation). Nice. Retrieved from http://www.theses.fr/2014NICE4060

Chicago Manual of Style (16th Edition):

Lazrag, Ayadi. “Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems.” 2014. Doctoral Dissertation, Nice. Accessed March 05, 2021. http://www.theses.fr/2014NICE4060.

MLA Handbook (7th Edition):

Lazrag, Ayadi. “Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems.” 2014. Web. 05 Mar 2021.

Vancouver:

Lazrag A. Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems. [Internet] [Doctoral dissertation]. Nice; 2014. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2014NICE4060.

Council of Science Editors:

Lazrag A. Théorie de contrôle et systèmes dynamiques : Control theory and dynamical systems. [Doctoral Dissertation]. Nice; 2014. Available from: http://www.theses.fr/2014NICE4060


University of Maryland

18. Zhang, Fumin. GEOMETRIC COOPERATIVE CONTROL OF FORMATIONS.

Degree: Electrical Engineering, 2004, University of Maryland

 Robots in a team are modeled as particles which obey simple, second order dynamics. The whole team can be viewed as a deformable body with… (more)

Subjects/Keywords: Engineering, Electronics and Electrical; Engineering, System Science; Applied Mechanics; Formation; Cooperative Control; Geometric Control; Obstacle Avoidance; Shape Theory; Satellite Clusters

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhang, F. (2004). GEOMETRIC COOPERATIVE CONTROL OF FORMATIONS. (Thesis). University of Maryland. Retrieved from http://hdl.handle.net/1903/1994

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhang, Fumin. “GEOMETRIC COOPERATIVE CONTROL OF FORMATIONS.” 2004. Thesis, University of Maryland. Accessed March 05, 2021. http://hdl.handle.net/1903/1994.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhang, Fumin. “GEOMETRIC COOPERATIVE CONTROL OF FORMATIONS.” 2004. Web. 05 Mar 2021.

Vancouver:

Zhang F. GEOMETRIC COOPERATIVE CONTROL OF FORMATIONS. [Internet] [Thesis]. University of Maryland; 2004. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/1903/1994.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhang F. GEOMETRIC COOPERATIVE CONTROL OF FORMATIONS. [Thesis]. University of Maryland; 2004. Available from: http://hdl.handle.net/1903/1994

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

19. Silveira, Hector Bessa. Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica.

Degree: PhD, Engenharia de Sistemas, 2010, University of São Paulo

A presente tese aborda dois problemas distintos e independentes: triangularização de sistemas não-lineares com duas entradas e controle de sistemas sem arrasto que evoluem no… (more)

Subjects/Keywords: C-NOT quantum logic gate; Control of quantum systems; Controle de sistemas quânticos; Controle não-linear; Differential flatness; Estabilidade de Lyapunov; Exterior differential systems; Formas triangulares; Geometric control theory; Grupo especial unitário; Lyapunov stability; Nonlinear control; Nonlinear systems; Platitude diferencial; Porta lógica quântica C-NOT; Sistemas diferenciais exteriores; Sistemas não-lineares; Special unitary group; Teoria de controle geométrica; Triangular forms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Silveira, H. B. (2010). Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica. (Doctoral Dissertation). University of São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/3/3139/tde-13082010-163547/ ;

Chicago Manual of Style (16th Edition):

Silveira, Hector Bessa. “Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica.” 2010. Doctoral Dissertation, University of São Paulo. Accessed March 05, 2021. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-13082010-163547/ ;.

MLA Handbook (7th Edition):

Silveira, Hector Bessa. “Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica.” 2010. Web. 05 Mar 2021.

Vancouver:

Silveira HB. Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica. [Internet] [Doctoral dissertation]. University of São Paulo; 2010. [cited 2021 Mar 05]. Available from: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-13082010-163547/ ;.

Council of Science Editors:

Silveira HB. Formas triangulares para sistemas não-lineares com duas entradas e controle de sistemas sem arrasto em SU(n) com aplicações em mecânica quântica. [Doctoral Dissertation]. University of São Paulo; 2010. Available from: http://www.teses.usp.br/teses/disponiveis/3/3139/tde-13082010-163547/ ;

20. McCarthy, Philip James. Sampled-Data Control of Invariant Systems on Exponential Lie Groups.

Degree: 2019, University of Waterloo

 This thesis examines the dynamics and control of a class of systems furnished by kinematic systems on exponential matrix Lie groups, when the plant evolves… (more)

Subjects/Keywords: control theory; Lie groups; Lie algebras; sampled-data; regulation; synchronization; stability; discrete-time; nonlinear control; geometric control

…treatment of control theory on Lie groups. Many engineering systems can be modelled on Lie groups… …context of control theory. In the case of the nonholonomic integrator (1.4), the… …data control of right- (or left-) invariant systems on matrix Lie groups: ! m X Ẋ… …algebra, and u1 (t), . . . , um (t) are the control signals. Our stability… …groups that are also topological manifolds. 1.1 Control Systems on Matrix Lie Groups Control… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McCarthy, P. J. (2019). Sampled-Data Control of Invariant Systems on Exponential Lie Groups. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/14968

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

McCarthy, Philip James. “Sampled-Data Control of Invariant Systems on Exponential Lie Groups.” 2019. Thesis, University of Waterloo. Accessed March 05, 2021. http://hdl.handle.net/10012/14968.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

McCarthy, Philip James. “Sampled-Data Control of Invariant Systems on Exponential Lie Groups.” 2019. Web. 05 Mar 2021.

Vancouver:

McCarthy PJ. Sampled-Data Control of Invariant Systems on Exponential Lie Groups. [Internet] [Thesis]. University of Waterloo; 2019. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/10012/14968.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

McCarthy PJ. Sampled-Data Control of Invariant Systems on Exponential Lie Groups. [Thesis]. University of Waterloo; 2019. Available from: http://hdl.handle.net/10012/14968

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


ETH Zürich

21. Hązła, Jan. Same-Set Hitting with Applications to Parallel Repetition.

Degree: 2016, ETH Zürich

Subjects/Keywords: SUBGRAPHS (GRAPH THEORY); GRAPHENALGORITHMEN + GEOMETRISCHE ALGORITHMEN (GRAPHENTHEORIE); BOOLESCHE FUNKTIONEN (THEORIE DER REGELUNGSSYSTEME); HYPERGRAPHEN (GRAPHENTHEORIE); TEILGRAPHEN (GRAPHENTHEORIE); BOOLEAN FUNCTIONS (CONTROL SYSTEMS THEORY); GRAPH ALGORITHMS + GEOMETRIC ALGORITHMS (GRAPH THEORY); HYPERGRAPHS (GRAPH THEORY); info:eu-repo/classification/ddc/510; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hązła, J. (2016). Same-Set Hitting with Applications to Parallel Repetition. (Doctoral Dissertation). ETH Zürich. Retrieved from http://hdl.handle.net/20.500.11850/121770

Chicago Manual of Style (16th Edition):

Hązła, Jan. “Same-Set Hitting with Applications to Parallel Repetition.” 2016. Doctoral Dissertation, ETH Zürich. Accessed March 05, 2021. http://hdl.handle.net/20.500.11850/121770.

MLA Handbook (7th Edition):

Hązła, Jan. “Same-Set Hitting with Applications to Parallel Repetition.” 2016. Web. 05 Mar 2021.

Vancouver:

Hązła J. Same-Set Hitting with Applications to Parallel Repetition. [Internet] [Doctoral dissertation]. ETH Zürich; 2016. [cited 2021 Mar 05]. Available from: http://hdl.handle.net/20.500.11850/121770.

Council of Science Editors:

Hązła J. Same-Set Hitting with Applications to Parallel Repetition. [Doctoral Dissertation]. ETH Zürich; 2016. Available from: http://hdl.handle.net/20.500.11850/121770

22. Sheller, Benjamin. Symmetry reduction in K − P problems.

Degree: 2019, Iowa State University

 K-P problems are a class of geometric optimal control problems on finite-dimensional real semisimple Lie groups which arise, for example, in the control of quantum… (more)

Subjects/Keywords: Geometric optimal control; Lie theory; Quantum computing; Riemannian geometry; Stratified spaces; Sub-Riemannian geometry; Mathematics; Quantum Physics

…world of geometric optimal control theory. And thank you, Domenico, for always listening to my… …x5B;27]. Sub-Riemannian manifolds arise in geometric optimal control theory as a… …introduction to sub-Riemannian geometry and the role that it plays in geometric optimal control… …a myriad of subjects: sub-Riemannian and Riemannian geometry, Lie theory, optimal control… …to sub-Riemannian geometry with applications to optimal control theory. A sub-Riemannian… 

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sheller, B. (2019). Symmetry reduction in K − P problems. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/etd/17099

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Sheller, Benjamin. “Symmetry reduction in K − P problems.” 2019. Thesis, Iowa State University. Accessed March 05, 2021. https://lib.dr.iastate.edu/etd/17099.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Sheller, Benjamin. “Symmetry reduction in K − P problems.” 2019. Web. 05 Mar 2021.

Vancouver:

Sheller B. Symmetry reduction in K − P problems. [Internet] [Thesis]. Iowa State University; 2019. [cited 2021 Mar 05]. Available from: https://lib.dr.iastate.edu/etd/17099.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Sheller B. Symmetry reduction in K − P problems. [Thesis]. Iowa State University; 2019. Available from: https://lib.dr.iastate.edu/etd/17099

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

23. Mandorino, Vito. Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians.

Degree: Docteur es, Mathématiques appliquées, 2013, Paris 9

Dans cette thèse nous étudions la dynamique engendrée par une famille de flots Hamiltoniens. Un tel système dynamique à plusieurs générateurs est aussi appelé ‘polysystème’.… (more)

Subjects/Keywords: Dynamique hamiltonienne et lagrangienne; Théorie KAM faible; Diffusion d’Arnold; Polysystème; Semi-groupe de Lax-Oleinik; Ensembles d’Aubry et Mañé; Propriétés génériques; Théorie géométrique du contrôle; Ensemble atteignable; Théorème de transversalité de Thom; Ensemble rectifiable; Hamiltonian and Lagrangian dynamics; Weak KAM theory; Arnold diffusion; Polysystem; Lax-Oleinik semigroup; Aubry and Mañé sets; Generic properties; Geometric control theory; Reachable set; Thom’s transversality theorem; Rectifiable set

…ou bang-bang control systems. 11 12 Introduction Dans les polysystèmes temps continu… …approach of Mather and Fathi’s weak KAM theory has been fruitful, especially in the framework of… …Kam theory, for which we refer to [Fat]. The ideas will be close to those in… …improvements in the framework of Aubry-Mather theory for twist maps will be relevant to us. The first… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Mandorino, V. (2013). Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians. (Doctoral Dissertation). Paris 9. Retrieved from http://www.theses.fr/2013PA090003

Chicago Manual of Style (16th Edition):

Mandorino, Vito. “Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians.” 2013. Doctoral Dissertation, Paris 9. Accessed March 05, 2021. http://www.theses.fr/2013PA090003.

MLA Handbook (7th Edition):

Mandorino, Vito. “Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians.” 2013. Web. 05 Mar 2021.

Vancouver:

Mandorino V. Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians. [Internet] [Doctoral dissertation]. Paris 9; 2013. [cited 2021 Mar 05]. Available from: http://www.theses.fr/2013PA090003.

Council of Science Editors:

Mandorino V. Théorie KAM faible et instabilité pour familles d'hamiltoniens : Weak KAM theory and instability for families of Hamiltonians. [Doctoral Dissertation]. Paris 9; 2013. Available from: http://www.theses.fr/2013PA090003


Queensland University of Technology

24. Johansen, Jonathan Frederick. Mathematical modelling of primary alkaline batteries.

Degree: 2007, Queensland University of Technology

 Three mathematical models, two of primary alkaline battery cathode discharge, and one of primary alkaline battery discharge, are developed, presented, solved and investigated in this… (more)

Subjects/Keywords: advection; anode; asymptotic analysis; BET surface area; binary electrolyte; boundary condition; Butler-Volmer equation; cathode; closed circuit voltage; concentration polarisation; control volume; current path; discretisation; diffusion; electrochemical reaction; electrode; electrolytic manganese dioxide; EMD crystals; EMD particles; exchange current density; geometric surface area; initial condition; linearisation; macrohomogeneous porous electrode theory; mathematical model; Nernst equation; ohmic losses; open circuit voltage; ordinary differential equation; overpotential; partial differential equation; perturbation techniques; potassium hydroxide; potassium zincate; precipitation reaction; primary battery; separator paper; simulation; step potential electrochemical spectroscopy; ternary electrolyte; theoretical capacity; utilisation; zinc; zinc oxide

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Johansen, J. F. (2007). Mathematical modelling of primary alkaline batteries. (Thesis). Queensland University of Technology. Retrieved from https://eprints.qut.edu.au/16412/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Johansen, Jonathan Frederick. “Mathematical modelling of primary alkaline batteries.” 2007. Thesis, Queensland University of Technology. Accessed March 05, 2021. https://eprints.qut.edu.au/16412/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Johansen, Jonathan Frederick. “Mathematical modelling of primary alkaline batteries.” 2007. Web. 05 Mar 2021.

Vancouver:

Johansen JF. Mathematical modelling of primary alkaline batteries. [Internet] [Thesis]. Queensland University of Technology; 2007. [cited 2021 Mar 05]. Available from: https://eprints.qut.edu.au/16412/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Johansen JF. Mathematical modelling of primary alkaline batteries. [Thesis]. Queensland University of Technology; 2007. Available from: https://eprints.qut.edu.au/16412/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.