Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Geometric Langlands). Showing records 1 – 8 of 8 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


Université de Lorraine

1. Yang, Ruotao. Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes.

Degree: Docteur es, Mathématiques, 2020, Université de Lorraine

Supposons que G est un groupe reductif. Nous avons l’équivalence géométrique de Satake qui identifie Sph(G), les faisceau pervers G (O) équivalentes sur grassmannin affine… (more)

Subjects/Keywords: Programme de Langlands géométrique; Catégorie Whittaker; Théorie géométrique des représentations; Programme Langlands quantique; Geometric Langlands program; Twisted Whittaker category; Geometric representation theory; Quantum Langlands Program; 512.74; 512.2

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Yang, R. (2020). Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes. (Doctoral Dissertation). Université de Lorraine. Retrieved from http://www.theses.fr/2020LORR0064

Chicago Manual of Style (16th Edition):

Yang, Ruotao. “Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes.” 2020. Doctoral Dissertation, Université de Lorraine. Accessed March 03, 2021. http://www.theses.fr/2020LORR0064.

MLA Handbook (7th Edition):

Yang, Ruotao. “Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes.” 2020. Web. 03 Mar 2021.

Vancouver:

Yang R. Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes. [Internet] [Doctoral dissertation]. Université de Lorraine; 2020. [cited 2021 Mar 03]. Available from: http://www.theses.fr/2020LORR0064.

Council of Science Editors:

Yang R. Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes. [Doctoral Dissertation]. Université de Lorraine; 2020. Available from: http://www.theses.fr/2020LORR0064


Harvard University

2. Barlev, Jonathan. D-Modules on Spaces of Rational Maps and on Other Generic Data.

Degree: PhD, Mathematics, 2012, Harvard University

Fix an algebraic curve X. We study the problem of parametrizing geometric data over X, which is only generically defined. E.g., parametrizing generically defined maps… (more)

Subjects/Keywords: D-modules; generic data; mathematics; geometric Langlands; homologically contractible

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Barlev, J. (2012). D-Modules on Spaces of Rational Maps and on Other Generic Data. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540

Chicago Manual of Style (16th Edition):

Barlev, Jonathan. “D-Modules on Spaces of Rational Maps and on Other Generic Data.” 2012. Doctoral Dissertation, Harvard University. Accessed March 03, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540.

MLA Handbook (7th Edition):

Barlev, Jonathan. “D-Modules on Spaces of Rational Maps and on Other Generic Data.” 2012. Web. 03 Mar 2021.

Vancouver:

Barlev J. D-Modules on Spaces of Rational Maps and on Other Generic Data. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2021 Mar 03]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540.

Council of Science Editors:

Barlev J. D-Modules on Spaces of Rational Maps and on Other Generic Data. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540


Harvard University

3. Raskin, Samuel David. Chiral Principal Series Categories.

Degree: PhD, Mathematics, 2014, Harvard University

This thesis begins a study of principal series categories in geometric representation theory using the Beilinson-Drinfeld theory of chiral algebras. We study Whittaker objects in… (more)

Subjects/Keywords: Mathematics; Algebra; Algebraic geometry; Automorphic forms; Geometric Langlands; Representation theory

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Raskin, S. D. (2014). Chiral Principal Series Categories. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305

Chicago Manual of Style (16th Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Doctoral Dissertation, Harvard University. Accessed March 03, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

MLA Handbook (7th Edition):

Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Web. 03 Mar 2021.

Vancouver:

Raskin SD. Chiral Principal Series Categories. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Mar 03]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.

Council of Science Editors:

Raskin SD. Chiral Principal Series Categories. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305


University of Oxford

4. Groechenig, Michael. Autoduality of the Hitchin system and the geometric Langlands programme.

Degree: PhD, 2013, University of Oxford

 This thesis is concerned with the study of the geometry and derived categories associated to the moduli problems of local systems and Higgs bundles in… (more)

Subjects/Keywords: 516.3; Algebraic geometry; Higgs bundles; Geometric Langlands; Hilbert schemes

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Groechenig, M. (2013). Autoduality of the Hitchin system and the geometric Langlands programme. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595942

Chicago Manual of Style (16th Edition):

Groechenig, Michael. “Autoduality of the Hitchin system and the geometric Langlands programme.” 2013. Doctoral Dissertation, University of Oxford. Accessed March 03, 2021. http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595942.

MLA Handbook (7th Edition):

Groechenig, Michael. “Autoduality of the Hitchin system and the geometric Langlands programme.” 2013. Web. 03 Mar 2021.

Vancouver:

Groechenig M. Autoduality of the Hitchin system and the geometric Langlands programme. [Internet] [Doctoral dissertation]. University of Oxford; 2013. [cited 2021 Mar 03]. Available from: http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595942.

Council of Science Editors:

Groechenig M. Autoduality of the Hitchin system and the geometric Langlands programme. [Doctoral Dissertation]. University of Oxford; 2013. Available from: http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595942


Louisiana State University

5. Alaniz, Andrew. A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection.

Degree: PhD, Mathematics, 2021, Louisiana State University

  For a simple complex algebraic group G, M. Kamgarpour and D. Sage have shown that the adjoint irregularity of an irregular singular flat G-bundle… (more)

Subjects/Keywords: wild ramification; geometric combinatorics; meromorphic connections; irreducible representations of Lie algebras; local Langlands correspondence

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Alaniz, A. (2021). A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection. (Doctoral Dissertation). Louisiana State University. Retrieved from https://digitalcommons.lsu.edu/gradschool_dissertations/5445

Chicago Manual of Style (16th Edition):

Alaniz, Andrew. “A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection.” 2021. Doctoral Dissertation, Louisiana State University. Accessed March 03, 2021. https://digitalcommons.lsu.edu/gradschool_dissertations/5445.

MLA Handbook (7th Edition):

Alaniz, Andrew. “A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection.” 2021. Web. 03 Mar 2021.

Vancouver:

Alaniz A. A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection. [Internet] [Doctoral dissertation]. Louisiana State University; 2021. [cited 2021 Mar 03]. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/5445.

Council of Science Editors:

Alaniz A. A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection. [Doctoral Dissertation]. Louisiana State University; 2021. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/5445


University of Texas – Austin

6. -0377-1586. Towards a self-dual geometric Langlands program.

Degree: PhD, Mathematics, 2018, University of Texas – Austin

 This thesis is comprised of two logically separate but conjecturally related parts. In the first part of the thesis I study theories of class S… (more)

Subjects/Keywords: Geometric Langlands; Representation theory; Quantum field theory; QFT; Cartier duality; Mirror symmetry; Higgs bundle; Moduli space; Class S; Theory X

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

-0377-1586. (2018). Towards a self-dual geometric Langlands program. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/67577

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Chicago Manual of Style (16th Edition):

-0377-1586. “Towards a self-dual geometric Langlands program.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed March 03, 2021. http://hdl.handle.net/2152/67577.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

MLA Handbook (7th Edition):

-0377-1586. “Towards a self-dual geometric Langlands program.” 2018. Web. 03 Mar 2021.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Vancouver:

-0377-1586. Towards a self-dual geometric Langlands program. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Mar 03]. Available from: http://hdl.handle.net/2152/67577.

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete

Council of Science Editors:

-0377-1586. Towards a self-dual geometric Langlands program. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/67577

Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete


Université de Lorraine

7. Ye, Lizao. Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification.

Degree: Docteur es, Mathématiques, 2019, Université de Lorraine

Dans cette thèse, d’une part, nous généralisons au cas équivariant un résultat de J. Denef et F. Loeser sur les sommes trigonométriques sur un tore… (more)

Subjects/Keywords: Programme de Langlands géométrique; Faisceau automorphe; Orbite unipotente sous-régulière; Sommes trigonométriques équivariantes; Complexe de Rham logarithmique; Variétés toriques; Geometric Langlands program; Automorphic sheaf; Subregular unipotent orbit; Equivariant trigonometric sums; Logarithmic de Rham complex; Toric varieties; 512.74; 514

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ye, L. (2019). Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification. (Doctoral Dissertation). Université de Lorraine. Retrieved from http://www.theses.fr/2019LORR0081

Chicago Manual of Style (16th Edition):

Ye, Lizao. “Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification.” 2019. Doctoral Dissertation, Université de Lorraine. Accessed March 03, 2021. http://www.theses.fr/2019LORR0081.

MLA Handbook (7th Edition):

Ye, Lizao. “Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification.” 2019. Web. 03 Mar 2021.

Vancouver:

Ye L. Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification. [Internet] [Doctoral dissertation]. Université de Lorraine; 2019. [cited 2021 Mar 03]. Available from: http://www.theses.fr/2019LORR0081.

Council of Science Editors:

Ye L. Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification. [Doctoral Dissertation]. Université de Lorraine; 2019. Available from: http://www.theses.fr/2019LORR0081

8. Zhou, Qiao. Applications of Toric Geometry to Geometric Representation Theory.

Degree: Mathematics, 2017, University of California – Berkeley

 We study the algebraic geometry and combinatorics of the affine Grassmannian and affine flag variety, which are infinite-dimensional analogs of the ordinary Grassmannian and flag… (more)

Subjects/Keywords: Mathematics; Affine Grassmannian; Deligne-Lusztig Theory; Geometric Langlands Correspondence; Geometric Representation Theory; Lie Theory; Toric Geometry

…important problems in geometric representation theory is the Geometric Langlands correspondence… …motivated by the Geometric Langlands correspondence. They are infinite-dimensional analogs of Pn… …x5B;5, 6, 26, 27]. The goal is to use geometric techniques to tackle questions in the… …Langlands program in number theory. The affine Grassmannian and affine flag variety are naturally… …and toric geometry. First, I analyze the geometric properties of some intersections of… 

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhou, Q. (2017). Applications of Toric Geometry to Geometric Representation Theory. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/2ck4r2xt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Zhou, Qiao. “Applications of Toric Geometry to Geometric Representation Theory.” 2017. Thesis, University of California – Berkeley. Accessed March 03, 2021. http://www.escholarship.org/uc/item/2ck4r2xt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Zhou, Qiao. “Applications of Toric Geometry to Geometric Representation Theory.” 2017. Web. 03 Mar 2021.

Vancouver:

Zhou Q. Applications of Toric Geometry to Geometric Representation Theory. [Internet] [Thesis]. University of California – Berkeley; 2017. [cited 2021 Mar 03]. Available from: http://www.escholarship.org/uc/item/2ck4r2xt.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Zhou Q. Applications of Toric Geometry to Geometric Representation Theory. [Thesis]. University of California – Berkeley; 2017. Available from: http://www.escholarship.org/uc/item/2ck4r2xt

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

.