Advanced search options
You searched for subject:(Geometric Langlands)
.
Showing records 1 – 8 of
8 total matches.
▼ Search Limiters
Université de Lorraine
1. Yang, Ruotao. Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes.
Degree: Docteur es, Mathématiques, 2020, Université de Lorraine
URL: http://www.theses.fr/2020LORR0064
Subjects/Keywords: Programme de Langlands géométrique; Catégorie Whittaker; Théorie géométrique des représentations; Programme Langlands quantique; Geometric Langlands program; Twisted Whittaker category; Geometric representation theory; Quantum Langlands Program; 512.74; 512.2
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Yang, R. (2020). Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes. (Doctoral Dissertation). Université de Lorraine. Retrieved from http://www.theses.fr/2020LORR0064
Chicago Manual of Style (16th Edition):
Yang, Ruotao. “Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes.” 2020. Doctoral Dissertation, Université de Lorraine. Accessed March 03, 2021. http://www.theses.fr/2020LORR0064.
MLA Handbook (7th Edition):
Yang, Ruotao. “Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes.” 2020. Web. 03 Mar 2021.
Vancouver:
Yang R. Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes. [Internet] [Doctoral dissertation]. Université de Lorraine; 2020. [cited 2021 Mar 03]. Available from: http://www.theses.fr/2020LORR0064.
Council of Science Editors:
Yang R. Twisted Whittaker category on affine flags and category of representations of mixed quantum group : Catégories des Whittaker tordues sur les drapeaux affines et catégories des représentations des groupes quantiques mixtes. [Doctoral Dissertation]. Université de Lorraine; 2020. Available from: http://www.theses.fr/2020LORR0064
Harvard University
2. Barlev, Jonathan. D-Modules on Spaces of Rational Maps and on Other Generic Data.
Degree: PhD, Mathematics, 2012, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540
Subjects/Keywords: D-modules; generic data; mathematics; geometric Langlands; homologically contractible
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Barlev, J. (2012). D-Modules on Spaces of Rational Maps and on Other Generic Data. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540
Chicago Manual of Style (16th Edition):
Barlev, Jonathan. “D-Modules on Spaces of Rational Maps and on Other Generic Data.” 2012. Doctoral Dissertation, Harvard University. Accessed March 03, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540.
MLA Handbook (7th Edition):
Barlev, Jonathan. “D-Modules on Spaces of Rational Maps and on Other Generic Data.” 2012. Web. 03 Mar 2021.
Vancouver:
Barlev J. D-Modules on Spaces of Rational Maps and on Other Generic Data. [Internet] [Doctoral dissertation]. Harvard University; 2012. [cited 2021 Mar 03]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540.
Council of Science Editors:
Barlev J. D-Modules on Spaces of Rational Maps and on Other Generic Data. [Doctoral Dissertation]. Harvard University; 2012. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:10056540
Harvard University
3. Raskin, Samuel David. Chiral Principal Series Categories.
Degree: PhD, Mathematics, 2014, Harvard University
URL: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305
Subjects/Keywords: Mathematics; Algebra; Algebraic geometry; Automorphic forms; Geometric Langlands; Representation theory
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Raskin, S. D. (2014). Chiral Principal Series Categories. (Doctoral Dissertation). Harvard University. Retrieved from http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305
Chicago Manual of Style (16th Edition):
Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Doctoral Dissertation, Harvard University. Accessed March 03, 2021. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.
MLA Handbook (7th Edition):
Raskin, Samuel David. “Chiral Principal Series Categories.” 2014. Web. 03 Mar 2021.
Vancouver:
Raskin SD. Chiral Principal Series Categories. [Internet] [Doctoral dissertation]. Harvard University; 2014. [cited 2021 Mar 03]. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305.
Council of Science Editors:
Raskin SD. Chiral Principal Series Categories. [Doctoral Dissertation]. Harvard University; 2014. Available from: http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274305
University of Oxford
4. Groechenig, Michael. Autoduality of the Hitchin system and the geometric Langlands programme.
Degree: PhD, 2013, University of Oxford
URL: http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73
;
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595942
Subjects/Keywords: 516.3; Algebraic geometry; Higgs bundles; Geometric Langlands; Hilbert schemes
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Groechenig, M. (2013). Autoduality of the Hitchin system and the geometric Langlands programme. (Doctoral Dissertation). University of Oxford. Retrieved from http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595942
Chicago Manual of Style (16th Edition):
Groechenig, Michael. “Autoduality of the Hitchin system and the geometric Langlands programme.” 2013. Doctoral Dissertation, University of Oxford. Accessed March 03, 2021. http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595942.
MLA Handbook (7th Edition):
Groechenig, Michael. “Autoduality of the Hitchin system and the geometric Langlands programme.” 2013. Web. 03 Mar 2021.
Vancouver:
Groechenig M. Autoduality of the Hitchin system and the geometric Langlands programme. [Internet] [Doctoral dissertation]. University of Oxford; 2013. [cited 2021 Mar 03]. Available from: http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595942.
Council of Science Editors:
Groechenig M. Autoduality of the Hitchin system and the geometric Langlands programme. [Doctoral Dissertation]. University of Oxford; 2013. Available from: http://ora.ox.ac.uk/objects/uuid:f0a08e96-2f25-4df1-9e56-99931e411f73 ; https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595942
Louisiana State University
5. Alaniz, Andrew. A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection.
Degree: PhD, Mathematics, 2021, Louisiana State University
URL: https://digitalcommons.lsu.edu/gradschool_dissertations/5445
Subjects/Keywords: wild ramification; geometric combinatorics; meromorphic connections; irreducible representations of Lie algebras; local Langlands correspondence
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Alaniz, A. (2021). A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection. (Doctoral Dissertation). Louisiana State University. Retrieved from https://digitalcommons.lsu.edu/gradschool_dissertations/5445
Chicago Manual of Style (16th Edition):
Alaniz, Andrew. “A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection.” 2021. Doctoral Dissertation, Louisiana State University. Accessed March 03, 2021. https://digitalcommons.lsu.edu/gradschool_dissertations/5445.
MLA Handbook (7th Edition):
Alaniz, Andrew. “A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection.” 2021. Web. 03 Mar 2021.
Vancouver:
Alaniz A. A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection. [Internet] [Doctoral dissertation]. Louisiana State University; 2021. [cited 2021 Mar 03]. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/5445.
Council of Science Editors:
Alaniz A. A Conjecture on the Irregularity Function for Local Geometric Langlands Parameters and the Formal Frenkel-Gross Connection. [Doctoral Dissertation]. Louisiana State University; 2021. Available from: https://digitalcommons.lsu.edu/gradschool_dissertations/5445
University of Texas – Austin
6. -0377-1586. Towards a self-dual geometric Langlands program.
Degree: PhD, Mathematics, 2018, University of Texas – Austin
URL: http://hdl.handle.net/2152/67577
Subjects/Keywords: Geometric Langlands; Representation theory; Quantum field theory; QFT; Cartier duality; Mirror symmetry; Higgs bundle; Moduli space; Class S; Theory X
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
-0377-1586. (2018). Towards a self-dual geometric Langlands program. (Doctoral Dissertation). University of Texas – Austin. Retrieved from http://hdl.handle.net/2152/67577
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Chicago Manual of Style (16th Edition):
-0377-1586. “Towards a self-dual geometric Langlands program.” 2018. Doctoral Dissertation, University of Texas – Austin. Accessed March 03, 2021. http://hdl.handle.net/2152/67577.
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
MLA Handbook (7th Edition):
-0377-1586. “Towards a self-dual geometric Langlands program.” 2018. Web. 03 Mar 2021.
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Vancouver:
-0377-1586. Towards a self-dual geometric Langlands program. [Internet] [Doctoral dissertation]. University of Texas – Austin; 2018. [cited 2021 Mar 03]. Available from: http://hdl.handle.net/2152/67577.
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Council of Science Editors:
-0377-1586. Towards a self-dual geometric Langlands program. [Doctoral Dissertation]. University of Texas – Austin; 2018. Available from: http://hdl.handle.net/2152/67577
Note: this citation may be lacking information needed for this citation format:
Author name may be incomplete
Université de Lorraine
7. Ye, Lizao. Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification.
Degree: Docteur es, Mathématiques, 2019, Université de Lorraine
URL: http://www.theses.fr/2019LORR0081
Subjects/Keywords: Programme de Langlands géométrique; Faisceau automorphe; Orbite unipotente sous-régulière; Sommes trigonométriques équivariantes; Complexe de Rham logarithmique; Variétés toriques; Geometric Langlands program; Automorphic sheaf; Subregular unipotent orbit; Equivariant trigonometric sums; Logarithmic de Rham complex; Toric varieties; 512.74; 514
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Ye, L. (2019). Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification. (Doctoral Dissertation). Université de Lorraine. Retrieved from http://www.theses.fr/2019LORR0081
Chicago Manual of Style (16th Edition):
Ye, Lizao. “Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification.” 2019. Doctoral Dissertation, Université de Lorraine. Accessed March 03, 2021. http://www.theses.fr/2019LORR0081.
MLA Handbook (7th Edition):
Ye, Lizao. “Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification.” 2019. Web. 03 Mar 2021.
Vancouver:
Ye L. Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification. [Internet] [Doctoral dissertation]. Université de Lorraine; 2019. [cited 2021 Mar 03]. Available from: http://www.theses.fr/2019LORR0081.
Council of Science Editors:
Ye L. Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman : Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratification. [Doctoral Dissertation]. Université de Lorraine; 2019. Available from: http://www.theses.fr/2019LORR0081
8. Zhou, Qiao. Applications of Toric Geometry to Geometric Representation Theory.
Degree: Mathematics, 2017, University of California – Berkeley
URL: http://www.escholarship.org/uc/item/2ck4r2xt
Subjects/Keywords: Mathematics; Affine Grassmannian; Deligne-Lusztig Theory; Geometric Langlands Correspondence; Geometric Representation Theory; Lie Theory; Toric Geometry
…important problems in geometric representation theory is the Geometric Langlands correspondence… …motivated by the Geometric Langlands correspondence. They are infinite-dimensional analogs of Pn… …x5B;5, 6, 26, 27]. The goal is to use geometric techniques to tackle questions in the… …Langlands program in number theory. The affine Grassmannian and affine flag variety are naturally… …and toric geometry. First, I analyze the geometric properties of some intersections of…
Record Details
Similar Records
❌
APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager
APA (6th Edition):
Zhou, Q. (2017). Applications of Toric Geometry to Geometric Representation Theory. (Thesis). University of California – Berkeley. Retrieved from http://www.escholarship.org/uc/item/2ck4r2xt
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Chicago Manual of Style (16th Edition):
Zhou, Qiao. “Applications of Toric Geometry to Geometric Representation Theory.” 2017. Thesis, University of California – Berkeley. Accessed March 03, 2021. http://www.escholarship.org/uc/item/2ck4r2xt.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
MLA Handbook (7th Edition):
Zhou, Qiao. “Applications of Toric Geometry to Geometric Representation Theory.” 2017. Web. 03 Mar 2021.
Vancouver:
Zhou Q. Applications of Toric Geometry to Geometric Representation Theory. [Internet] [Thesis]. University of California – Berkeley; 2017. [cited 2021 Mar 03]. Available from: http://www.escholarship.org/uc/item/2ck4r2xt.
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation
Council of Science Editors:
Zhou Q. Applications of Toric Geometry to Geometric Representation Theory. [Thesis]. University of California – Berkeley; 2017. Available from: http://www.escholarship.org/uc/item/2ck4r2xt
Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation