Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Generalized spaces). Showing records 1 – 30 of 85 total matches.

[1] [2] [3]

Search Limiters

Last 2 Years | English Only

Levels

Country

▼ Search Limiters


Oregon State University

1. McFarland, James Edward. An operational continued fraction solution to a second order equation in Banach space.

Degree: MS, Mathematics, 1955, Oregon State University

Subjects/Keywords: Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

McFarland, J. E. (1955). An operational continued fraction solution to a second order equation in Banach space. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/51633

Chicago Manual of Style (16th Edition):

McFarland, James Edward. “An operational continued fraction solution to a second order equation in Banach space.” 1955. Masters Thesis, Oregon State University. Accessed April 10, 2021. http://hdl.handle.net/1957/51633.

MLA Handbook (7th Edition):

McFarland, James Edward. “An operational continued fraction solution to a second order equation in Banach space.” 1955. Web. 10 Apr 2021.

Vancouver:

McFarland JE. An operational continued fraction solution to a second order equation in Banach space. [Internet] [Masters thesis]. Oregon State University; 1955. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/1957/51633.

Council of Science Editors:

McFarland JE. An operational continued fraction solution to a second order equation in Banach space. [Masters Thesis]. Oregon State University; 1955. Available from: http://hdl.handle.net/1957/51633


Oregon State University

2. Whitbeck, Walter Franklin. An alternate interpretation of some fundamentals of the tensor calculus.

Degree: MS, Mathematics, 1951, Oregon State University

Subjects/Keywords: Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Whitbeck, W. F. (1951). An alternate interpretation of some fundamentals of the tensor calculus. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/52858

Chicago Manual of Style (16th Edition):

Whitbeck, Walter Franklin. “An alternate interpretation of some fundamentals of the tensor calculus.” 1951. Masters Thesis, Oregon State University. Accessed April 10, 2021. http://hdl.handle.net/1957/52858.

MLA Handbook (7th Edition):

Whitbeck, Walter Franklin. “An alternate interpretation of some fundamentals of the tensor calculus.” 1951. Web. 10 Apr 2021.

Vancouver:

Whitbeck WF. An alternate interpretation of some fundamentals of the tensor calculus. [Internet] [Masters thesis]. Oregon State University; 1951. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/1957/52858.

Council of Science Editors:

Whitbeck WF. An alternate interpretation of some fundamentals of the tensor calculus. [Masters Thesis]. Oregon State University; 1951. Available from: http://hdl.handle.net/1957/52858


Oregon State University

3. Wyse, Frank Oliver. Nets in uniform spaces : monotoneity, limit theorems.

Degree: PhD, Mathematics, 1964, Oregon State University

See pdf. Advisors/Committee Members: Arnold, B. (advisor).

Subjects/Keywords: Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wyse, F. O. (1964). Nets in uniform spaces : monotoneity, limit theorems. (Doctoral Dissertation). Oregon State University. Retrieved from http://hdl.handle.net/1957/17543

Chicago Manual of Style (16th Edition):

Wyse, Frank Oliver. “Nets in uniform spaces : monotoneity, limit theorems.” 1964. Doctoral Dissertation, Oregon State University. Accessed April 10, 2021. http://hdl.handle.net/1957/17543.

MLA Handbook (7th Edition):

Wyse, Frank Oliver. “Nets in uniform spaces : monotoneity, limit theorems.” 1964. Web. 10 Apr 2021.

Vancouver:

Wyse FO. Nets in uniform spaces : monotoneity, limit theorems. [Internet] [Doctoral dissertation]. Oregon State University; 1964. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/1957/17543.

Council of Science Editors:

Wyse FO. Nets in uniform spaces : monotoneity, limit theorems. [Doctoral Dissertation]. Oregon State University; 1964. Available from: http://hdl.handle.net/1957/17543


Oregon State University

4. Bachelor, Gilbert Arthur. Systems of operational equations.

Degree: MS, Mathematics, 1955, Oregon State University

Subjects/Keywords: Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Bachelor, G. A. (1955). Systems of operational equations. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/51026

Chicago Manual of Style (16th Edition):

Bachelor, Gilbert Arthur. “Systems of operational equations.” 1955. Masters Thesis, Oregon State University. Accessed April 10, 2021. http://hdl.handle.net/1957/51026.

MLA Handbook (7th Edition):

Bachelor, Gilbert Arthur. “Systems of operational equations.” 1955. Web. 10 Apr 2021.

Vancouver:

Bachelor GA. Systems of operational equations. [Internet] [Masters thesis]. Oregon State University; 1955. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/1957/51026.

Council of Science Editors:

Bachelor GA. Systems of operational equations. [Masters Thesis]. Oregon State University; 1955. Available from: http://hdl.handle.net/1957/51026


Oregon State University

5. Hilzman, John. The Fréchet differential in normed linear spaces.

Degree: MS, Mathematics, 1955, Oregon State University

Subjects/Keywords: Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hilzman, J. (1955). The Fréchet differential in normed linear spaces. (Masters Thesis). Oregon State University. Retrieved from http://hdl.handle.net/1957/51115

Chicago Manual of Style (16th Edition):

Hilzman, John. “The Fréchet differential in normed linear spaces.” 1955. Masters Thesis, Oregon State University. Accessed April 10, 2021. http://hdl.handle.net/1957/51115.

MLA Handbook (7th Edition):

Hilzman, John. “The Fréchet differential in normed linear spaces.” 1955. Web. 10 Apr 2021.

Vancouver:

Hilzman J. The Fréchet differential in normed linear spaces. [Internet] [Masters thesis]. Oregon State University; 1955. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/1957/51115.

Council of Science Editors:

Hilzman J. The Fréchet differential in normed linear spaces. [Masters Thesis]. Oregon State University; 1955. Available from: http://hdl.handle.net/1957/51115


Columbia University

6. Gimre, Karsten Trevor. Quasi-local energy and isometric embedding.

Degree: 2016, Columbia University

 In this thesis, we consider the recent definition of gravitational energy at the quasi-local level provided by Mu-Tao Wang and Shing-Tung Yau. Their definition poses… (more)

Subjects/Keywords: Isometrics (Mathematics); Generalized spaces; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Gimre, K. T. (2016). Quasi-local energy and isometric embedding. (Doctoral Dissertation). Columbia University. Retrieved from https://doi.org/10.7916/D8765FB1

Chicago Manual of Style (16th Edition):

Gimre, Karsten Trevor. “Quasi-local energy and isometric embedding.” 2016. Doctoral Dissertation, Columbia University. Accessed April 10, 2021. https://doi.org/10.7916/D8765FB1.

MLA Handbook (7th Edition):

Gimre, Karsten Trevor. “Quasi-local energy and isometric embedding.” 2016. Web. 10 Apr 2021.

Vancouver:

Gimre KT. Quasi-local energy and isometric embedding. [Internet] [Doctoral dissertation]. Columbia University; 2016. [cited 2021 Apr 10]. Available from: https://doi.org/10.7916/D8765FB1.

Council of Science Editors:

Gimre KT. Quasi-local energy and isometric embedding. [Doctoral Dissertation]. Columbia University; 2016. Available from: https://doi.org/10.7916/D8765FB1


Rhodes University

7. Orpen, David Lisle. Characterization of stratified L-topological spaces by convergence of stratified L-filters.

Degree: MS, Faculty of Science, Mathematics, 2011, Rhodes University

 For the case where L is an ecl-premonoid, we explore various characterizations of SL-topological spaces, in particular characterization in terms of a convergence function lim:… (more)

Subjects/Keywords: Topology; Generalized spaces; Filters (Mathematics); Topological spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Orpen, D. L. (2011). Characterization of stratified L-topological spaces by convergence of stratified L-filters. (Masters Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1005216

Chicago Manual of Style (16th Edition):

Orpen, David Lisle. “Characterization of stratified L-topological spaces by convergence of stratified L-filters.” 2011. Masters Thesis, Rhodes University. Accessed April 10, 2021. http://hdl.handle.net/10962/d1005216.

MLA Handbook (7th Edition):

Orpen, David Lisle. “Characterization of stratified L-topological spaces by convergence of stratified L-filters.” 2011. Web. 10 Apr 2021.

Vancouver:

Orpen DL. Characterization of stratified L-topological spaces by convergence of stratified L-filters. [Internet] [Masters thesis]. Rhodes University; 2011. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/10962/d1005216.

Council of Science Editors:

Orpen DL. Characterization of stratified L-topological spaces by convergence of stratified L-filters. [Masters Thesis]. Rhodes University; 2011. Available from: http://hdl.handle.net/10962/d1005216


Iowa State University

8. Chu, Jun Tsu. Generalized Hermitian operators in Hilbert space.

Degree: 1950, Iowa State University

Subjects/Keywords: Generalized spaces; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chu, J. T. (1950). Generalized Hermitian operators in Hilbert space. (Thesis). Iowa State University. Retrieved from https://lib.dr.iastate.edu/rtd/12901

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Chu, Jun Tsu. “Generalized Hermitian operators in Hilbert space.” 1950. Thesis, Iowa State University. Accessed April 10, 2021. https://lib.dr.iastate.edu/rtd/12901.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Chu, Jun Tsu. “Generalized Hermitian operators in Hilbert space.” 1950. Web. 10 Apr 2021.

Vancouver:

Chu JT. Generalized Hermitian operators in Hilbert space. [Internet] [Thesis]. Iowa State University; 1950. [cited 2021 Apr 10]. Available from: https://lib.dr.iastate.edu/rtd/12901.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Chu JT. Generalized Hermitian operators in Hilbert space. [Thesis]. Iowa State University; 1950. Available from: https://lib.dr.iastate.edu/rtd/12901

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

9. Boals, Alfred John. Non-manifold factors of Euclidean spaces.

Degree: PhD, Department of Mathematics, 1967, Michigan State University

Subjects/Keywords: Generalized spaces; Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Boals, A. J. (1967). Non-manifold factors of Euclidean spaces. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:42602

Chicago Manual of Style (16th Edition):

Boals, Alfred John. “Non-manifold factors of Euclidean spaces.” 1967. Doctoral Dissertation, Michigan State University. Accessed April 10, 2021. http://etd.lib.msu.edu/islandora/object/etd:42602.

MLA Handbook (7th Edition):

Boals, Alfred John. “Non-manifold factors of Euclidean spaces.” 1967. Web. 10 Apr 2021.

Vancouver:

Boals AJ. Non-manifold factors of Euclidean spaces. [Internet] [Doctoral dissertation]. Michigan State University; 1967. [cited 2021 Apr 10]. Available from: http://etd.lib.msu.edu/islandora/object/etd:42602.

Council of Science Editors:

Boals AJ. Non-manifold factors of Euclidean spaces. [Doctoral Dissertation]. Michigan State University; 1967. Available from: http://etd.lib.msu.edu/islandora/object/etd:42602


Texas Tech University

10. Perry, Charles Rufus. The homogeneities in invertible spaces.

Degree: Mathematics, 1969, Texas Tech University

Subjects/Keywords: Topology; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Perry, C. R. (1969). The homogeneities in invertible spaces. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/8920

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Perry, Charles Rufus. “The homogeneities in invertible spaces.” 1969. Thesis, Texas Tech University. Accessed April 10, 2021. http://hdl.handle.net/2346/8920.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Perry, Charles Rufus. “The homogeneities in invertible spaces.” 1969. Web. 10 Apr 2021.

Vancouver:

Perry CR. The homogeneities in invertible spaces. [Internet] [Thesis]. Texas Tech University; 1969. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/2346/8920.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Perry CR. The homogeneities in invertible spaces. [Thesis]. Texas Tech University; 1969. Available from: http://hdl.handle.net/2346/8920

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas Tech University

11. Stubblefield, Robert Eugene. Some results in semi-metric spaces.

Degree: Mathematics, 1972, Texas Tech University

Subjects/Keywords: Topology; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Stubblefield, R. E. (1972). Some results in semi-metric spaces. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/21950

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Stubblefield, Robert Eugene. “Some results in semi-metric spaces.” 1972. Thesis, Texas Tech University. Accessed April 10, 2021. http://hdl.handle.net/2346/21950.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Stubblefield, Robert Eugene. “Some results in semi-metric spaces.” 1972. Web. 10 Apr 2021.

Vancouver:

Stubblefield RE. Some results in semi-metric spaces. [Internet] [Thesis]. Texas Tech University; 1972. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/2346/21950.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Stubblefield RE. Some results in semi-metric spaces. [Thesis]. Texas Tech University; 1972. Available from: http://hdl.handle.net/2346/21950

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Montana

12. Sullivan, Hugh D. Subrings of continuous functions.

Degree: MA, 1964, University of Montana

Subjects/Keywords: Generalized spaces.; Topology.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sullivan, H. D. (1964). Subrings of continuous functions. (Masters Thesis). University of Montana. Retrieved from https://scholarworks.umt.edu/etd/8243

Chicago Manual of Style (16th Edition):

Sullivan, Hugh D. “Subrings of continuous functions.” 1964. Masters Thesis, University of Montana. Accessed April 10, 2021. https://scholarworks.umt.edu/etd/8243.

MLA Handbook (7th Edition):

Sullivan, Hugh D. “Subrings of continuous functions.” 1964. Web. 10 Apr 2021.

Vancouver:

Sullivan HD. Subrings of continuous functions. [Internet] [Masters thesis]. University of Montana; 1964. [cited 2021 Apr 10]. Available from: https://scholarworks.umt.edu/etd/8243.

Council of Science Editors:

Sullivan HD. Subrings of continuous functions. [Masters Thesis]. University of Montana; 1964. Available from: https://scholarworks.umt.edu/etd/8243


University of British Columbia

13. Lim, Kim-Leong. Generalization of topological spaces.

Degree: MA- MA, Mathematics, 1966, University of British Columbia

 Given a set X , let P(X) be the collection of all subsets of X . A nonempty sub-collection u, of P(X) is called a… (more)

Subjects/Keywords: Topology; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lim, K. (1966). Generalization of topological spaces. (Masters Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/37024

Chicago Manual of Style (16th Edition):

Lim, Kim-Leong. “Generalization of topological spaces.” 1966. Masters Thesis, University of British Columbia. Accessed April 10, 2021. http://hdl.handle.net/2429/37024.

MLA Handbook (7th Edition):

Lim, Kim-Leong. “Generalization of topological spaces.” 1966. Web. 10 Apr 2021.

Vancouver:

Lim K. Generalization of topological spaces. [Internet] [Masters thesis]. University of British Columbia; 1966. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/2429/37024.

Council of Science Editors:

Lim K. Generalization of topological spaces. [Masters Thesis]. University of British Columbia; 1966. Available from: http://hdl.handle.net/2429/37024


Texas Christian University

14. Wiscamb, Margaret Reames. On symmetric neighborhood systems in metric, strongly paracompact and some other types of spaces / by Margaret Reames Wiscamb.

Degree: 1965, Texas Christian University

Subjects/Keywords: Generalized spaces; Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wiscamb, M. R. (1965). On symmetric neighborhood systems in metric, strongly paracompact and some other types of spaces / by Margaret Reames Wiscamb. (Thesis). Texas Christian University. Retrieved from https://repository.tcu.edu/handle/116099117/33785

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Wiscamb, Margaret Reames. “On symmetric neighborhood systems in metric, strongly paracompact and some other types of spaces / by Margaret Reames Wiscamb.” 1965. Thesis, Texas Christian University. Accessed April 10, 2021. https://repository.tcu.edu/handle/116099117/33785.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Wiscamb, Margaret Reames. “On symmetric neighborhood systems in metric, strongly paracompact and some other types of spaces / by Margaret Reames Wiscamb.” 1965. Web. 10 Apr 2021.

Vancouver:

Wiscamb MR. On symmetric neighborhood systems in metric, strongly paracompact and some other types of spaces / by Margaret Reames Wiscamb. [Internet] [Thesis]. Texas Christian University; 1965. [cited 2021 Apr 10]. Available from: https://repository.tcu.edu/handle/116099117/33785.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Wiscamb MR. On symmetric neighborhood systems in metric, strongly paracompact and some other types of spaces / by Margaret Reames Wiscamb. [Thesis]. Texas Christian University; 1965. Available from: https://repository.tcu.edu/handle/116099117/33785

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Texas Christian University

15. Daunis, Geraldine Fuller. Metrization in a Moore space / by Geraldine Fuller Daunis.

Degree: 1967, Texas Christian University

Subjects/Keywords: Generalized spaces; Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Daunis, G. F. (1967). Metrization in a Moore space / by Geraldine Fuller Daunis. (Thesis). Texas Christian University. Retrieved from https://repository.tcu.edu/handle/116099117/33791

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Daunis, Geraldine Fuller. “Metrization in a Moore space / by Geraldine Fuller Daunis.” 1967. Thesis, Texas Christian University. Accessed April 10, 2021. https://repository.tcu.edu/handle/116099117/33791.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Daunis, Geraldine Fuller. “Metrization in a Moore space / by Geraldine Fuller Daunis.” 1967. Web. 10 Apr 2021.

Vancouver:

Daunis GF. Metrization in a Moore space / by Geraldine Fuller Daunis. [Internet] [Thesis]. Texas Christian University; 1967. [cited 2021 Apr 10]. Available from: https://repository.tcu.edu/handle/116099117/33791.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Daunis GF. Metrization in a Moore space / by Geraldine Fuller Daunis. [Thesis]. Texas Christian University; 1967. Available from: https://repository.tcu.edu/handle/116099117/33791

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of British Columbia

16. Schulzer, Michael. Asymptotic properties of solutions of equations in Banach spaces.

Degree: MA- MA, Mathematics, 1959, University of British Columbia

 Certain properties of the solution u of the equation Pu = v in a Banach space will be investigated. It will be assumed that v… (more)

Subjects/Keywords: Equations; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Schulzer, M. (1959). Asymptotic properties of solutions of equations in Banach spaces. (Masters Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/39917

Chicago Manual of Style (16th Edition):

Schulzer, Michael. “Asymptotic properties of solutions of equations in Banach spaces.” 1959. Masters Thesis, University of British Columbia. Accessed April 10, 2021. http://hdl.handle.net/2429/39917.

MLA Handbook (7th Edition):

Schulzer, Michael. “Asymptotic properties of solutions of equations in Banach spaces.” 1959. Web. 10 Apr 2021.

Vancouver:

Schulzer M. Asymptotic properties of solutions of equations in Banach spaces. [Internet] [Masters thesis]. University of British Columbia; 1959. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/2429/39917.

Council of Science Editors:

Schulzer M. Asymptotic properties of solutions of equations in Banach spaces. [Masters Thesis]. University of British Columbia; 1959. Available from: http://hdl.handle.net/2429/39917


The Ohio State University

17. Duemmel, James Edward. Equivalent norms and the characteristic of subspaces in the conjugate of a normed linear space.

Degree: PhD, Graduate School, 1962, The Ohio State University

Subjects/Keywords: Mathematics; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Duemmel, J. E. (1962). Equivalent norms and the characteristic of subspaces in the conjugate of a normed linear space. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486560004526208

Chicago Manual of Style (16th Edition):

Duemmel, James Edward. “Equivalent norms and the characteristic of subspaces in the conjugate of a normed linear space.” 1962. Doctoral Dissertation, The Ohio State University. Accessed April 10, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486560004526208.

MLA Handbook (7th Edition):

Duemmel, James Edward. “Equivalent norms and the characteristic of subspaces in the conjugate of a normed linear space.” 1962. Web. 10 Apr 2021.

Vancouver:

Duemmel JE. Equivalent norms and the characteristic of subspaces in the conjugate of a normed linear space. [Internet] [Doctoral dissertation]. The Ohio State University; 1962. [cited 2021 Apr 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486560004526208.

Council of Science Editors:

Duemmel JE. Equivalent norms and the characteristic of subspaces in the conjugate of a normed linear space. [Doctoral Dissertation]. The Ohio State University; 1962. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486560004526208


The Ohio State University

18. Houghton, Charles Joseph. Finite-coherent peano spaces.

Degree: PhD, Graduate School, 1964, The Ohio State University

Subjects/Keywords: Mathematics; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Houghton, C. J. (1964). Finite-coherent peano spaces. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486564377843311

Chicago Manual of Style (16th Edition):

Houghton, Charles Joseph. “Finite-coherent peano spaces.” 1964. Doctoral Dissertation, The Ohio State University. Accessed April 10, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486564377843311.

MLA Handbook (7th Edition):

Houghton, Charles Joseph. “Finite-coherent peano spaces.” 1964. Web. 10 Apr 2021.

Vancouver:

Houghton CJ. Finite-coherent peano spaces. [Internet] [Doctoral dissertation]. The Ohio State University; 1964. [cited 2021 Apr 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486564377843311.

Council of Science Editors:

Houghton CJ. Finite-coherent peano spaces. [Doctoral Dissertation]. The Ohio State University; 1964. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486564377843311


The Ohio State University

19. Sehnert, James Ellis. Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³).

Degree: PhD, Graduate School, 1971, The Ohio State University

Subjects/Keywords: Mathematics; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sehnert, J. E. (1971). Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1487343760228615

Chicago Manual of Style (16th Edition):

Sehnert, James Ellis. “Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³).” 1971. Doctoral Dissertation, The Ohio State University. Accessed April 10, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487343760228615.

MLA Handbook (7th Edition):

Sehnert, James Ellis. “Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³).” 1971. Web. 10 Apr 2021.

Vancouver:

Sehnert JE. Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³). [Internet] [Doctoral dissertation]. The Ohio State University; 1971. [cited 2021 Apr 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487343760228615.

Council of Science Editors:

Sehnert JE. Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³). [Doctoral Dissertation]. The Ohio State University; 1971. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1487343760228615


The Ohio State University

20. Nachman, Louis J. Weak and strong constructions in proximity spaces.

Degree: PhD, Graduate School, 1968, The Ohio State University

Subjects/Keywords: Mathematics; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Nachman, L. J. (1968). Weak and strong constructions in proximity spaces. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486645717183063

Chicago Manual of Style (16th Edition):

Nachman, Louis J. “Weak and strong constructions in proximity spaces.” 1968. Doctoral Dissertation, The Ohio State University. Accessed April 10, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486645717183063.

MLA Handbook (7th Edition):

Nachman, Louis J. “Weak and strong constructions in proximity spaces.” 1968. Web. 10 Apr 2021.

Vancouver:

Nachman LJ. Weak and strong constructions in proximity spaces. [Internet] [Doctoral dissertation]. The Ohio State University; 1968. [cited 2021 Apr 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486645717183063.

Council of Science Editors:

Nachman LJ. Weak and strong constructions in proximity spaces. [Doctoral Dissertation]. The Ohio State University; 1968. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486645717183063


The Ohio State University

21. Sehnert, James Ellis. Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³).

Degree: PhD, Graduate School, 1971, The Ohio State University

Subjects/Keywords: Mathematics; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Sehnert, J. E. (1971). Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³). (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486720781372125

Chicago Manual of Style (16th Edition):

Sehnert, James Ellis. “Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³).” 1971. Doctoral Dissertation, The Ohio State University. Accessed April 10, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486720781372125.

MLA Handbook (7th Edition):

Sehnert, James Ellis. “Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³).” 1971. Web. 10 Apr 2021.

Vancouver:

Sehnert JE. Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³). [Internet] [Doctoral dissertation]. The Ohio State University; 1971. [cited 2021 Apr 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486720781372125.

Council of Science Editors:

Sehnert JE. Minkowski's conjecture in three dimensions over the fields Q(i) and Q(e²[pi]i/³). [Doctoral Dissertation]. The Ohio State University; 1971. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486720781372125


The Ohio State University

22. Rosenblum, Lawrence J. Minkowski convergents and the product of three linear homogenous forms.

Degree: PhD, Graduate School, 1971, The Ohio State University

Subjects/Keywords: Mathematics; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rosenblum, L. J. (1971). Minkowski convergents and the product of three linear homogenous forms. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486725904126259

Chicago Manual of Style (16th Edition):

Rosenblum, Lawrence J. “Minkowski convergents and the product of three linear homogenous forms.” 1971. Doctoral Dissertation, The Ohio State University. Accessed April 10, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486725904126259.

MLA Handbook (7th Edition):

Rosenblum, Lawrence J. “Minkowski convergents and the product of three linear homogenous forms.” 1971. Web. 10 Apr 2021.

Vancouver:

Rosenblum LJ. Minkowski convergents and the product of three linear homogenous forms. [Internet] [Doctoral dissertation]. The Ohio State University; 1971. [cited 2021 Apr 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486725904126259.

Council of Science Editors:

Rosenblum LJ. Minkowski convergents and the product of three linear homogenous forms. [Doctoral Dissertation]. The Ohio State University; 1971. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486725904126259


The Ohio State University

23. Neugebauer, Christoph Johannes. Cyclic additivity.

Degree: PhD, Graduate School, 1954, The Ohio State University

Subjects/Keywords: Mathematics; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Neugebauer, C. J. (1954). Cyclic additivity. (Doctoral Dissertation). The Ohio State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1486474580098161

Chicago Manual of Style (16th Edition):

Neugebauer, Christoph Johannes. “Cyclic additivity.” 1954. Doctoral Dissertation, The Ohio State University. Accessed April 10, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486474580098161.

MLA Handbook (7th Edition):

Neugebauer, Christoph Johannes. “Cyclic additivity.” 1954. Web. 10 Apr 2021.

Vancouver:

Neugebauer CJ. Cyclic additivity. [Internet] [Doctoral dissertation]. The Ohio State University; 1954. [cited 2021 Apr 10]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486474580098161.

Council of Science Editors:

Neugebauer CJ. Cyclic additivity. [Doctoral Dissertation]. The Ohio State University; 1954. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1486474580098161


Rhodes University

24. Pinchuck, Andrew. Extension theorems on L-topological spaces and L-fuzzy vector spaces.

Degree: Faculty of Science, Mathematics, 2002, Rhodes University

 A non-trivial example of an L-topological space, the fuzzy real line is examined. Various L-topological properties and their relationships are developed. Extension theorems on the… (more)

Subjects/Keywords: Topology; Vector spaces; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Pinchuck, A. (2002). Extension theorems on L-topological spaces and L-fuzzy vector spaces. (Thesis). Rhodes University. Retrieved from http://hdl.handle.net/10962/d1005219

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Pinchuck, Andrew. “Extension theorems on L-topological spaces and L-fuzzy vector spaces.” 2002. Thesis, Rhodes University. Accessed April 10, 2021. http://hdl.handle.net/10962/d1005219.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Pinchuck, Andrew. “Extension theorems on L-topological spaces and L-fuzzy vector spaces.” 2002. Web. 10 Apr 2021.

Vancouver:

Pinchuck A. Extension theorems on L-topological spaces and L-fuzzy vector spaces. [Internet] [Thesis]. Rhodes University; 2002. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/10962/d1005219.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Pinchuck A. Extension theorems on L-topological spaces and L-fuzzy vector spaces. [Thesis]. Rhodes University; 2002. Available from: http://hdl.handle.net/10962/d1005219

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Michigan State University

25. Leon, Steven J. The Hardy spaces and other related function spaces.

Degree: PhD, Department of Mathematics, 1970, Michigan State University

Subjects/Keywords: Hardy spaces; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Leon, S. J. (1970). The Hardy spaces and other related function spaces. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:41509

Chicago Manual of Style (16th Edition):

Leon, Steven J. “The Hardy spaces and other related function spaces.” 1970. Doctoral Dissertation, Michigan State University. Accessed April 10, 2021. http://etd.lib.msu.edu/islandora/object/etd:41509.

MLA Handbook (7th Edition):

Leon, Steven J. “The Hardy spaces and other related function spaces.” 1970. Web. 10 Apr 2021.

Vancouver:

Leon SJ. The Hardy spaces and other related function spaces. [Internet] [Doctoral dissertation]. Michigan State University; 1970. [cited 2021 Apr 10]. Available from: http://etd.lib.msu.edu/islandora/object/etd:41509.

Council of Science Editors:

Leon SJ. The Hardy spaces and other related function spaces. [Doctoral Dissertation]. Michigan State University; 1970. Available from: http://etd.lib.msu.edu/islandora/object/etd:41509


University of British Columbia

26. Iwata, George Fumimaro. Characterization of rank two subspaces of a tensor product space.

Degree: MA- MA, Mathematics, 1966, University of British Columbia

 Let U, V be two vector spaces of dimensions n and m, respectively, over an algebraically closed field F; let U⊗V be their tensor product;… (more)

Subjects/Keywords: Vector spaces; Generalized spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Iwata, G. F. (1966). Characterization of rank two subspaces of a tensor product space. (Masters Thesis). University of British Columbia. Retrieved from http://hdl.handle.net/2429/36947

Chicago Manual of Style (16th Edition):

Iwata, George Fumimaro. “Characterization of rank two subspaces of a tensor product space.” 1966. Masters Thesis, University of British Columbia. Accessed April 10, 2021. http://hdl.handle.net/2429/36947.

MLA Handbook (7th Edition):

Iwata, George Fumimaro. “Characterization of rank two subspaces of a tensor product space.” 1966. Web. 10 Apr 2021.

Vancouver:

Iwata GF. Characterization of rank two subspaces of a tensor product space. [Internet] [Masters thesis]. University of British Columbia; 1966. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/2429/36947.

Council of Science Editors:

Iwata GF. Characterization of rank two subspaces of a tensor product space. [Masters Thesis]. University of British Columbia; 1966. Available from: http://hdl.handle.net/2429/36947


Michigan State University

27. Oman, John Arthur. Characterizations of inner product spaces.

Degree: PhD, Department of Mathematics, 1969, Michigan State University

Subjects/Keywords: Generalized spaces; Normed linear spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Oman, J. A. (1969). Characterizations of inner product spaces. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:12373

Chicago Manual of Style (16th Edition):

Oman, John Arthur. “Characterizations of inner product spaces.” 1969. Doctoral Dissertation, Michigan State University. Accessed April 10, 2021. http://etd.lib.msu.edu/islandora/object/etd:12373.

MLA Handbook (7th Edition):

Oman, John Arthur. “Characterizations of inner product spaces.” 1969. Web. 10 Apr 2021.

Vancouver:

Oman JA. Characterizations of inner product spaces. [Internet] [Doctoral dissertation]. Michigan State University; 1969. [cited 2021 Apr 10]. Available from: http://etd.lib.msu.edu/islandora/object/etd:12373.

Council of Science Editors:

Oman JA. Characterizations of inner product spaces. [Doctoral Dissertation]. Michigan State University; 1969. Available from: http://etd.lib.msu.edu/islandora/object/etd:12373


Michigan State University

28. Chatterji, Srishti Dhar. Martingales of Banach-valued random variables.

Degree: PhD, 1960, Michigan State University

Subjects/Keywords: Generalized spaces; Mathematical statistics; Banach spaces

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chatterji, S. D. (1960). Martingales of Banach-valued random variables. (Doctoral Dissertation). Michigan State University. Retrieved from http://etd.lib.msu.edu/islandora/object/etd:34218

Chicago Manual of Style (16th Edition):

Chatterji, Srishti Dhar. “Martingales of Banach-valued random variables.” 1960. Doctoral Dissertation, Michigan State University. Accessed April 10, 2021. http://etd.lib.msu.edu/islandora/object/etd:34218.

MLA Handbook (7th Edition):

Chatterji, Srishti Dhar. “Martingales of Banach-valued random variables.” 1960. Web. 10 Apr 2021.

Vancouver:

Chatterji SD. Martingales of Banach-valued random variables. [Internet] [Doctoral dissertation]. Michigan State University; 1960. [cited 2021 Apr 10]. Available from: http://etd.lib.msu.edu/islandora/object/etd:34218.

Council of Science Editors:

Chatterji SD. Martingales of Banach-valued random variables. [Doctoral Dissertation]. Michigan State University; 1960. Available from: http://etd.lib.msu.edu/islandora/object/etd:34218


Texas Tech University

29. Parker, Horace Neal. Non-locally convex linear topological spaces.

Degree: Mathematics, 1966, Texas Tech University

Subjects/Keywords: Semigroups; Generalized spaces; Topological spaces; Topology

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Parker, H. N. (1966). Non-locally convex linear topological spaces. (Thesis). Texas Tech University. Retrieved from http://hdl.handle.net/2346/11981

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Parker, Horace Neal. “Non-locally convex linear topological spaces.” 1966. Thesis, Texas Tech University. Accessed April 10, 2021. http://hdl.handle.net/2346/11981.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Parker, Horace Neal. “Non-locally convex linear topological spaces.” 1966. Web. 10 Apr 2021.

Vancouver:

Parker HN. Non-locally convex linear topological spaces. [Internet] [Thesis]. Texas Tech University; 1966. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/2346/11981.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Parker HN. Non-locally convex linear topological spaces. [Thesis]. Texas Tech University; 1966. Available from: http://hdl.handle.net/2346/11981

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of Arizona

30. Fritsche, Richard Thomas, 1936-. TOPOLOGIES FOR PROBABILISTIC METRIC SPACES .

Degree: 1967, University of Arizona

Subjects/Keywords: Generalized spaces.; Metric spaces.; Distance geometry.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Fritsche, Richard Thomas, 1. (1967). TOPOLOGIES FOR PROBABILISTIC METRIC SPACES . (Doctoral Dissertation). University of Arizona. Retrieved from http://hdl.handle.net/10150/284911

Chicago Manual of Style (16th Edition):

Fritsche, Richard Thomas, 1936-. “TOPOLOGIES FOR PROBABILISTIC METRIC SPACES .” 1967. Doctoral Dissertation, University of Arizona. Accessed April 10, 2021. http://hdl.handle.net/10150/284911.

MLA Handbook (7th Edition):

Fritsche, Richard Thomas, 1936-. “TOPOLOGIES FOR PROBABILISTIC METRIC SPACES .” 1967. Web. 10 Apr 2021.

Vancouver:

Fritsche, Richard Thomas 1. TOPOLOGIES FOR PROBABILISTIC METRIC SPACES . [Internet] [Doctoral dissertation]. University of Arizona; 1967. [cited 2021 Apr 10]. Available from: http://hdl.handle.net/10150/284911.

Council of Science Editors:

Fritsche, Richard Thomas 1. TOPOLOGIES FOR PROBABILISTIC METRIC SPACES . [Doctoral Dissertation]. University of Arizona; 1967. Available from: http://hdl.handle.net/10150/284911

[1] [2] [3]

.