Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Generalized polynomial chaos). Showing records 1 – 9 of 9 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Ottawa

1. Xiaochen, Liu. Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos .

Degree: 2016, University of Ottawa

 One of the major tasks in electronic circuit design is the ability to predict the performance of general circuits in the presence of uncertainty in… (more)

Subjects/Keywords: Variability Analysis; Stochastic Processes; Generalized Polynomial Chaos; orthogonal polynomials; Circuit Modelling

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xiaochen, L. (2016). Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/34836

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Xiaochen, Liu. “Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos .” 2016. Thesis, University of Ottawa. Accessed October 25, 2020. http://hdl.handle.net/10393/34836.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Xiaochen, Liu. “Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos .” 2016. Web. 25 Oct 2020.

Vancouver:

Xiaochen L. Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos . [Internet] [Thesis]. University of Ottawa; 2016. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10393/34836.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Xiaochen L. Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos . [Thesis]. University of Ottawa; 2016. Available from: http://hdl.handle.net/10393/34836

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


University of New Mexico

2. Talbot, Paul W. Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN.

Degree: Nuclear Engineering, 2016, University of New Mexico

  As experiment complexity in fields such as nuclear engineering continually increases, so does the demand for robust computational methods to simulate them. In many… (more)

Subjects/Keywords: uncertainty quantification; generalized polynomial chaos; high-dimensional model reduction; Nuclear Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Talbot, P. W. (2016). Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN. (Doctoral Dissertation). University of New Mexico. Retrieved from https://digitalrepository.unm.edu/ne_etds/57

Chicago Manual of Style (16th Edition):

Talbot, Paul W. “Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN.” 2016. Doctoral Dissertation, University of New Mexico. Accessed October 25, 2020. https://digitalrepository.unm.edu/ne_etds/57.

MLA Handbook (7th Edition):

Talbot, Paul W. “Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN.” 2016. Web. 25 Oct 2020.

Vancouver:

Talbot PW. Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN. [Internet] [Doctoral dissertation]. University of New Mexico; 2016. [cited 2020 Oct 25]. Available from: https://digitalrepository.unm.edu/ne_etds/57.

Council of Science Editors:

Talbot PW. Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN. [Doctoral Dissertation]. University of New Mexico; 2016. Available from: https://digitalrepository.unm.edu/ne_etds/57


Virginia Tech

3. Xu, Yijun. Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods.

Degree: PhD, Electrical Engineering, 2019, Virginia Tech

 It is a well-known fact that a power system contains many sources of uncertainties. These uncertainties coming from the loads, the renewables, the model and… (more)

Subjects/Keywords: Uncertainty Quantification; Dynamic State Estimation; Generalized Polynomial Chaos; Multi-Element Polynomial Chaos; ANOVA; Polynomial-Chaos-Based Kalman Filter; Response Surface; Bayesian Inference; Markov Chain Monte Carlo.

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Xu, Y. (2019). Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/97876

Chicago Manual of Style (16th Edition):

Xu, Yijun. “Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods.” 2019. Doctoral Dissertation, Virginia Tech. Accessed October 25, 2020. http://hdl.handle.net/10919/97876.

MLA Handbook (7th Edition):

Xu, Yijun. “Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods.” 2019. Web. 25 Oct 2020.

Vancouver:

Xu Y. Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods. [Internet] [Doctoral dissertation]. Virginia Tech; 2019. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10919/97876.

Council of Science Editors:

Xu Y. Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods. [Doctoral Dissertation]. Virginia Tech; 2019. Available from: http://hdl.handle.net/10919/97876


University of Waterloo

4. Du, Yuncheng. Classification Algorithms based on Generalized Polynomial Chaos.

Degree: 2016, University of Waterloo

 Classification is one of the most important tasks in process system engineering. Since most of the classification algorithms are generally based on mathematical models, they… (more)

Subjects/Keywords: Process Control; Fault Detection and Diagnosis; Image Segmentation; Generalized Polynomial Chaos; Classification Algorithms

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Du, Y. (2016). Classification Algorithms based on Generalized Polynomial Chaos. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10210

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Du, Yuncheng. “Classification Algorithms based on Generalized Polynomial Chaos.” 2016. Thesis, University of Waterloo. Accessed October 25, 2020. http://hdl.handle.net/10012/10210.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Du, Yuncheng. “Classification Algorithms based on Generalized Polynomial Chaos.” 2016. Web. 25 Oct 2020.

Vancouver:

Du Y. Classification Algorithms based on Generalized Polynomial Chaos. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10012/10210.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Du Y. Classification Algorithms based on Generalized Polynomial Chaos. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10210

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Purdue University

5. Chen, Yi. Local polynomial chaos expansion method for high dimensional stochastic differential equations.

Degree: PhD, Mathematics, 2016, Purdue University

Polynomial chaos expansion is a widely adopted method to determine evolution of uncertainty in dynamical system with probabilistic uncertainties in parameters. In particular, we… (more)

Subjects/Keywords: Applied sciences; Generalized polynomial chaos; Stochastic differential equations; Uncertainty quantification; Applied Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Chen, Y. (2016). Local polynomial chaos expansion method for high dimensional stochastic differential equations. (Doctoral Dissertation). Purdue University. Retrieved from https://docs.lib.purdue.edu/open_access_dissertations/744

Chicago Manual of Style (16th Edition):

Chen, Yi. “Local polynomial chaos expansion method for high dimensional stochastic differential equations.” 2016. Doctoral Dissertation, Purdue University. Accessed October 25, 2020. https://docs.lib.purdue.edu/open_access_dissertations/744.

MLA Handbook (7th Edition):

Chen, Yi. “Local polynomial chaos expansion method for high dimensional stochastic differential equations.” 2016. Web. 25 Oct 2020.

Vancouver:

Chen Y. Local polynomial chaos expansion method for high dimensional stochastic differential equations. [Internet] [Doctoral dissertation]. Purdue University; 2016. [cited 2020 Oct 25]. Available from: https://docs.lib.purdue.edu/open_access_dissertations/744.

Council of Science Editors:

Chen Y. Local polynomial chaos expansion method for high dimensional stochastic differential equations. [Doctoral Dissertation]. Purdue University; 2016. Available from: https://docs.lib.purdue.edu/open_access_dissertations/744

6. Dammak, Khalil. Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction).

Degree: Docteur es, Mécanique, 2018, Normandie; École nationale d'ingénieurs de Sfax (Tunisie)

Ce travail de thèse porte sur l’analyse robuste et l’optimisation fiabiliste des problèmes vibro-acoustiques (ou en interaction fluide-structure) en tenant en compte des incertitudes des… (more)

Subjects/Keywords: Vibro-acoustique; Chaos polynomial généralisé; Optimisation fiabiliste; Modèle de substitution; Vibro-acoustic; Generalized polynomial chaos; Monte Carlo; Reliability based design optimization; Surrogate model

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Dammak, K. (2018). Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction). (Doctoral Dissertation). Normandie; École nationale d'ingénieurs de Sfax (Tunisie). Retrieved from http://www.theses.fr/2018NORMIR19

Chicago Manual of Style (16th Edition):

Dammak, Khalil. “Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction).” 2018. Doctoral Dissertation, Normandie; École nationale d'ingénieurs de Sfax (Tunisie). Accessed October 25, 2020. http://www.theses.fr/2018NORMIR19.

MLA Handbook (7th Edition):

Dammak, Khalil. “Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction).” 2018. Web. 25 Oct 2020.

Vancouver:

Dammak K. Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction). [Internet] [Doctoral dissertation]. Normandie; École nationale d'ingénieurs de Sfax (Tunisie); 2018. [cited 2020 Oct 25]. Available from: http://www.theses.fr/2018NORMIR19.

Council of Science Editors:

Dammak K. Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction). [Doctoral Dissertation]. Normandie; École nationale d'ingénieurs de Sfax (Tunisie); 2018. Available from: http://www.theses.fr/2018NORMIR19


University of Michigan

7. Zhou, Haining. Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT).

Degree: PhD, Nuclear Engineering & Radiological Sciences, 2019, University of Michigan

 The uncertainty quantification (UQ) in computational calculations is to quantitatively characterize the uncertainties in the quantities of interest resulted from input parameter uncertainties. UQ is… (more)

Subjects/Keywords: Uncertainty quantification of high-dimensional problems; adaptive feature selection based on lasso regularization; orthogonal polynomials and the generalized polynomial chaos method; Nuclear Engineering and Radiological Sciences; Engineering

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Zhou, H. (2019). Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/151420

Chicago Manual of Style (16th Edition):

Zhou, Haining. “Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT).” 2019. Doctoral Dissertation, University of Michigan. Accessed October 25, 2020. http://hdl.handle.net/2027.42/151420.

MLA Handbook (7th Edition):

Zhou, Haining. “Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT).” 2019. Web. 25 Oct 2020.

Vancouver:

Zhou H. Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT). [Internet] [Doctoral dissertation]. University of Michigan; 2019. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/2027.42/151420.

Council of Science Editors:

Zhou H. Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT). [Doctoral Dissertation]. University of Michigan; 2019. Available from: http://hdl.handle.net/2027.42/151420


Pontifical Catholic University of Rio de Janeiro

8. NILTON ALEJANDRO CUELLAR LOYOLA. [en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH.

Degree: 2019, Pontifical Catholic University of Rio de Janeiro

[pt] Este trabalho apresenta aplicações de métodos espectrais estocásticos para otimização topológica de estruturas na presença de incertezas. Esse procedimento, conhecido como otimização topológica robusta,… (more)

Subjects/Keywords: [pt] EXPANSAO DE KARHUNEN-LOEVE; [en] KARHUNEN-LOEVE EXPANSION; [pt] QUANTIFICACAO DE INCERTEZAS; [en] UNCERTAINTY QUANTICATION; [pt] OTIMIZACAO TOPOLOGICA ROBUSTA; [en] ROBUST TOPOLOGY OPTIMIZATION; [pt] METODOS ESTOCASTICOS ESPECTRAIS; [en] STOCHASTIC SPECTRAL METHODS; [pt] CAOS POLINOMIAL GENERALIZADO; [en] GENERALIZED POLYNOMIAL CHAOS

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

LOYOLA, N. A. C. (2019). [en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH. (Thesis). Pontifical Catholic University of Rio de Janeiro. Retrieved from http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36063

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

LOYOLA, NILTON ALEJANDRO CUELLAR. “[en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH.” 2019. Thesis, Pontifical Catholic University of Rio de Janeiro. Accessed October 25, 2020. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36063.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

LOYOLA, NILTON ALEJANDRO CUELLAR. “[en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH.” 2019. Web. 25 Oct 2020.

Vancouver:

LOYOLA NAC. [en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH. [Internet] [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2019. [cited 2020 Oct 25]. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36063.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

LOYOLA NAC. [en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH. [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2019. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36063

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation


Virginia Tech

9. Hays, Joseph T. Parametric Optimal Design Of Uncertain Dynamical Systems.

Degree: PhD, Mechanical Engineering, 2011, Virginia Tech

 This research effort develops a comprehensive computational framework to support the parametric optimal design of uncertain dynamical systems. Uncertainty comes from various sources, such as:… (more)

Subjects/Keywords: Ordinary Differential Equations (ODEs); Trajectory Planning; Motion Planning; Generalized Polynomial Chaos (gPC); Uncertainty Quantification; Multi-Objective Optimization (MOO); Nonlinear Programming (NLP); Dynamic Optimization; Optimal Control; Robust Design Optimization (RDO); Collocation; Uncertainty Apportionment; Tolerance Allocation; Multibody Dynamics; Differential Algebraic Equations (DAEs)

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Hays, J. T. (2011). Parametric Optimal Design Of Uncertain Dynamical Systems. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/28850

Chicago Manual of Style (16th Edition):

Hays, Joseph T. “Parametric Optimal Design Of Uncertain Dynamical Systems.” 2011. Doctoral Dissertation, Virginia Tech. Accessed October 25, 2020. http://hdl.handle.net/10919/28850.

MLA Handbook (7th Edition):

Hays, Joseph T. “Parametric Optimal Design Of Uncertain Dynamical Systems.” 2011. Web. 25 Oct 2020.

Vancouver:

Hays JT. Parametric Optimal Design Of Uncertain Dynamical Systems. [Internet] [Doctoral dissertation]. Virginia Tech; 2011. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10919/28850.

Council of Science Editors:

Hays JT. Parametric Optimal Design Of Uncertain Dynamical Systems. [Doctoral Dissertation]. Virginia Tech; 2011. Available from: http://hdl.handle.net/10919/28850

.