Advanced search options

Sorted by: relevance · author · university · date | New search

You searched for `subject:(Generalized polynomial chaos)`

.
Showing records 1 – 9 of
9 total matches.

▼ Search Limiters

University of Ottawa

1.
Xiaochen, Liu.
Statistical Analysis of Integrated Circuits Using Decoupled *Polynomial* * Chaos*
.

Degree: 2016, University of Ottawa

URL: http://hdl.handle.net/10393/34836

► One of the major tasks in electronic circuit design is the ability to predict the performance of general circuits in the presence of uncertainty in…
(more)

Subjects/Keywords: Variability Analysis; Stochastic Processes; Generalized Polynomial Chaos; orthogonal polynomials; Circuit Modelling

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Xiaochen, L. (2016). Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos . (Thesis). University of Ottawa. Retrieved from http://hdl.handle.net/10393/34836

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Xiaochen, Liu. “Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos .” 2016. Thesis, University of Ottawa. Accessed October 25, 2020. http://hdl.handle.net/10393/34836.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Xiaochen, Liu. “Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos .” 2016. Web. 25 Oct 2020.

Vancouver:

Xiaochen L. Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos . [Internet] [Thesis]. University of Ottawa; 2016. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10393/34836.

Note: this citation may be lacking information needed for this citation format:

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Xiaochen L. Statistical Analysis of Integrated Circuits Using Decoupled Polynomial Chaos . [Thesis]. University of Ottawa; 2016. Available from: http://hdl.handle.net/10393/34836

Not specified: Masters Thesis or Doctoral Dissertation

University of New Mexico

2.
Talbot, Paul W.
Advanced Stochastic Collocation Methods for *Polynomial* *Chaos* in RAVEN.

Degree: Nuclear Engineering, 2016, University of New Mexico

URL: https://digitalrepository.unm.edu/ne_etds/57

► As experiment complexity in fields such as nuclear engineering continually increases, so does the demand for robust computational methods to simulate them. In many…
(more)

Subjects/Keywords: uncertainty quantification; generalized polynomial chaos; high-dimensional model reduction; Nuclear Engineering

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Talbot, P. W. (2016). Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN. (Doctoral Dissertation). University of New Mexico. Retrieved from https://digitalrepository.unm.edu/ne_etds/57

Chicago Manual of Style (16^{th} Edition):

Talbot, Paul W. “Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN.” 2016. Doctoral Dissertation, University of New Mexico. Accessed October 25, 2020. https://digitalrepository.unm.edu/ne_etds/57.

MLA Handbook (7^{th} Edition):

Talbot, Paul W. “Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN.” 2016. Web. 25 Oct 2020.

Vancouver:

Talbot PW. Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN. [Internet] [Doctoral dissertation]. University of New Mexico; 2016. [cited 2020 Oct 25]. Available from: https://digitalrepository.unm.edu/ne_etds/57.

Council of Science Editors:

Talbot PW. Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN. [Doctoral Dissertation]. University of New Mexico; 2016. Available from: https://digitalrepository.unm.edu/ne_etds/57

Virginia Tech

3.
Xu, Yijun.
Uncertainty Quantification, State and Parameter Estimation in Power Systems Using *Polynomial* *Chaos* Based Methods.

Degree: PhD, Electrical Engineering, 2019, Virginia Tech

URL: http://hdl.handle.net/10919/97876

► It is a well-known fact that a power system contains many sources of uncertainties. These uncertainties coming from the loads, the renewables, the model and…
(more)

Subjects/Keywords: Uncertainty Quantification; Dynamic State Estimation; Generalized Polynomial Chaos; Multi-Element Polynomial Chaos; ANOVA; Polynomial-Chaos-Based Kalman Filter; Response Surface; Bayesian Inference; Markov Chain Monte Carlo.

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Xu, Y. (2019). Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/97876

Chicago Manual of Style (16^{th} Edition):

Xu, Yijun. “Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods.” 2019. Doctoral Dissertation, Virginia Tech. Accessed October 25, 2020. http://hdl.handle.net/10919/97876.

MLA Handbook (7^{th} Edition):

Xu, Yijun. “Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods.” 2019. Web. 25 Oct 2020.

Vancouver:

Xu Y. Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods. [Internet] [Doctoral dissertation]. Virginia Tech; 2019. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10919/97876.

Council of Science Editors:

Xu Y. Uncertainty Quantification, State and Parameter Estimation in Power Systems Using Polynomial Chaos Based Methods. [Doctoral Dissertation]. Virginia Tech; 2019. Available from: http://hdl.handle.net/10919/97876

University of Waterloo

4.
Du, Yuncheng.
Classification Algorithms based on *Generalized* *Polynomial* * Chaos*.

Degree: 2016, University of Waterloo

URL: http://hdl.handle.net/10012/10210

► Classification is one of the most important tasks in process system engineering. Since most of the classification algorithms are generally based on mathematical models, they…
(more)

Subjects/Keywords: Process Control; Fault Detection and Diagnosis; Image Segmentation; Generalized Polynomial Chaos; Classification Algorithms

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Du, Y. (2016). Classification Algorithms based on Generalized Polynomial Chaos. (Thesis). University of Waterloo. Retrieved from http://hdl.handle.net/10012/10210

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

Du, Yuncheng. “Classification Algorithms based on Generalized Polynomial Chaos.” 2016. Thesis, University of Waterloo. Accessed October 25, 2020. http://hdl.handle.net/10012/10210.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

Du, Yuncheng. “Classification Algorithms based on Generalized Polynomial Chaos.” 2016. Web. 25 Oct 2020.

Vancouver:

Du Y. Classification Algorithms based on Generalized Polynomial Chaos. [Internet] [Thesis]. University of Waterloo; 2016. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10012/10210.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Du Y. Classification Algorithms based on Generalized Polynomial Chaos. [Thesis]. University of Waterloo; 2016. Available from: http://hdl.handle.net/10012/10210

Not specified: Masters Thesis or Doctoral Dissertation

Purdue University

5.
Chen, Yi.
Local *polynomial* *chaos* expansion method for high dimensional stochastic differential equations.

Degree: PhD, Mathematics, 2016, Purdue University

URL: https://docs.lib.purdue.edu/open_access_dissertations/744

► *Polynomial* *chaos* expansion is a widely adopted method to determine evolution of uncertainty in dynamical system with probabilistic uncertainties in parameters. In particular, we…
(more)

Subjects/Keywords: Applied sciences; Generalized polynomial chaos; Stochastic differential equations; Uncertainty quantification; Applied Mathematics

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Chen, Y. (2016). Local polynomial chaos expansion method for high dimensional stochastic differential equations. (Doctoral Dissertation). Purdue University. Retrieved from https://docs.lib.purdue.edu/open_access_dissertations/744

Chicago Manual of Style (16^{th} Edition):

Chen, Yi. “Local polynomial chaos expansion method for high dimensional stochastic differential equations.” 2016. Doctoral Dissertation, Purdue University. Accessed October 25, 2020. https://docs.lib.purdue.edu/open_access_dissertations/744.

MLA Handbook (7^{th} Edition):

Chen, Yi. “Local polynomial chaos expansion method for high dimensional stochastic differential equations.” 2016. Web. 25 Oct 2020.

Vancouver:

Chen Y. Local polynomial chaos expansion method for high dimensional stochastic differential equations. [Internet] [Doctoral dissertation]. Purdue University; 2016. [cited 2020 Oct 25]. Available from: https://docs.lib.purdue.edu/open_access_dissertations/744.

Council of Science Editors:

Chen Y. Local polynomial chaos expansion method for high dimensional stochastic differential equations. [Doctoral Dissertation]. Purdue University; 2016. Available from: https://docs.lib.purdue.edu/open_access_dissertations/744

6. Dammak, Khalil. Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction).

Degree: Docteur es, Mécanique, 2018, Normandie; École nationale d'ingénieurs de Sfax (Tunisie)

URL: http://www.theses.fr/2018NORMIR19

►

Ce travail de thèse porte sur l’analyse robuste et l’optimisation fiabiliste des problèmes vibro-acoustiques (ou en interaction fluide-structure) en tenant en compte des incertitudes des… (more)

Subjects/Keywords: Vibro-acoustique; Chaos polynomial généralisé; Optimisation fiabiliste; Modèle de substitution; Vibro-acoustic; Generalized polynomial chaos; Monte Carlo; Reliability based design optimization; Surrogate model

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Dammak, K. (2018). Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction). (Doctoral Dissertation). Normandie; École nationale d'ingénieurs de Sfax (Tunisie). Retrieved from http://www.theses.fr/2018NORMIR19

Chicago Manual of Style (16^{th} Edition):

Dammak, Khalil. “Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction).” 2018. Doctoral Dissertation, Normandie; École nationale d'ingénieurs de Sfax (Tunisie). Accessed October 25, 2020. http://www.theses.fr/2018NORMIR19.

MLA Handbook (7^{th} Edition):

Dammak, Khalil. “Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction).” 2018. Web. 25 Oct 2020.

Vancouver:

Dammak K. Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction). [Internet] [Doctoral dissertation]. Normandie; École nationale d'ingénieurs de Sfax (Tunisie); 2018. [cited 2020 Oct 25]. Available from: http://www.theses.fr/2018NORMIR19.

Council of Science Editors:

Dammak K. Prise en compte des incertitudes des problèmes en vibro-acoustiques (ou interaction fluide-structure) : Taking into account the uncertainties of vibro-acoustic problems (or fluid-structure interaction). [Doctoral Dissertation]. Normandie; École nationale d'ingénieurs de Sfax (Tunisie); 2018. Available from: http://www.theses.fr/2018NORMIR19

University of Michigan

7. Zhou, Haining. Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT).

Degree: PhD, Nuclear Engineering & Radiological Sciences, 2019, University of Michigan

URL: http://hdl.handle.net/2027.42/151420

► The uncertainty quantification (UQ) in computational calculations is to quantitatively characterize the uncertainties in the quantities of interest resulted from input parameter uncertainties. UQ is…
(more)

Subjects/Keywords: Uncertainty quantification of high-dimensional problems; adaptive feature selection based on lasso regularization; orthogonal polynomials and the generalized polynomial chaos method; Nuclear Engineering and Radiological Sciences; Engineering

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Zhou, H. (2019). Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT). (Doctoral Dissertation). University of Michigan. Retrieved from http://hdl.handle.net/2027.42/151420

Chicago Manual of Style (16^{th} Edition):

Zhou, Haining. “Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT).” 2019. Doctoral Dissertation, University of Michigan. Accessed October 25, 2020. http://hdl.handle.net/2027.42/151420.

MLA Handbook (7^{th} Edition):

Zhou, Haining. “Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT).” 2019. Web. 25 Oct 2020.

Vancouver:

Zhou H. Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT). [Internet] [Doctoral dissertation]. University of Michigan; 2019. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/2027.42/151420.

Council of Science Editors:

Zhou H. Sparse Functional Expansion Based Method for Solving High-dimensional Uncertainty Quantification Problems and Its Application to the Nuclear Transient Test Reactor (TREAT). [Doctoral Dissertation]. University of Michigan; 2019. Available from: http://hdl.handle.net/2027.42/151420

Pontifical Catholic University of Rio de Janeiro

8. NILTON ALEJANDRO CUELLAR LOYOLA. [en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH.

Degree: 2019, Pontifical Catholic University of Rio de Janeiro

URL: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36063

►

[pt] Este trabalho apresenta aplicações de métodos espectrais estocásticos para otimização topológica de estruturas na presença de incertezas. Esse procedimento, conhecido como otimização topológica robusta,… (more)

Subjects/Keywords: [pt] EXPANSAO DE KARHUNEN-LOEVE; [en] KARHUNEN-LOEVE EXPANSION; [pt] QUANTIFICACAO DE INCERTEZAS; [en] UNCERTAINTY QUANTICATION; [pt] OTIMIZACAO TOPOLOGICA ROBUSTA; [en] ROBUST TOPOLOGY OPTIMIZATION; [pt] METODOS ESTOCASTICOS ESPECTRAIS; [en] STOCHASTIC SPECTRAL METHODS; [pt] CAOS POLINOMIAL GENERALIZADO; [en] GENERALIZED POLYNOMIAL CHAOS

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

LOYOLA, N. A. C. (2019). [en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH. (Thesis). Pontifical Catholic University of Rio de Janeiro. Retrieved from http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36063

Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16^{th} Edition):

LOYOLA, NILTON ALEJANDRO CUELLAR. “[en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH.” 2019. Thesis, Pontifical Catholic University of Rio de Janeiro. Accessed October 25, 2020. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36063.

Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7^{th} Edition):

LOYOLA, NILTON ALEJANDRO CUELLAR. “[en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH.” 2019. Web. 25 Oct 2020.

Vancouver:

LOYOLA NAC. [en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH. [Internet] [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2019. [cited 2020 Oct 25]. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36063.

Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

LOYOLA NAC. [en] ROBUST TOPOLOGY OPTIMIZATION USING A NON-INTRUSIVE STOCHASTIC SPECTRAL APPROACH. [Thesis]. Pontifical Catholic University of Rio de Janeiro; 2019. Available from: http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=36063

Not specified: Masters Thesis or Doctoral Dissertation

Virginia Tech

9. Hays, Joseph T. Parametric Optimal Design Of Uncertain Dynamical Systems.

Degree: PhD, Mechanical Engineering, 2011, Virginia Tech

URL: http://hdl.handle.net/10919/28850

► This research effort develops a comprehensive computational framework to support the parametric optimal design of uncertain dynamical systems. Uncertainty comes from various sources, such as:…
(more)

Subjects/Keywords: Ordinary Differential Equations (ODEs); Trajectory Planning; Motion Planning; Generalized Polynomial Chaos (gPC); Uncertainty Quantification; Multi-Objective Optimization (MOO); Nonlinear Programming (NLP); Dynamic Optimization; Optimal Control; Robust Design Optimization (RDO); Collocation; Uncertainty Apportionment; Tolerance Allocation; Multibody Dynamics; Differential Algebraic Equations (DAEs)

Record Details Similar Records

❌

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6^{th} Edition):

Hays, J. T. (2011). Parametric Optimal Design Of Uncertain Dynamical Systems. (Doctoral Dissertation). Virginia Tech. Retrieved from http://hdl.handle.net/10919/28850

Chicago Manual of Style (16^{th} Edition):

Hays, Joseph T. “Parametric Optimal Design Of Uncertain Dynamical Systems.” 2011. Doctoral Dissertation, Virginia Tech. Accessed October 25, 2020. http://hdl.handle.net/10919/28850.

MLA Handbook (7^{th} Edition):

Hays, Joseph T. “Parametric Optimal Design Of Uncertain Dynamical Systems.” 2011. Web. 25 Oct 2020.

Vancouver:

Hays JT. Parametric Optimal Design Of Uncertain Dynamical Systems. [Internet] [Doctoral dissertation]. Virginia Tech; 2011. [cited 2020 Oct 25]. Available from: http://hdl.handle.net/10919/28850.

Council of Science Editors:

Hays JT. Parametric Optimal Design Of Uncertain Dynamical Systems. [Doctoral Dissertation]. Virginia Tech; 2011. Available from: http://hdl.handle.net/10919/28850