Advanced search options

Advanced Search Options 🞨

Browse by author name (“Author name starts with…”).

Find ETDs with:

in
/  
in
/  
in
/  
in

Written in Published in Earliest date Latest date

Sorted by

Results per page:

Sorted by: relevance · author · university · dateNew search

You searched for subject:(Generalized Iteration). Showing records 1 – 6 of 6 total matches.

Search Limiters

Last 2 Years | English Only

No search limiters apply to these results.

▼ Search Limiters


University of Colorado

1. Wakefield, Nathan Paul. Primitive Divisors in Generalized Iterations of Chebyshev Polynomials.

Degree: PhD, Mathematics, 2013, University of Colorado

  Let (<em>gi</em>)<em>i</em> ≥1 be a sequence of Chebyshev polynomials, each with degree at least two, and define (<em>fi</em>) <em>i</em> ≥1 by the following recursion:… (more)

Subjects/Keywords: Arithmetic Dynamics; Chebyshev; Generalized Iteration; Primitive Divisors; Mathematics

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Wakefield, N. P. (2013). Primitive Divisors in Generalized Iterations of Chebyshev Polynomials. (Doctoral Dissertation). University of Colorado. Retrieved from https://scholar.colorado.edu/math_gradetds/25

Chicago Manual of Style (16th Edition):

Wakefield, Nathan Paul. “Primitive Divisors in Generalized Iterations of Chebyshev Polynomials.” 2013. Doctoral Dissertation, University of Colorado. Accessed December 04, 2020. https://scholar.colorado.edu/math_gradetds/25.

MLA Handbook (7th Edition):

Wakefield, Nathan Paul. “Primitive Divisors in Generalized Iterations of Chebyshev Polynomials.” 2013. Web. 04 Dec 2020.

Vancouver:

Wakefield NP. Primitive Divisors in Generalized Iterations of Chebyshev Polynomials. [Internet] [Doctoral dissertation]. University of Colorado; 2013. [cited 2020 Dec 04]. Available from: https://scholar.colorado.edu/math_gradetds/25.

Council of Science Editors:

Wakefield NP. Primitive Divisors in Generalized Iterations of Chebyshev Polynomials. [Doctoral Dissertation]. University of Colorado; 2013. Available from: https://scholar.colorado.edu/math_gradetds/25


Wright State University

2. Ali, Ali Hasan. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.

Degree: MS, Mathematics, 2017, Wright State University

 In this thesis, we are investigating the solutions λ of a typical quadratic eigenvalue problem (QEP). Indeed, solutions λ of a QEP of the form… (more)

Subjects/Keywords: Mathematics; Applied Mathematics; Quadratic Eigenvalue problem; Matrix Polynomial Problem; Nonlinear Eigenvalue Problem; Newton Iteration; Generalized Eigenvalue Problem; Newton Maehly Method; Newton Maehly Iteration; Newton Correction; QEP; NLEP; NLEVP; MPP; GEP

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Ali, A. H. (2017). Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. (Masters Thesis). Wright State University. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239

Chicago Manual of Style (16th Edition):

Ali, Ali Hasan. “Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.” 2017. Masters Thesis, Wright State University. Accessed December 04, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239.

MLA Handbook (7th Edition):

Ali, Ali Hasan. “Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems.” 2017. Web. 04 Dec 2020.

Vancouver:

Ali AH. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. [Internet] [Masters thesis]. Wright State University; 2017. [cited 2020 Dec 04]. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239.

Council of Science Editors:

Ali AH. Modifying Some Iterative Methods for Solving Quadratic Eigenvalue Problems. [Masters Thesis]. Wright State University; 2017. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=wright1515029541712239


Universiteit Utrecht

3. Rommes, J. Methods for eigenvalue problems with applications in model order reduction.

Degree: 2007, Universiteit Utrecht

 Physical structures and processes are modeled by dynamical systems in a wide range of application areas. The increasing demand for complex components and large structures,… (more)

Subjects/Keywords: Wiskunde en Informatica; eigenvalue problems; model order reduction; eigenvalue methods; modal approximation; dominant poles; generalized eigenvalue problems; quadratic eigenvalue problems; purification; Jacobi-Davidson method; two-sided Rayleigh quotient iteration

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rommes, J. (2007). Methods for eigenvalue problems with applications in model order reduction. (Doctoral Dissertation). Universiteit Utrecht. Retrieved from http://dspace.library.uu.nl:8080/handle/1874/21787

Chicago Manual of Style (16th Edition):

Rommes, J. “Methods for eigenvalue problems with applications in model order reduction.” 2007. Doctoral Dissertation, Universiteit Utrecht. Accessed December 04, 2020. http://dspace.library.uu.nl:8080/handle/1874/21787.

MLA Handbook (7th Edition):

Rommes, J. “Methods for eigenvalue problems with applications in model order reduction.” 2007. Web. 04 Dec 2020.

Vancouver:

Rommes J. Methods for eigenvalue problems with applications in model order reduction. [Internet] [Doctoral dissertation]. Universiteit Utrecht; 2007. [cited 2020 Dec 04]. Available from: http://dspace.library.uu.nl:8080/handle/1874/21787.

Council of Science Editors:

Rommes J. Methods for eigenvalue problems with applications in model order reduction. [Doctoral Dissertation]. Universiteit Utrecht; 2007. Available from: http://dspace.library.uu.nl:8080/handle/1874/21787

4. MD. ASLAM HOSSAIN. Studying the Physics of Design Flow Incorporating Early Information Using a Simulation Model.

Degree: 2010, National University of Singapore

Subjects/Keywords: Early Information; Project Performance Metrics; Generalized Simulation Model; Iteration and Feedback Loop; Managing Change; Overlapping Strategy

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

HOSSAIN, M. A. (2010). Studying the Physics of Design Flow Incorporating Early Information Using a Simulation Model. (Thesis). National University of Singapore. Retrieved from http://scholarbank.nus.edu.sg/handle/10635/22805

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

HOSSAIN, MD. ASLAM. “Studying the Physics of Design Flow Incorporating Early Information Using a Simulation Model.” 2010. Thesis, National University of Singapore. Accessed December 04, 2020. http://scholarbank.nus.edu.sg/handle/10635/22805.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

HOSSAIN, MD. ASLAM. “Studying the Physics of Design Flow Incorporating Early Information Using a Simulation Model.” 2010. Web. 04 Dec 2020.

Vancouver:

HOSSAIN MA. Studying the Physics of Design Flow Incorporating Early Information Using a Simulation Model. [Internet] [Thesis]. National University of Singapore; 2010. [cited 2020 Dec 04]. Available from: http://scholarbank.nus.edu.sg/handle/10635/22805.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

HOSSAIN MA. Studying the Physics of Design Flow Incorporating Early Information Using a Simulation Model. [Thesis]. National University of Singapore; 2010. Available from: http://scholarbank.nus.edu.sg/handle/10635/22805

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

5. Lukkari, Teemu. Nonlinear Potential Theory of Elliptic Equations with Nonstandard Growth.

Degree: 2008, Helsinki University of Technology

We consider the nonlinear potential theory of elliptic partial differential equations with nonstandard structural conditions. In such a theory, Harnack inequalities and the class of… (more)

Subjects/Keywords: nonstandard growth; variable exponent; p(x)-Laplacian; logarithmic Hölder continuity; Caccioppoli estimate; Moser iteration; Harnack's inequality; regularity; comparison principle; superharmonic function; removability; growth of solutions; existence of generalized solutions; measure data; epästandardi rakenne-ehto; varioiva eksponentti; p(x)-Laplacen yhtälö; logaritminen Hölder-jatkuvuus; Caccioppoli-estimaatti; Moserin iteraatio; Harnackin epäyhtälö; säännöllisyys; vertailuperiaate; superharmoninen funktio; poistuvuus; ratkaisujen kasvuvauhti; yleistettyjen ratkaisujen olemassaolo; mittadata

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Lukkari, T. (2008). Nonlinear Potential Theory of Elliptic Equations with Nonstandard Growth. (Thesis). Helsinki University of Technology. Retrieved from http://lib.tkk.fi/Diss/2008/isbn9789512292400/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Chicago Manual of Style (16th Edition):

Lukkari, Teemu. “Nonlinear Potential Theory of Elliptic Equations with Nonstandard Growth.” 2008. Thesis, Helsinki University of Technology. Accessed December 04, 2020. http://lib.tkk.fi/Diss/2008/isbn9789512292400/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

MLA Handbook (7th Edition):

Lukkari, Teemu. “Nonlinear Potential Theory of Elliptic Equations with Nonstandard Growth.” 2008. Web. 04 Dec 2020.

Vancouver:

Lukkari T. Nonlinear Potential Theory of Elliptic Equations with Nonstandard Growth. [Internet] [Thesis]. Helsinki University of Technology; 2008. [cited 2020 Dec 04]. Available from: http://lib.tkk.fi/Diss/2008/isbn9789512292400/.

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

Council of Science Editors:

Lukkari T. Nonlinear Potential Theory of Elliptic Equations with Nonstandard Growth. [Thesis]. Helsinki University of Technology; 2008. Available from: http://lib.tkk.fi/Diss/2008/isbn9789512292400/

Note: this citation may be lacking information needed for this citation format:
Not specified: Masters Thesis or Doctoral Dissertation

6. Rommes, J. Methods for eigenvalue problems with applications in model order reduction.

Degree: 2007, University Utrecht

 Physical structures and processes are modeled by dynamical systems in a wide range of application areas. The increasing demand for complex components and large structures,… (more)

Subjects/Keywords: eigenvalue problems; model order reduction; eigenvalue methods; modal approximation; dominant poles; generalized eigenvalue problems; quadratic eigenvalue problems; purification; Jacobi-Davidson method; two-sided Rayleigh quotient iteration

Record DetailsSimilar RecordsGoogle PlusoneFacebookTwitterCiteULikeMendeleyreddit

APA · Chicago · MLA · Vancouver · CSE | Export to Zotero / EndNote / Reference Manager

APA (6th Edition):

Rommes, J. (2007). Methods for eigenvalue problems with applications in model order reduction. (Doctoral Dissertation). University Utrecht. Retrieved from https://dspace.library.uu.nl/handle/1874/21787 ; URN:NBN:NL:UI:10-1874-21787 ; URN:NBN:NL:UI:10-1874-21787 ; https://dspace.library.uu.nl/handle/1874/21787

Chicago Manual of Style (16th Edition):

Rommes, J. “Methods for eigenvalue problems with applications in model order reduction.” 2007. Doctoral Dissertation, University Utrecht. Accessed December 04, 2020. https://dspace.library.uu.nl/handle/1874/21787 ; URN:NBN:NL:UI:10-1874-21787 ; URN:NBN:NL:UI:10-1874-21787 ; https://dspace.library.uu.nl/handle/1874/21787.

MLA Handbook (7th Edition):

Rommes, J. “Methods for eigenvalue problems with applications in model order reduction.” 2007. Web. 04 Dec 2020.

Vancouver:

Rommes J. Methods for eigenvalue problems with applications in model order reduction. [Internet] [Doctoral dissertation]. University Utrecht; 2007. [cited 2020 Dec 04]. Available from: https://dspace.library.uu.nl/handle/1874/21787 ; URN:NBN:NL:UI:10-1874-21787 ; URN:NBN:NL:UI:10-1874-21787 ; https://dspace.library.uu.nl/handle/1874/21787.

Council of Science Editors:

Rommes J. Methods for eigenvalue problems with applications in model order reduction. [Doctoral Dissertation]. University Utrecht; 2007. Available from: https://dspace.library.uu.nl/handle/1874/21787 ; URN:NBN:NL:UI:10-1874-21787 ; URN:NBN:NL:UI:10-1874-21787 ; https://dspace.library.uu.nl/handle/1874/21787

.